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ABSTRACT
Alzheimer's disease is associated with a progressive intracerebral accumulation of amyloid beta
(Aβ ) peptides, which have different numbers of amino acids, but Aβ40 and Aβ42 are the most
abundant in vivo. However, Aβ42 is more toxic than Aβ40. Thioflavin-T has been used in research
to investigate amyloidbeta formation, but the interactionmechanism remains unclear. In this study,
using the docking method, we calculated the binding between thioflavin-T and aggregations of
Aβ42, including fibril, tetramer, and dimer Aβ42. The results show that thioflavin-T binds to fibrils
more strongly than soluble oligomers. The binding mechanism depends on the conformations of
the assembly structures.
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INTRODUCTION
Among elderly people, the most common kind
of neurodegenerative disease is Alzheimer’s disease
(AD)1. There are dozens of hypotheses about its
causes. However, recent experimental evidence
strongly supports the amyloid cascade hypothesis
(molecular imbalance)1, which is based on an im-
balance between the production and clearance of Aβ
peptides in the brain2. Amyloid beta (Aβ ) peptides
are produced from amyloid precursor protein (APP)
by the activity of enzyme secretases such as β - and
γ-secretase3. Aβ peptides have different numbers of
amino acids, but Aβ40 and Aβ42 are most abundant
in vivo4,5, and Aβ42 is more toxic than Aβ40.
In drug discovery and development, mainly compu-
tational simulations are used to optimize promising
new compounds by estimating their binding affinity
to proteins, linear correlations between kinetic rates
and binding affinity constants6,7, and predict drug-
target binding kinetic parameters8. For over a decade,
researchers have focused on the fundamental mech-
anism of the interaction between thioflavin-T and
amyloid fibrils. In 1959, Vassar andCulling, whowere
the first to present the unity of the benzothiazole dye
thioflavin-T, demonstrated the potential of using flu-
orescencemicroscopy for amyloid fibril diagnosis and
markers of amyloid in histology 9, and later, Naiki
et al and LeVin were clearly explained to character-
ize the fluorescence spectra and binding properties of
thioflavin-T.Theydemonstrated thatwhen thioflavin-
T binds to amyloid fibrils, thioflavin-T gives a fluo-
rescence signal with an excitation maximum at 450

nm and an emission maximum at 482 nm10 and only
originates from the dye bound to amyloid fibrils10,11.
Thioflavin-T binds to the side chain channels along
the long axis of amyloid fibrils. In vitro, the inhi-
bition constant (IC50) of thioflavin-T with amyloid
fibrils was measured at 890 ± 92 nM12. The rela-
tionship between IC50 and energy free binding was
∆Ebind = RTln(IC50), where the gas constant R =
1.987 × 10−3 kcal.mol−1, T = 300 K, and the inhi-
bition constant IC50 was measured in mol. However,
most of these studies were based on a single model
structure for fibrils and did not consider the influ-
ence of various aggregation states of amyloid beta,
such as dimers, tetramers, and many different fibril
shapes. In this study, we attempted to gain insight into
the interactionmechanism of thioflavin-T and the ag-
gregation states of amyloid beta (1-42) peptide. The
binding affinity of thioflavin-T to several targets, in-
cluding dimer, tetramer, two conformations 2MXU
and 2NAO of fibril Aβ42, will be investigated. Using
the docking simulation, we obtained the binding site
and other quantities, such as the binding affinity, the
number of hydrogen bonds (HB), and nonbond con-
tacts (NBCs) of thioflavin-T with targets. Thioflavin-
T binds to fibrils more strongly than oligomers. The
bindingmechanism depends on the conformations of
assembly states.

MATERIAL ANDMETHODS
Initial structures
In this study, we chose Aβ42 because many stud-
ies have shown that Aβ42 is more toxic than Aβ40,
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and this isoform is the main component of amyloid
plaques. The solid-state NMR crystal structures of the
truncated fragment Aβ7-42with PDB code 2MXU13,
which has residues and chains more than the 2BEG
structure, and full length Aβ1-42 with PDB code
2NAO14 will be used for docking. For dimers, the
model developed in 15 will be utilized. For tetramers,
we employed the model obtained by our group using
MD simulation16. All targets are shown in Figure 1.

Figure1: The structures of amyloid beta aggregates
used in thiswork. Positionsof thioflavin-T in thebest
docking mode for the targets.

Thioflavin-T structure
The atomic structure of thioflavin-T was ob-
tained from the large PubChem17 database (htt
ps://pubchem.ncbi.nlm.nih.gov) with CID 16954
(4-(3,6-dimethyl-1,3-benzothiazole-3-ium-2-yl)-
N,N-dimethylaniline). The 3D and 2D structures are
shown in Figure 2. Information about the chemical
and physical properties of thioflavin-T is presented
in Table 1.

