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Bézier trajectory tracking control of the omnidirectional mobile
robot based on a linear time-varying state feedback controller
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ABSTRACT

Introduction: The controller design method based on linear time varying state feedback con-
troller is proposed to enforce an omnidirectional mobile robots (OMRs) to track a given Bézier tra-
jectory. Methods: Initially, the linear error model of the robot system is obtained and used in the
design of the linear time varying state feedback controller. Next, the controller gains are deter-
mined according to the linear and angular velocities for the desired trajectory to providing small
errors. To verify the effectiveness of the proposed control strategy, simulation is carried out with
desired Bézier trajectory for the OMR to reduce sudden speed changes. Results: The simulation
results are presented, which have verified the good performance of the proposed controller for
tracking the complex motion trajectories. Conclusion: Therefore, it is possible to apply this result
to control the OMRS in logistics applications of the modern manufacturing systems.
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INTRODUCTION

The mecanum wheel was invented by Ilon in 1973 at
Mecanum Company and applied to the first AGV de-
sign in 1997!. Today, the mecanum wheel has been
used for the OMR design that movesmove in tight
spaces>>. A mobile robot with omnidirectional capa-
bilities is very attractive because it guarantees perfect
mobility in tight areas, avoids obstacles and moves
instantaneously in any direction from any configura-
tion®>. With those advantages, the OMR has been
developed in smart logistics systems®’ and the mod-
ern industrial environment®°. The AGVs with lift-
ing mechanismmechanisms in industrial production

1011 Unmanned autonomous vehicles are lo-

plants
gistics for producing super-heavy components, such
as manufacturing wind turbine blades'?, in aircraft
production lines 3 etc. Figure 1 below illustrates one
of the above applications.

Thereby, it can see that the application potential of this
type of robot in the future is enormous. Therefore,
this type of robot is now the object of many domes-
tic and foreign researchers to improve and expand its
applicability to many different realistic scenarios. In
the techniques related to the mobile robot, the prob-
lem of tracking motion control is one of the important
problems to ensure that the robot moves according to
the desired scenario !#!>, That is confirmed through
many studies on this issue, such as improving robot
control performance is one of the main foci in the field

of the OMR 622, etc. Especially, a high-precision
controller which guarantees the OMR tracking the de-
sired trajectory accurately is required 2%,

However, trajectory tracking control of OMR is dif-
ficult because it is a complex nonlinear, time-varying
system 2. For simplicity, a traditional linear controller
based on the linearization model of the robot can

d242> However, traditional linear con-

be propose
trollers are not suitable because the control system
is not guaranteed to be stable>?*, To deal with this
control problem, some researchers have used nonlin-
ear control strategies for OMR such as: fuzzy con-
trol 2?7, sliding mode control 2%, and backstepping

130, The above methods are all based on the

contro
complex nonlinear model of the robot, leading the
complex controller structure requires the processor
and the memory capacity of the hardware is large.

To overcome the above problem, this paper proposes
to design a linear time varying state feedback con-
troller based on the linear error model for OMR. Also,
to avoid sudden changes in the robot velocities, we
use the Bézier curve to design the simulation problem
path to verify the efficiency of the controller designed
by this study with the assumption that there is no lon-
gitudinal and transverse slip of the OMR during the
movement.

KINEMATIC ERROR MODEL OF THE
OMNIDIRECTIONAL MOBILE ROBOT

Cite this article : Ly T T K, Thién H. Bézier trajectory tracking control of the omnidirectional mobile
robot based on a linear time-varying state feedback controller. Sci. Tech. Dev. J. 2022; 25(2):2444-2452.
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(c) The turbine blade production line [11]

(d) The AGV pallet trucks [10]

Figure 1: Some applications of the OMR 10-13

Kinematic model

Consider a differential drive mobile robot moving
along the trajectory & with pure rolling and without
lateral slip derived in the global coordinate system
97 {Oyxpyszs}, as shown in Figure 2. The relation-
ship between the wheels’ angular speeds and the lin-
ear and angular velocities of the robot are determined
by*:

0=Jq (1)

where(o(t)=[(o1(t) w(t) os(t) w4(t)]T;

1/r 1/r —(L+d)/2r
J— 1/r —=1/r (L+d)/2r

1/r 1/r (L+d)/2r |’

