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ABSTRACT
In this paper, a first-order shear deformable beam element is formulated and employed to study
the dynamic behavior of beams partially resting on a Pasternak elastic foundation subjected to an
axial force and a moving harmonic load. The beam element is derived by using the solution of dif-
ferential equilibrium equations of a beam segment to interpolate the transverse displacement and
rotation. The dynamic response of the beams is computed with the aid of the Newmark method.
A parametric study is carried out to highlight the effects of the moving load parameters, the axial
force amplitude, and the foundation support on the dynamic characteristics of the beams. The
obtained result reveals that the axial force and the moving velocity have an important role in the
dynamic behavior of the beams, and the influence of the axial force on the dynamic behavior of
the beam is dependent on the excitation frequency.
Key words: Axially loaded beam, partial foundation support, moving harmonic load, dynamic
response, finite element method

INTRODUCTION
It is well known that displacements and stresses of
a structure subjected to moving loads are quite dif-
ferent from those obtained by a static analysis of the
structure subjected to the same loads. The displace-
ments and stresses of the structure in a dynamic anal-
ysis are dependent not only on the magnitude of ex-
ternal loads but also on the velocity and frequency of
the loads.
The dynamic analysis of beams traversed by moving
loads has an important role in railway and bridge en-
gineering, and this topic has been investigated for
many years. In1, Timoshenko et al. employed the
mode superposition method to obtain the dynamic
deflection of a Bernoulli beam subjected to a mov-
ing harmonic force. A number of closed-form solu-
tions based on Fourier and Laplace transform meth-
ods for beams under various types of moving loads
are given in the well-known monograph of Fryba 2.
Thambiratnam and Zhuge3 used a simple two-node
Bernoulli beam element to compute the dynamic re-
sponse of beams on aWinkler elastic foundation sub-
jected to moving loads. The dynamic stiffness ma-
trix was employed by Chen et al.4 in studying the dy-
namic behavior of an infinite Timoshenko beam on
a viscoelastic foundation to a moving harmonic load.
Dugush and Eisenberger5 employed modal and di-
rect integration methods to evaluate the natural fre-
quencies and mode shapes of Bernoulli-type beams

excited by moving loads with variable velocity. Us-
ing the Fourier transform method, Kim 6 obtained
the steady-state response to moving loads of axially
loaded beams resting on aWinkler elastic foundation.
Kocatürk and Şimşek7 investigated the vibration of
viscoelastic beams subjected to a moving harmonic
force by approximating the displacements by polyno-
mials.
The objective of the present paper is to investigate
the dynamic behavior of beams partially resting on
an elastic foundation under a moving harmonic load.
The beams are initially loaded by an axial force and
then subjected to a harmonic load moving with a
constant velocity from the left end to the right end.
The foundation is considered herein as the Paster-
nak foundation, which is represented by two parame-
ters8,9. A first-order shear deformable beam element
is derived and used in combination with the New-
markmethod to compute the dynamic response of the
breams. To avoid shear locking and improve the effi-
ciency of the beam element, the solution of the dif-
ferential equilibrium equations of a beam segment is
employed to interpolate the displacement field. The
effect of the moving load parameters, the axial load
and the foundation support on the dynamic charac-
teristics are studied and highlighted. The influence of
the deceleration and acceleration of the moving load
is also examined and discussed.

Cite this article : Tuyen B V. Dynamic Analysis of Axially Loaded Beams Partially Supported by an
Elastic Foundation Under a Moving Harmonic Load. Sci. Tech. Dev. J.; 24(SI):SI63-SI71.
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MATHEMATICALMODEL
A simply supported beam partially resting on an elas-
tic foundation, as shown in Figure 1, is considered.
The beam is initially loaded by an axial forceQ, and it
is then subjected to a harmonic load F = Pcos(Ωt),
moving from the left end to the right end. Denoting L,
EI andGA are the length, bending and shear rigidities
of the beam, respectively.

Figure 1: An axially loaded beam partially sup-
portedby an elastic foundationunder amovinghar-
monic load.

