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ABSTRACT
Today, videos have become popular on the internet and specified in social network andmedia plat-
forms such as Youbue, Ticktok, and Vimeo. Video understanding has attracted much attention in
the research community in recent years. Automatically recognizing human activity in wild videos is
a trending research topic with a wide range of applications in advertising, smarthome, and surveil-
lance camera systems. Deep convolutional neural networks have become a new de facto visual
recognition problem. It achieved much success in image recognition problems that are leveraged
from the ImageNet dataset. Many researchers have applied CNNs to the video domain, but the
results in realistic video still have many challenges, and the recognition rate is not as expected. Be-
cause the realistic activity in video is extremely small, we cannot train a large deep convolutional
network to achievegoodperformance. In thiswork, we answer thequestion ``howcouldwetrans-
fer the visual features from the ImageNet dataset into video for activity recognition tasks?''.
We propose an approach based on the pretrained models from ImageNet for activity recognition
in video that is based on transforming video into an image map for temporal information and a
frame-based description for spatial information. We test our proposed approach on three datasets,
UCF11, UCF50 and UCF101, and it achieves an accuracy of over 95% for the backbone of ResNet
and over 88% for the backbone of MobileNet. The experimental results show that our proposed
method is robust and efficient in wild video datasets.
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INTRODUCTION
Today, video is ubiquitous thanks to the development
and popularity of video recording devices and media
platforms such as YouTube, TikTok, and Vimeo. It
opens new opportunities for researching and develop-
ing video understanding algorithms. Specific to the
human activity domain, traditional human activities
such as walking, mixing, playing guitar, etc., are visu-
alized from video frames in Figure 1. Human activity
understanding in video comprises localizing, recog-
nizing, and predicting human behaviors. The work
to identify the label of human activity in a video is
called activity recognition. Several previous studies
concentrate on recognition problems in very specific
domains, such as human activity recognition1–5.
These approaches for activity recognition can be cate-
gorized into two categories. The first category is based
on hand-crafted features1–6 and machine learning al-
gorithms such as KNN, ANN and SVM for classifica-
tion. The second category applies deep convolutional
networks (ConvetNets) to learn activity representa-
tion from raw video data such as RGB images or opti-
cal flows frommotion detection algorithms and trains
the system in an end-to-end approach7,8.

Deep convolutional networks are very successful in
image classification problems9. The deep learning-
based CNN architecture outperformed the shadow
networks and hand-crafted features by a huge mar-
gin in error rate. However, the ConvetNets applied to
video classification do not have a significant improve-
ment in accuracy compared to traditional methods in
wild video datasets.
The second reason is that the dataset of activity videos
is much smaller than the ImageNet dataset. For in-
stance, the UCF101 dataset 3 only contains 13,320
videos for 101 activities. However, these ConvetNets
must have a large dataset with a large number of la-
beled samples for training and tuning the weight of
the network to achieve good performance. Accord-
ing to the book in deep learning10, we should have
minimum samples of 5,000 for each class. The mean
we should have 505,000 samples in the case of the
UCF101 dataset. A huge amount of labeled samples
is a major problem in costing for a real application or
startup project. Therefore, using pretrained models
such as ImageNet will have a large impact on visual
recognition tasks.
To overcome the above issues, we propose a novel ap-
proach based on transfer learning approaches from
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Figure 1: Some sample frames from daily activities from the UCF dataset

Figure 2: Overview of transfer learning from ImageNet visual features to frame-based representation

the ImageNet dataset11 and key ideas from visual fea-
tures transferred in deep convolutional neural net-
works12. The basic concept of transferring visual fea-
tures in our approaches is represented in Figure 2.

Our contributions are summarized as follows: i) a
transfer learning approach from image classification
to activity recognition in video; ii) application of mo-
tion detection and description for temporal informa-
tion in video and training a motion network for activ-
ity representation; iii) five deep network architectures
are reviewed and applied to transfer visual features to
the video domain; iv) experiment and evaluation of
many different datasets and network architectures to
demonstrate the generalization of our methodology.