1/r —1/r —(L+d)/2r

G0 =[E0) 3() 9] =Var Vor QT

Here, 1, L and d are the radius of the wheel, the dis-
tance in the x,-axis and the y,-axis of two wheels,
while Vy,, V,, and Q, are the x,-axis, y,-axis veloc-
ities and angular velocity of the robot, respectively.
Thus, the mathematical model of the robot kinematics

in 97 {O0xsyszs} is given by:
q(t) = Q(9)4q,(r) )
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wherein
cosg(t) —sing(r) 0
Q(p)= |[sing(r) cosp(t) O0];
0 0 1

4, (1) = [ () 3, (1) ¢, (1)]

Kinematic error model

The kinematic error model describes the variation in
position and and orientation of the robot while fol-
lowing a desired trajectory, defined by the error vector

e

e=qi)—q0)=[e e ] O

where g4 (t) = [xq (t) ya(t) @q(t)]7 is the desired
trajectory of the OMR in the global coordinate system
O {Opxpyszs}-

With 9, {Gx,y,} being the coordinate system associ-
ated with the OMR, transform e(t) from ¥ s to ¥, of
the OMR:

T
er = [exr Eyr e(pr] = QTe (4)
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Figure 2: Schematic to determine the error of the
robot in the mobile coordinate system

Derivative of equation (4), combining equation (2)
and equation (3), we have:

er = (5)
der (t) cosep — Vydr (t) Sine(p — Var (t) +Q, (t) €yr
Viar (t)sineq —Vyg, (t) cosep — Vo (1) +Qr (t) exr
Qy; (t) —Q ([)

Rewrite equation (5) as a matrix form:

er :§r6r+Q(e(p) Gar — qr (6)
0 Q. (t) 0
wherein Q, = | —Q, (¢) 0 0
0 0 0

Equation (6) is a nonlinear error model of the OMR.
To control the robot, we linearize equation (6) around
the working point with the desired values. One finally
obtains @, (1) ~ @4, (t) and Q, (t) ~ Q4, (¢), and one
finally obtains the linear error model of the OMR:

cosep =~ 1
{ ¢ 7)

sinep ~ e

Substituting equation (7) into equation (6), we have
the linear error model of the robot:

er =Be, +Ly3u (8)
0 Qqy (t) — Vydr (t)
where B= | —Qy, (1) 0 Vyar (t) | andu=
0 0 0

Viar —Var Voar —Var Qar — Q)7 is the input
vector.

SIMULATION SETUP AND
DETERMINE CONTROLLER
COEFFICIENTS

Design of the moving trajectory of the
robot by the Bézier curve

According t031, the Bézier curve is a special case of
the NURBS curve defined by trajectory interpolation
points and given by the equation:

P(t)=Y! oBiJyi(t),0<t <1 (10)

where B; is the coordinates of interpolated points, i is
the ordinal number of the interpolation points, and
Jni(t) is a Bernstein polynomial of degree n and given

by the formula:
n [ n—i
i () = (.)f’(ll) (11)
’ i
With Pascal coefficient n = ”7!A,, n is the de-

i il(n—i)!

gree of the Bernstein polynomial and the degree of the
curve.

The Model (8) is controllable by the matrix [I, AI]
with a maximum rank of 3. Therefore, selecting the
state feedback control law with three state variables
x(1), y(t), j(t) and three control inputs uy, uy, u3 given
by 232

u=—Ke, 9)
KL 0 0
where K= | 0 K, O | is the parameter ma-

0 0 K3

trix of the linear state feedback controller. Figure 3
shows the schematic diagram of the closed-loop sys-
tem composed of the state space controller, the de-
sired trajectory and the OMR.

From the above Bézier curve design method with in-
terpolation points given by Table 1, we have the de-
sired Bézier curve trajectory shown in Figure 4.

The OMR dimensions setup

Length x Widthwidth x Heightheight (380 mm x
260mm 260 mm x 165 mm), L =316 (mm), d =270
(mm), radius of wheels r = 30 (mm).

Determine the linear and angular velocities
of the robot

The desired velocity V,(t) of the robot is determined
to the Bézier motion trajectory x as follows:

AS
Vy(t) = N
B \/(xi*xifl)2+()’i*)’ifl)2 12
- L —ti—|
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Figure 3: Bézier trajectory tracking control for the OMR
Table 1: Interpolation points data of the Bézier curve trajectory
Ay Ay A3z Ay As
0 6.5 6.5 3.0 3.0
0 0 5.0 5.0 8.0
Ae A7 As Ag Ao
6.5 6.5 —6.5 —6.5 -3.0
8.0 13.0 13.0 8.0 8.0
Aqy Aqp Az Als
-3.0 —6.5 —6.5 0
5.0 5.0 0 0
40 - where p; € [Pmin, Pmax] is the radius of the & trajectory
8 = 7 withi=1,2.
12 2 .\3/2
) Xj +Yi
10 pi=|—7""7" (14)
Ao Ao As Ag Xi¥i — YiXi
£ 8 N
= 6 } r Here:
A > : N Az = Q _Xi—Xi—1
Al | Ag i PTOA T L= .
4 : i i oAy yimvir
] ‘ yl—At_ti—l‘i_l
2 ‘ §p= DX Mihio
! A=Ay | i At ti—ti—
OAB : P . Ay s Ay Vi
% 6 4 2 0 2 4 6 8 N
(e m .
%) From formulas (12, 13, 14) and the data of the trajec-
etk T esieg Besler ieadan o i IR tory interpolation points, we have the desired linear

The angular velocity Q, at point G on the rob

termined as follows:

Qq (1) =Va (1) /p (1)
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ot is de-

(13)

velocity V; and angular velocity ; of the OMR de-
scribed in Figure 5 when the robot moves along the
Bézier trajectory &; with At = 1 sand maximal allowed
speed Vgpax = 0.6 (m/s).

Therefore, the desired velocities of the OMR are given
by:

Va

[der Vydr er]T =T Q

(15)
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Figure 5: The desired linear and angular velocities
of the OMR

Determine the coefficients of the controller

By substituting Eq. (9) into Eq. (8) is obtained:
é:(A—I3><3K)€r (16)

From that, we have the characteristic polynomial of
the closed system:

X (s) =det [sl3x3 — (A — Bx3K)] =

s 0 O 0 Qd —Vyd
[[0 s O|—|-Q4s O Vsa | +

0 0 s 0 0 s (17)

1 0 O]|Ky O O
+10 1 0 0 K, 0]]

00 1|0 0 K

The controller gains of the matrix K is determined by
comparing the real characteristic equation (16) with
the desired closed-loop characteristic equation:

(s+20,8) (s> + 20,56 + w2) =0 (18)

with constant eigenvalues, natural angular frequency
0= (Q2+ ngZ)O'S and damping coefficient 0 < { <
1.

Finally, we obtain the controller gains as:

Ki=¢(Q3+gv)) ™ +(§2Q3 +gv3 (£2 - 1))
K= (@ +gvi)™ — (2@ +gv3 (£2- 1))
Ky =28 (Q2 +gv2)"” (19)

where in g < Cz/ ((1 — Cz) p,%mx)

From the above formulas, we choose the control coef-
ficients g and § by the simulation method presented
below.
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Figure 6: The position and posture errors of the
OMR according to the coefficient §

Select the coefficient {

We perform simulations for § is between [0.01 to
0.99], with a factor g given by:

2

min

8 — 5 5
(1 - min) pr%mx

so that condition (19) is always satisfied when the co-

 (Pmax = 33.82) (20)

efficient § varies. Figure 6 shows the robot errors ac-
cording to the coefficient §. From Figure 6, we choose
£ =0.19 because at that position, the error is the small-
est.

Select the coefficient g
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Figure 7: The position and posture errors of the
OMR according to the coefficient g

With the coefficient { = 0.19, we carry out the same
simulation with g is between [1075 to 3x1077]. The
curve in Figure 7 depicts the error of the robot accord-
ingto g From Figure 7, we choose g = 3x 107 be-
cause at that position, the error is the smallest.
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Figure 8: The change ofin K}, K; and K3

With the coefficients § and g chosen as above, we have
the variation of control parameters (Kj, Ky, K3) de-
scribed in Figure 8.

Figure 8 shows the variation of the controller gains K7,
K, and K3 for the OMR tracks of the complex trajec-
tory with small error (position and posture).

SIMULATION RESULTS

With the above setting parameters including: (1)
The complex motion trajectory has been modeled by
Bézier curve, (2) The demension of the robot and (3)
the varying-time gains K (¢), K» (1), K3 (t) are selected
so that the position and posture errors are the small-
est. Figure 9 shows the Bézier trajectory tracking of
the OMR when the robot is controlled by the linear
state controller designed in Figure 3. Where the blue
line x is the motion trajectory, while the orange line is
the desired Bézier trajectory.