Based on the first-order shear deformation theory, the
axial and transverse displacements of a point in the
beam are given by{

u1 (x,z, t) =−zθ (x, t)
u3 (x,z, t) = w(x, t)

(1)

where θ (x,t) and w(x,t) are the rotation of the cross
section and transverse displacement of a point on the
themed plane, respectively.
The axial and shear strains resulting from the dis-
placement field in (1) are of the form

εxx =−z
∂θ
∂x

yxz =

(
∂w
∂ x

−θ
) (2)

The constitutive equation based on the linear behavior
for the beam material is as follows:

σxx = Eεxx, τxz = Gγxz (3)

with E and G, respectively, the Young’s modulus and
shear modulus.
From Eqs. (2) and (3), one can write the strain energy
of the beam in the form

U =
1
2

∫ L

0

[
EI

(
∂θ
∂x

)2
+

___
GA

(
∂w
∂x

−θ
)2

]
dx (4)

where
___
GA = ψGA with ψ is the correction factor.

The potential energy of the axial load Q is given by

VQ =
1
2

∫ L

0
Q
(

∂w
∂x

)2
dx (5)

The Parsternak foundation type in which the interac-
tion between the springs of the traditional Winkler
foundation is adopted herein. The Pasternak foun-
dation is represented by two parameters, kW and kG,
and the stiffness of the Winkler springs and the shear
layer, respectively, is adopted herein. In this regard,
the strain energy stored in the foundation deforma-
tion is from8

UF =
1
2

∫ L f

0

[
kW w2 + kG

(
∂w
∂x

)2
]

dx (6)

where L f is the foundation support length.
The potential energy due to the harmonic load F is
given by

VQ =
∫ L

0 PcosΩtδ (x− vt)dx (7)

in which v is the velocity of the load F; δ (.) is the
Diract delta function, and x is the abscissa measured
from the current position of the load F to the left end
of the beam.
The kinetic energy for the beam resulting from the
displacements (1) is of the form

T =
1
2

∫ l

0
ρA

.
w2dx+

1
2

∫ l

0
ρI

.
θ

2
dx (8)

where ρ is the mass density, and .
w = ∂w/∂ t,

.
θ =

∂θ/∂ t.
By applying Hamilton’s principle to Eqs. (4)-(7), one
can obtain the differential equations of motion for the
beam. However, due to the nonuniform rigidities re-
sulting from the partial foundation support, a closed-
form solution for such equations is rarely obtained.
The finite element formulation is derived in the next
section to constract the discrete equation of motion
and to compute the response of the beam.

FINITE ELEMENT FORMULATION
Consider a two-node uniform beam element with
length l. The element is supported by the elastic foun-
dation and stressed by the axial force Q At each node,
the element has two degrees of freedom, namely, a lat-
eral translation and a rotation about an axis normal to
the plane of the paper. Thus, the vector of nodal dis-
placements contains four components as

d =
{

wi θi w j θ j

}T
(9)

where the superscript ‘T’ refers to the transpose of a
vector or a matrix. To derive the stiffness and mass
matrix for the finite element analysis, we need to em-
ploy an interpolation scheme. Simple linear functions
for both the lateral displacement w and rotation q
can be adopted. However, the element formulated on
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such linear interpolation is slow convergence and suf-
fers from the shear locking problem. As demonstrated
by Luo in 10, a first-order shear deformation beam ele-
ment derived in the context of the so-called field con-
sistent approach possesses many advantages, includ-
ing the high accuracy and lack of shear locking. In
this regard, the present work looks for the interpola-
tion functions by solving the following homogenous
equilibrium equations of a beam segment

EI
∂ 2θ
∂x2 +

___
GA

(
∂w
∂x

−θ
)
= 0

___
GA

(
∂ 2w
∂x2 − ∂θ

∂x

)
= 0

(10)

Introducing a dimensionless parameter

λ =
1
l2

EI
(GA)

(11)

we can rewrite Eqs. (10) in the form
EI

∂ 2θ
∂x2 +

1
λ l2 EI

(
∂w
∂ x

−θ
)
= 0

1
λ l2 EI

(
∂ 2w
∂x2 − ∂θ

∂x

)
= 0

(12)

Using the command ‘dsolve’ in the symbolic software
Maple11, we can easily obtain the general solutions for
the system of equations (4), which have the forms

w(x) =
1
6

C1x3 +
1
2

C2x2 +C3x+C4

θ (x) =C1λ l2 +
1
2

C1x2 +C2x+C3

(13)

where the constant C1, ...,C4 is determined from the
end conditions of the element.{

w|x=0 = wi; θ|x=0 = θi

w|x=l = w j; θ|x=l = θ j
(14)