LITERATURE REVIEW

Transfer learning
Transfer learning is not a new strategy, and there are
many researchers applying this strategy when data are
outdated or labeled data that do not have the same
distribution over time12,13. In short, transfer learn-
ing focuses on using the knowledge that is learned
from one or more previous source tasks and applying
it to a new target task. With deep learning, the image
classification task in the ImageNet Challenge has been
very successful in closing the error rate, whichmay be
lower than that of humans9. A summary of the evo-
lution of the error rate can be seen in Figure 3. Many
network architectures, such as AlexNet14, VGG15,
GoogleNet16, and ResNet9, have proven robust and
efficient in image classification in over 1000 classes in
ImageNet. There is much knowledge or visual fea-
tures learned from these architectures12,17. Specifi-
cally, transfer learning is also shown in the VGG ar-
chitecture when training a deeper network based on
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Figure 3: The evolution of the error rate on ImageNet Challenge Recognition from 2010 to 2015 9 decreased from
28.2% to 3.57%

shallower network architectures.

Activity Recognition in video

One of the earliest studies on human activity recogni-
tion was introduced by Yamato et al. in18, using sim-
ple shapes that were trained into a set of HMMs, and
each action label was trained by one HMM. More so-
phisticated approaches based on motions are David 6

by transforming a video into image templates for each
action. Template matching algorithms are used to
identify the label of each video. After approximately
20 years, many researchers published promising re-
sults1–5, and many applications were also considered
for video understanding. Researchers have confirmed
the important findings that the content of an im-
age can be described by the spatial relationship be-
tween pixels. The video is an extended version of
the image by fusion of frames in the temporal re-
lationship. To perform well in video representation
tasks, a systemmust extract and represent both spatial
and temporal information in video. Since the success
of CNNs in the image domain, many methods have
been proposed to extendCNNs from images to videos
for activity recognition. Two-stream networks8 were
proposed by training frame-based and motion-based
networks in the separation of networks and fusion
to recognize activity. AN is an extended version of
CNN that applies 3D convolutional kernels such as
I3D7, SlowFast19, and Nonlocal20 to capture tempo-
ral information from video. These approaches require
computing power and a large amount of labeled data

for video training. Extending from8, temporal seg-
ment networks21 proposed CNN based on video seg-
mentation that focused on reducing computational
cost to scale for large-scale datasets. This research has
motivated our research focus on novel methodology
that could be applied in real world applications.

METHODOLOGY
In the previous section, the literature review is pre-
sented, and deep learning approaches become main-
stream to improve the performance of the recognition
system. The researchers also confirm that we need to
have two kinds of data for activity recognition sys-
tems: spatial and temporal features. However, the
deep convolutional neural network is very difficult to
apply in practical applications due to the need for a
huge number of video labeled datasets as well as large
computing costs for large network architectures. To
overcome these problems, we perform transfer learn-
ing from labeled images in Image to video datasets.
The image dataset helps to learn information visual
features from large semantic images, and these pat-
terns can be applied to key frames in video that do
not need training or only tuning the model for best fit
to images from the video dataset. Therefore, it can be
easy for practical applications, where video has limita-
tions of labeled datasets. In this research, we propose
a novel framework for activity recognition in video
that uses a backbone for image description or motion
template description based on these models learned
from ImageNet. Our framework is illustrated in Fig-
ure 4.
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Figure 4: The flowchart for our proposed framework with keyframes and motion extraction for a deep learning
backbone

Video Preprocessing

Keyframe selection. We also recognize an activity
easily based on the context information from frame
features. For instance, when we see the water in
frame, it is easy to predict activities such as swimming
and diving that cannot play violin or skiing. These
characteristics are very important for wild video de-
scription. Instead of using all frames in video, these
key frame selections are based on uniform sampling
from the video timeline. It ensures that we capture
the full content of the video in time. In this research,
we adopted 5 key frames for each video, the same as
the experiment in2. The visual features are extracted
from these keyframes containing the main informa-
tion for shape and context.
Image-Based Motion Transformation. The tempo-
ral relationship between frames when humans per-
form an activity is a key factor in distinguishing be-
tween activities of the same shape or nature, such as
walking and running. We will fail when distinguish-
ing between them that only use shape or edge fea-
tures. In this research, we apply motion features from
transforming video/clip into motion images in a time
range of key frames selected from the previous step.
The most important information that describes the
content of video effectively is the temporal relation-
ship between frames. In this research, we use the mo-
tion for x-direction OF(x) and y-direction OF(y) for
frame-based motion. The optical flows are extracted
by using Farnebäck22. We also use a motion history