Figure 10 depicts the position and posture errors of
the OMR between the controlled and desired values
during the OMR moves along the desired trajectory.
The points numbered from 1 to 10 in Figure 10 cor-
respond to the special points in Figure 9, which are
the inflection points of the motion trajectory. At these
points there is the direction change and the linear ve-
locity varies with time. Figure 11 illustrates the vari-
ation of the linear and angular robot velocities (be-
tween the controlled and the desired values). Where
the blue line is the controlled value, and the orange
line is the calculated value according to equation (12,
13) of the desired trajectory x,; (Bezier curve see Fig-
ure 4 and Figure 5).

Figure 12 compares the angular velocities of the four
mecanum wheels (between the calculated value from
the inverse kinematics problem is calculated from
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Figure 9: The motion trajectory of the OMR

Figure 10: Position error of the G-point and posture
error of the OMR.

equation (1) and the controlled value). In addition,
the angular velocity on Figure 12 is the value that is
controlled so that the OMR moves along the trajec-
tory in Figure 9 and achieves linear and angular ve-
locity, as depicted in Figure 11.

DISCUSSION

From the simulation results, it can be seen that the
controller established in this paper can track the com-
plex trajectory with small errors as shown in Figure 9,
Figure 10 and tend to right deviation along the x-axis.
Thereby it shows that the OMR moves from the in-
side to outside of the desired trajectory around the
poles with a small error. In which, the position er-
ror varies from 0 cm to 1.7 cm (at positions 1 and 2
in Figure 9 corresponds to t = 131 s and t = 261.5 s),
these are the two locations with the largest curvature
radius and linear velocity variation. While the postu-
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Figure 12: The angular velocities of four wheels

ral error varies from 0° to 0.3? and these are locations
where the trajectory has a small curvature radius and
the OMR changes direction suddenly from clockwise
to counterclockwise along the tangent direction of the
trajectory.

In addition, Figure 9 to Figure 12 show the motion
law with symmetry in the y direction by two arcs: (1)
the arc 7| goes from position 2-> 3-> ..-> 1 and (2)
->10 ->2.
Therefore, we only need to discuss with the arc 71. In

the arc 7, backs from position 1-> 7 -> ....

the arc 7; when observing three arcs, three arcs are
observed (see Figure 9): (1) the first arc from posi-
tion 2 -> 3->4, (2) the second arc from position 4->5
and (3) the third arc from position 5->6 - >1. We see

that the linear velocity Vi and the angular velocity
Q of the OMR are automatically adjusted according
to the curvature radius » of the motion trajectory so
as not to exceed V 4 = 0.6 (m/s) with an error (see
Figure 10): (a) The linear velocity error varies from 0
m/s to 0.00048 m/s (at positions 4 and 5, respectively,
t = 43.7 s and 87.2 s); (b) The angular velocity error
varies from 0 rad/s to 0.000056 rad/s (at position 11
corresponds, corresponding to t = 65.4 ss).

From the above discussion, it can be seen that: (1) the
advantage of the proposed controller is that it has a
simple structure while still ensuring that the OMR fol-
lows a complex trajectory with a small error. While
some other studies have to use the used modern con-

trollers 20-22:26

that require large hardware structures
to satisfy the real-time processing speed. That makes
the data processing part will be less and the hardware
structure of the OMR does not need to be large, which
is the advantage of this study compared to other stud-
ies; (2) The control gains are determined as functions
depending on the curvature radius and error, which
can respond to the change of linear and angular ve-
locities of the OMR with small error. Therefore, it will
reduce the position and posture error of the OMR.
In addition, the phenomenon of wheel slip versus the
road surface hasn’'t been considered when modeling of
robot in this study also the causes of the robot’s error
of position and posture.

CONCLUSIONS

From the above calculated result and simulation tests,
we evaluate and discuss giving some the main results
as follows:

1) The nonlinear kinematic control problem of the
OMR tracks a complex trajectory with small error and
has been developed by a linear state feedback con-
troller. Its advantage is a simple controller structure to
increase processing speed and reduce hardware cost.
Therefore, this is the an advantage of this study com-
pared to previous studies.

2) The controller gains are determined from the po-
sition error and the motion trajectory in response to
the small error of the linear and angular robot veloci-
ties. That made the complex trajectory tracking error
of the OMR is small.

Therefore, we believe that the results of this study can
be applied to control the OMRs in the logistics appli-
cation of the modern manufacturing systems.
Additionally, the problems of longitudinal slip, lateral
slip and Coulomb friction during the interaction be-
tween the wheel and the road surface, as well as the

2450



Science & Technology Development Journal 2022, 25(2):2444-2452

application of the mecanum wheel for the develop-
ment of borehole drilling robots in tunnelling con-
struction®® working in a tight environment, will be
considered part of our future research goals.
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