Expressing the displacement and rotation in the
forms

w(x) = Nw1wi +Nw2θi +Nw3w j +Nw4θ j

θ (x) = Nθ1wi +Nθ2θi +Nθ3w j +Nθ4θ j
(15)

or w(x) = Nwd and θ (x) = Nθ d with

Nw =
{

Nw1 Nw2 Nw3 Nw4

}T
, Nθ ={

Nθ1 Nθ2 Nθ3 Nθ4

}T
are thematrices of

interpolation functions for w and θ , respectively.
From Eqs. (12)-(15), we can obtain the expressions
for Nwi and Nθ i, (i = 1.4) as follows:

Nw1 =
1

1+12λ

(
2 x3

l3 −3 x2

l2 −12λ x
l +1

)
Nw2 =

1
1+12λ

[
x3

l2 − (2+6λ ) x2

l +(1+6λ )x
]

Nw3 =
1

1+12λ

(
−2 x3

l3 +3 x2

l2 +12λ x
l

)
Nw4 =

1
1+12λ

[
x3

l2 − (1−6λ ) x2

l −6λx
]

and

Nθ1 =
6

1+12λ

(
x2

l3 − x
l2

)
Nθ2 =

1
1+12λ

[
3 x2

l2 − (4+3λ ) x
l +(1+12λ )

]
Nθ3 =

6
1+12λ

(
− x2

l3 +
x
l2

)
Nθ2 =

1
1+12λ

[
3 x2

l2 −2(1−6λ ) x
l

]
It can be seen from the above two equations that in the
limit,

___
GA → ∞, the interpolation functionsNwi return

to the Hermitial polynomials, which are often em-
ployed in developing the traditional Bernoulli beam
element. In addition, in this case, the interpolation
function Nθ i adds to the derivative of the functions
Nwi with respect to x. The element formulated from
the above interpolation functions is thus free from
shear locking.
Having the interpolation functions derived, on can
write the expression for the strain energy in Eq. (4)
in the following matrix forms:

U =
1
2

NE

∑dT kd (16)

where NE is the total number of elements used to dis-
cretize the beam, and k is the element stiffness matrix
with the following form:

k =
∫ l

0 [EINT
θ ,xNθ ,x

+
___
GA

(
∂Nw

∂x
−Nθ

)T (
∂Nw

∂ x
−Nθ

)
]dx

(17)

The strain energy stored in the elastic foundation is
now of the form

UF =
1
2

∑NE dT kF d (18)

where kF is the element foundation stiffness with the
following form:

kF =
∫ l

0 [kwNT
w Nw + kG

(
∂ Nw

∂ x

)T ∂Nw

∂x
]dx (19)

The potential energy of the axial force Q can also be
written in the forms

VQ =
1
2

∑NE dT kQd (20)

with

kQ =
∫ l

0 QNT
w,xNw,xdx (21)

Finally, the potential of the moving load F is of the
form

VP = ∑NE dT fex (22)

in which fex is the element nodal force vector with the
following form:

fex = Pcosωt
{

Nw1 Nw2 Nw3 Nw4

}T
(23)
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Finally, the kinetic energy of the beam in Eq. (8) can
also be written in the form

T =
1
2

NE
∑

.
d

T
m

.
d (24)

wherem is the elementmassmatrixwith the following
form:

m =
∫ l

0 ρANT
w Nwdx+

∫ l
0 ρINT

θ Nθ d (25)

where A is the cross-sectional area and I is the mo-
ment of inertia of the beam cross section.

GOVERNING EQUATIONS
Having the element stiffness matrices and nodal force
vector derived, one can construct the discrete equa-
tion of motion for the beam in case of neglecting the
damping effect as follows:

M
.

D+KD = F = Pcos(Ωt)N (26)

where M and K are the structural mass and stiffness
matrices, respectively, obtained by assembling the el-
ement matrices m and ke = k + kF + kQ formulated
in Section 3 in the standard way of the finite element
method; D and

.
D are the vectors of structural nodal

displacements and accelerations, respectively; and is
the vector of shape functions for the beam, which has
the form

N {0 ... Nw1 Nw2 Nw3 Nw4 ...0}T

where Nw1, Nw2, Nw3, Nw4 interpolation function for
w, in which the abscissa x is measured from the left-
hand node of the current loading element.
Eq. (26) is solved herein by the direct integration
Newmark method using the average constant accel-
eration formula, which ensures an unconditional nu-
merical stability 12.