Figure 2: The 3D (left) and 2D (right) structures of
thioflavin-T.

Dockingmethod
ThePDBQT files of thioflavin-T and the amyloid beta
targets (2MXU, 2NAO, dimer, tetramer) were pre-
pared by AutoDock Tool version 1.5.4 18. The dock-

ing simulations of thioflavin-T to targets were per-
formed using AutoDock Vina version 1.1 19. For the
global search, the exhaustivenesswas set to 800, which
is high enough to achieve reliable results.

Data analysis
The hydrogen bond (HB) is formed when the D
(donor)-A (acceptor) atom distance ≤ 3.5 Å, H
(hydro)-A distance 2.7 ≤ Å, and D-H-A angle ≥ 135
degrees. If the distance between the centers of mass of
the ligand and the side chain of one receptor residue
is within 0.65 nm, then we assume that a nonbonded
contact (NBC) is formed between the protein and lig-
and. The binding energy is the binding affinity of
the best docking modes, which is the sum of the in-
termolecular forces acting upon the receptor–ligand
complex.

RESULTS ANDDISCUSSION
Protein structure and box sizes
Figure 1 shows the cartoon representation of these
targets. Because the binding site of thioflavin-T in
these targets was not a priori known, a sufficiently
large grid box was created around the detected bind-
ing pocket with a spacing of 0.375Å.Thebox sizes and
center of boxes are presented in Table 2. A large grid
box allows the ligand to traverse a larger conforma-
tional space on the protein surface and perform the
blind docking process.

Docking scores and best docking poses
The positions of thioflavin-T in binding to the tar-
gets in the lowest binding energymode obtained from
docking simulations are shown in Figure 1. The re-
sults showed that thioflavin-T is located inside the
targets. Thioflavin-T is near amino acids Gly33 of
chain C and His14 and Gly33 of chain B (2MXU).
For 2NAO, thioflavin-T is linked near His6 of chain E
and Tyr10 of chain D. For dimer, thioflavin-T binds
to residues Phe64 of chain B and Ala22 of chain
A. Meanwhile, thioflavin-T approached amino acid
Val123 of chain C and Leu160 of chain D for tetramer
target.
The binding energies, number of hydrogen bonds
(HBs), and nonbonded contacts (NBCs) of thioflavin-
Twith targets were computed and obtained in the best
docking modes, as shown in Table 3 and Figure 3.
In the best docking modes, the binding energies of
thioflavin-T and 2MXU were slightly stronger than
that of 2NAO, which were -6.6 and -6.2 kcal.mol−1,
respectively (Table 3). This result suggests that
thioflavin-T favors binding the one-fold symmetry
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Table 1: Chemical and physical properties of thioflavin-T.

Molecular weight Hydrogen bond donor count Hydrogen bond acceptor
count

Rotatable bond count

318.9 0 3 2

Topological polar sur-
face area

Heavy atom count Formal charge Exact Mass

35.4 Å2 21 0 318.095745

Table 2: The box sizes of complexes in this study.

Target Size box (Å) Center of box (Å)

2MXU 70 x 60 x 60 (-0.05, 0.02, 0.07)

2NAO 40 x 70 x 70 (15.61, 30.94, -33.27)

Dimer 45 x 40 x 40 (32.66, 35.48, 37.85)

Tetramer 50 x 70 x 60 (0.09, -0.16, -0.04)

Figure3: Nonbonded contacts of thioflavin-Twith fibrils (2MXU, 2NAO), tetramer, dimer in thebest dockingmode.
The results are shown in Ligplot version 4.5.3.
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Table 3: The binding energies, number of HBs, and number of NBCs for thioflavin-T and targets.

Targets HB NBC Binding energy
(∆Ebind , kcal.mol−1)

2MXU 0 12 -6.6

2NAO 0 11 -6.2

Tetramer 0 9 -5.6

Dimer 0 7 -5.3

fibril structure (2MXU) over the twofold symmetry
fibril (2NAO). This can come from the large dis-
tance between Thioflavin-T and chains in the other
branch of the fibril structure because Thioflavin-T
binds to 3 chains in one branch of the structure. How-
ever, in the 2MXU structure, the chains arrange in
one row, which facilitates the small distance between
Thioflavin and the chains of the fibril.
In the case of tetramers and dimers, the binding ener-
gies are higher than those of fibrils, which are approx-
imately -5.4 kcal.mol−1. This result can be explained
by the fact that the oligomer structures aremore com-
pact than fibrils, which makes it harder for thioflavin-
T to bind deep inside the structure16. Therefore, the
binding energies of thioflavin-T and the oligomer are
weaker than those of mature fibrils.