NUMERICAL RESULTS
Using the formulated finite beam element and the
stated numerical algorithm, a computer code was de-
veloped and used in the dynamic analysis. To investi-
gate the dynamic response, the beam with the follow-
ing geometry and material data is adopted herewith 7

L=20 m, I=0.08824 m4, ρA=1000 kg/m, E=2.1x1011

N/m2, and υ=0.3, where in addition to the previous
notations, υ denotes Poisson’s ratio. The amplitude of
the moving load is taken as P=100kN.
Two types of boundary conditions, namely, simply
supported (SS) and clamped at one end and simply
supported at the other (CS), are considered. The effect
of the partial support by the elastic foundation is ex-
amined by assuming that the beams to be supported
on the part αL, with 0 ≤ α ≤ 1, from the left-hand

end. For the convenience of discussion, α is named
the supporting parameter below. A mesh of 20 equal
elements and a correction factor ψ =

10(1+v)
(12+11v) are

used in the analysis. To facilitate the discussion, the
following dimensionless parameters are introduced
for the foundation stiffness13

k1 =
L4

EI
kW ; k2 =

L2

π2EI
kG (27)

Additionally, the axial force is

r =
Q
Qb

=
L2

EI
Q (28)

where Qb is the buckling load of the SS beam without
the foundation support.
The dimensionless parameter for the fundamental
frequency is defined as

µ =

(
ρAL4

EI
ω2

1

)1/4
(29)

where ω1 is the fundamental frequency.

Formulation verification
The derived formulation is first verified. To this end,
Table 1 lists the frequency parameter of the SS beam
with a slenderness ratio L/h=20 fully supported by
the elastic foundation at various values of the com-
pressive axial force and the foundation parameters,
where the result obtained by Naidu and Rao in Ref.13

is also given. It can be seen from the table that the
present frequency parameters are in very good agree-
ment with those of Ref.13, regardless of the founda-
tion stiffness and the axial force. The result of Ref.13

was obtained by using an Euler-Bernoulli beam ele-
ment. Note that the results in Table 1 were achieved
by using 18 elements.
To verify the derived formulation in evaluating the
dynamic response of the beam, Figure 1 shows the
deflection under the loaded point of the simply sup-
ported beam under a moving load with a velocity
v=15 m/s for two cases of the excitation frequency,
namely, Ω=0 and Ω=40 rad/s. The result obtained by
Timoshenko et al. in Ref.1 using the mode superpo-
sition method is also displayed in the figure. As seen
from the figure, the deflection curves obtained by the
present finite element formulation are in good agree-
ment with those of Ref.1. The result in Figure 2 was
also obtained by 18 elements. More elements have
been employed in computing the frequency and dy-
namic response of the beam, but no improvement has
been seen. Due to this convergence result, 18 ele-
ments are used in all computations reported below.
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Effect of axial force
The effect of the compressive axial force on the fre-
quency and dynamic response is discussed in this sub-
section. To this end, Table 2 and Table 3 list the fre-
quency parameters of the SS and CS beams partially
supported by the elastic foundation for different val-
ues of the axial force parameter. As seen from the ta-
bles, the axial force parameter r has a significant influ-
ence on the frequency of both the SS and CS beams.
The frequency parameter of both beams clearly de-
creases with increasing compressive axial force, re-
gardless of the foundation stiffness. The tables also
show the role of the foundation stiffness on the fre-
quency parameters of the beams. As expected, the
foundation stiffness has a positive influence on the
frequency, and the frequency is increased by the in-
crease in the foundation stiffness, regardless of the ax-
ial compressive force.

Figure 2: Deflection under a moving load of the
beamwithout foundation support for v=15/s and (a)
Ω=0, (b) Ω=40 rad/s

The effects of the axial compressive force on the dy-
namic response of the beams are shown in Figure 3
and Figure 4 for the SS and CC beams without the
foundation support and Figure 5 and Figure 6 for the
two beamswith the foundation support. As seen from
the figures, the axial compressive force has a signifi-
cant influence on the deflections of the beams. The

influence of the axial force, however, also depends
on the excitation frequency of the moving load and
the boundary condition. For the low excitation fre-
quency, the deflection of the beam increases by in-
creasing the axial compressive force (Figure 3a and
Figure 5a). This tendency is not true for the beams
under the moving load with the excitation frequency
near the fundamental frequencies (Figure 3b, Fig-
ure 5b, Figure 6a) and even the opposite (Figure 6b).
It is worth noting that the effect of the axial force on
the dynamic response of the beams obtained in the
present work is different from that reported by Ko-
catürk and Şimşek in Ref.7, which concluded that this
effect is very small and can be ignored. The reason for
this difference may be that the largest axial force em-
ployed in 7 is too small, just less than of the buckling
load, and the effect is hardly recognized.

Figure3: Effect of the compressive axial forceon the
dynamic response of the SS beam without founda-
tion support for v = 15 m/s and (a) Ω=40rad/s and
(b) Ω=60rad/s.

Effect of moving load velocity
The influence of the moving load velocity on the dy-
namic response of the SS beam partially supported by
the elastic foundation with k1=100 and k2=1 is shown
in Figure 7 for two values of the excitation frequency,
Ω=40 rad/s and Ω=40 rad/s. In Figure 8, the influ-
ence of the moving load velocity on the CS beam rest-
ing on the same foundation stiffness is illustrated for
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Table 1: Frequency Parameter Of Ss Beam Fully Supported By Elastic Foundation At Various Values Of
Compressive Axial Force And Foundation Stiffness

(k1; k2) r µ Ref. [18] (k1; k2) r µ Ref. [18]

(0,0) 0.0 3.1347 3.1415 (100,0.5) 0.0 3.9561 3.9608

0.2 2.9646 2.9734 0.2 3.7415 3.7487

0.4 2.7589 2.7705 0.4 3.4818 3.4928

0.6 2.4930 2.5097 0.6 3.1462 3.1635

0.8 2.0963 2.1257 0.8 2.6456 2.6782

(1,0) 0.0 3.1428 3.1496 (100,1) 0.0 4.1392 4.1437

0.2 2.9723 2.9810 0.2 3.9146 3.9218

0.4 2.7660 2.7776 0.4 3.6430 3.6541

0.6 2.4994 2.5161 0.6 3.2918 3.3095

0.8 2.1017 2.1312 0.8 2.7681 2.8014

(100,0) 0.0 3.7433 3.7483 (100,2.5) 0.0 4.5783 4.5824

0.2 3.5402 3.5477 0.2 4.3299 4.3370

0.4 3.2945 3.3055 0.4 4.0294 4.04.8

0.6 2.9769 2.9940 0.6 3.6410 3.6594

0.8 2.5033 2.5350 0.8 3.0617 3.0964

Table 2: Frequency Parameter Of Ss Beam Partially Supported By Elastic Foundation

(k1; k2) r α µ (k1; k2) r α µ

(1,0) 0.4 0.2 2.7592 (100,1) 0.4 0.2 2.9845

0.4 2.7623 0.4 3.1817

0.6 2.7638 0.6 3.3545

0.8 2.7669 0.8 3.5055

0.8 0.2 2.0768 0.8 0.2 2.2684

0.4 2.0980 0.4 2.4192

0.6 2.1001 0.6 2.5511

0.8 2.1014 0.8 2.6658

(100,0) 0.4 0.2 2.7924 (100,2.5) 0.4 0.2 3.1830

0.4 2.9499 0.4 3.4430

0.6 3.1537 0.6 3.5935

0.8 3.2737 0.8 3.7696

0.8 0.2 2.1218 0.8 0.2 2.4221

0.4 2.2417 0.4 2.6241

0.6 2.3967 0.6 2.7372

0.8 2.4875 0.8 2.8745
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Table 3: Frequency Parameter Of Cs Beam Partially Supported By Elastic Foundation

(k1; k2) r α µ (k1; k2) r α µ

(1,0) 0.4 0.2 3.4470 (100,1) 0.4 0.2 3.4958

0.4 3.4476 0.4 3.6386

0.6 3.4491 0.6 3.7801

0.8 3.4504 0.8 3.9136

0.8 0.2 2.6274 0.8 0.2 2.6658

0.4 2.6279 0.4 2.7793

0.6 2.6291 0.6 2.8899

0.8 2.6301 0.8 2.9958

(100,0) 0.4 0.2 3.4506 (100,2.5) 0.4 0.2 3.5539

0.4 3.5061 0.4 3.8062

0.6 3.6419 0.6 3.9600

0.8 3.7528 0.8 4.1130

0.8 0.2 2.6303 0.8 0.2 2.7116

0.4 2.6741 0.4 2.9147

0.6 2.7817 0.6 3.0320

0.8 2.8683 0.8 3.1547

Figure 4: Effect of compressive axial force on dy-
namic response of CS beam without foundation
support for v = 15 m/s and: (a) Ω=60rad/s, (b)
Ω=80rad/s.