The interaction mechanism of thioflavin-T
and aggregated forms of Aβ42 depends on
assembly states
Table 3 shows that thioflavin-T has no HBs with tar-
gets, as is evident from Figure 3, because thioflavin-
T has no acceptor atoms such as oxygen or nitrogen.
This result suggests that hydrogen bonds have a neg-
ligible effect on the interaction between thioflavin-T
and aggregations of Aβ42. To confirm the predicted
results, more detailed studies and more precise com-
putational methods are needed, such as the molecu-
lar mechanics Poisson-Boltzmann surface area (MM-
PBSA).
Thioflavin-T has 12 and 11 nonbonded contacts with
the fibrillar structures 2MXU and 2NAO, respec-
tively. Meanwhile, the thioflavin-T and tetramer
complex has NBCs (9), which are larger than dimers
(7 NBCs). Overall, the binding energies are in good
agreement with NBCs (Tables 3 and 4). The 2MXU
+ thioflavin-T complex has the lowest binding en-
ergy (-6.6 kcal.mol−1) and forms the largest num-
ber of NBCs. In addition, 2NAO has 11 NBCs with
∆Ebind = -6.2 kcal.mol−1, and the tetramer has 9
NBCs with ∆Ebind = -5.7 kcal.mol−1. In the case of
dimer, which has the weakest binding energy (∆Ebind

= -5.3 kcal.mol−1), it is appropriate with the smallest
number of NBCs (NBC = 7). These results show that
the nonbonded contact network is much richer than
the hydrogen bond network, implying that hydrogen
bonding plays a less important role in the stabiliza-
tion of receptor–ligand complexes compared to non-
bonded bonds.
The total charge of residues that make nonbonded
contacts with thioflavin-T is 0 in two fibrillar struc-
tures and tetramers, while in dimers, the total charge
is -2e. The negative charge value in the dimer case is
reasonable because the charge of thioflavin-T is +1e.
The 0e charge in fibril conformations and tetramers
can come from the arrangement of residues in these
structures, leading to charged residues located on
the surface of the protein. Therefore, there are no
charged binding pockets for thioflavin-T to bind,
leading to neural residues at the binding sites of fib-
rils and tetramers. The total hydrophobicity indexes
(Table 4) show that the hydrophobic character of the
binding sites depends on the structures of aggrega-
tions. Therefore, these results suggest that the binding
mechanism between thioflavin-T and Aβ42 aggrega-
tions is ruled by the conformations of the Aβ42 ag-
gregations.

CONCLUSION
Using docking simulations, we obtained the binding
energies of thioflavin-T and the aggregated forms of
amyloid beta dimer, tetramer, and two fibrillar struc-
tures. The results show that thioflavin-T favors bind-
ing one-fold symmetry of the fibrillar structure of
Aβ42 over other forms because the binding energy
of 2MXU and thioflavin-T is the lowest. The soluble
oligomers, such as dimers and tetramers, have weaker
binding energies than mature fibrils.
The nonbonded contacts dominate over hydrogen
bonds in the interaction between thioflavin-T and ag-
gregates of Aβ42. Furthermore, the neutral residues
of amyloid play an important role in the nonbonded
contacts in fibrils and tetramers, while in dimers, the
charge of residues in the binding site is -2e. These re-
sults suggest that the binding mechanism is ruled by
conformations.
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Table 4: Amyloid beta residues having nonbonded contact with thioflavin-T. The results were obtained from
the best dockingmodes of thioflavin-T and its targets. The characters in brackets refer to chains of the protein
structures.

Target NBCs Amino acids Total
charge (e)

Total hy-
drophobicity 20

2MXU 12 Gly33(A), Val12(A), Leu34(B), Gly33(C), Leu34(D),
Ile32(D), Gly33(D), Ile32(C), Gly33(B), Ile32(B),
His14(B), Ile32(A)

0 26.6

2NAO 11 Glu11(D), His6(D), Tyr10(D), His6(F), His13(E),
Gly9(E), Val12(E), Gly9(F), His6(E), Val12(D), Phe4(D)

0 -1.6

Tetramer 9 Gly155(D), Ile158(D), Gly159(D), Val124(C),
Val123(C), Ile125(C), Leu160(D), Leu34(A), Leu(B)

0 28.8

Dimer 7 Phe63(B), Ala22(A), Glu23(A), Asp24(A), Glu66(B),
Phe64(B), Lys29(A)

-2 4.6
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