Figure 5: Effect of compressive axial force on dy-
namic response of SS beam on foundation for v =
15 m/s, (a) Ω=40rad/s, (b) Ω=90rad/s (k1 = 100, k2 =
1).
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Figure 6: Effect of the compressive axial force on
the dynamic response of the CS beam on the elas-
tic foundation for v = 15m/s, (a) Ω = 60 rad/s,(b)Ω =
110 rad/s (k1 = 100,k2 = 1)

Ω=40 rad/s and Ω=40 rad/s. Both the beams in Fig-
ure 7 and Figure 8 are loaded by an axial compressive
force with an amplitude of 0.2Qb. Again, the effect of
the moving velocity on the dynamic response is gov-
erned by the excitation frequencies.
For the excitation frequency well separated from the
fundamental frequencies, the dynamic deflection of
the beams first increases with an increment in the
moving velocity and then decreases, regardless of the
boundary conditions (Figure 7a and Figure 8a). In
other words, at a given axial force and foundation
stiffness, there is a critical velocity at which the dy-
namic deflection reaches a maximum value for the
case of excitation frequencies far from the funda-
mental frequencies. In contrast, the deflections of
the beams gradually decrease with increasing veloc-
ity when the excitation frequency is near the funda-
mental frequencies. The influence of partial support
by the elastic foundation on the dynamic response is
illustrated in Figure 8 and Figure 9 for the SS and
Cs beams, respectively. The curves shown in the
figures are obtained for excitation frequencies con-
siderably below the fundamental frequencies of the
beams. Only the amplitude of the dynamic deflec-
tion is affected by the partial support, and it is low-
ered at a higher supporting parameter , regardless of
the boundary conditions. The computation has also

Figure 7: Effect of the moving velocity on the dy-
namic response of the SS beam on the foundation:
(a)Ω = 40rad/s, (b)Ω = 60 rad/s (Q = 0.2Qb, k1 = 100,
k2 = 1)

been performed for other excitation frequencies, but
the result is very similar to that of the abovementioned
frequencies, and it is not shown herein.

Effect of the partial foundation support
The influence of the partial foundation support on the
frequency of the SS and CS beams can be seen from
Table 2 and Table 3, respectively. The tables show
that the frequency parameter of both beams increases
by increasing the foundation supporting parameter
α , regardless of the foundation stiffness and the ax-
ial force.
The influence of the partial foundation support on the
dynamic response is illustrated in Figure 9 for the SS
beam on the foundation with k1=100, k2=1, subjected
to a moving harmonic load with v=15 m/s and Ω=20
rad/s. As expected, the deflection of the beam de-
creases with the increase in the foundation support-
ing parameter α . This is reasonable since the beam-
foundation system becomes harder when the beam is
supported by a longer foundation.

CONCLUSION
The dynamic behavior of beams partially resting on
a two-parameter elastic foundation under an axial
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Figure 8: Effect of moving velocity on the dynamic
response of the CS beam: (a) Ω = 60rad/s, (b) Ω = 80
rad/s (Q = 0.2Qb , k1 = 100, k2 = 1)

Figure9: Effect of partial support by an elastic foun-
dation on the dynamic response of the SS beam for
v = 15 m/s, Ω = 20rad/s, Q = 0.2Qb , k1 = 100 and k2
= 1.

force and a moving harmonic load has been stud-
ied. A first-order shear deformable beam element
was formulated and employed in combination with
the direct integration Newmark method to compute
the dynamic response of the beams. The beam ele-
mentwas formulated by using the solution of the equi-
librium equations of a beam segment to interpolate
the displacement field. The vibration frequencies and
the dynamic response were evaluated for the SS and

CS beams under different foundation parameters and
moving load parameters. The obtained numerical re-
sults reveal that the foundation supporting length, the
axial compressive force and the excitation frequency
play an important role in the dynamic behavior of the
beams. It has been shown that the influence of the
axial force on the dynamic behavior of the beams is
dependent on the excitation frequency. A paramet-
ric study was carried out to highlight the effects of the
foundation stiffness and moving load velocity on the
dynamic behavior of the beams.
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