image (MHI) as proposed in 6 to capture how the mo-
tion is moving in the clip or how the activity motion
is performing. We use these motion image templates
to feed into the deep learning backbone to capture
motion descriptors for activity video. The informa-
tion extracted from these motion images will capture
movement and the way that activity is performing at
the moment time.

Network Architectures
The architecture of the network is the most impor-
tant factor in the deep learning of network design. In
the past, several network structures were proposed for
image classification, such as AlexNet14, VGGNet15,
Google Lenet16, and Restnet9. However, their impact
on activity recognition has not been fully considered
in the video domain. In this section, we will briefly
describe the main original architectures of AlexNet
Net, Google Letnet, RestNet andMobileNet that were
tested in our proposed approach. These deep neural
networks are used as a backbone for learning features
and transferring features in our system.
AlexNet was proposed by Alex Krizhevsky in the Im-
ageNet competition in 2012. The general architecture
is quite similar to LeNet-523, although this model is
considerably larger (see Figure 5). The success of this
model (which took first place in the 2012 ImageNet
competition) convinced much of the computer vision
community to take a serious look at deep learning for
computer vision tasks. The primary result in this net-
work. To transfer visual features from image classifi-
cation to video description, we adapted to use the F6
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or F7 layer of this network. The details of this network
can be found in 14.
VGGNet. The network opens a novel for a small ker-
nel size in convolution and builds a deeper network
based on the shallower architectures. The architecture
used 3x3 for convolution operation, 1x1 for convolu-
tional stride, and 2x2 for pooling windows. The au-
thors systematically investigated the performance of
depths from 11 to 19 layers in network architectures
in image classification by training a deeper neural net-
work from a shallower network with the same archi-
tectures. Finally, the network with 16 and 19 layers
has the best performance and is often called VGG-16
and VGG-19, the architecture configuration in Fig-
ure 6. The details of this network can be found in 15.
GoogleLeNet. Theprimary idea of this network is the
Hebbian principle and multiscale processing in the
receptive field, called Interception with 22 layers16,
and the overall architecture is shown in Figure 7. An
essential component in the network is the Inception
module, as shown in Figure 8. It consists of mul-
tiple convolutional filters of different sizes alongside
each other. However, when this network goes deeper,
changes in vanishing problems can occur. To avoid
this problem, the authors proposed two auxiliary clas-
sifiers. An auxiliary module, see in Figure 9, is the
same as the subnetwork with full layers (convolution,
pooling, and fully connected) that can learn the visual
features in shadow layers and increase visual abstract
features in deeper layers. Another problem of deep
learning is the computational cost for computing, and
there is also concern with using a 1x1 convolution op-
eration for dimensionality reduction. The details of
this network can be found in 16.
ResNet. VGG and GoogleNet notify a message in
deep learning that is “go deeper, better performance”.
However, a deeper network will be very difficult to
train. The researchers have systematically investi-
gated deep networks with depths of 18, 34, 50, 101,
and 152 layers. The authors proposed an extremely
deep neural network called ResNet that is based on a
novel architecture with residual learning (Figure 10)
and batch normalization. The residual learning is
based on the desired mapping as H(x): F(x) := H(x)
- x, and the original mapping is F(x) + x. The batch
normalization is a layer that will standardize and nor-
malize the input from the previous layer into output.
It will help speed up the training time and reduce in-
ternal covariate shift24. The details of this network
can be found in 9.
MobileNet25. Thebig problem in deep learningmod-
els such AlexNet, VGG, GoogleNet or RestNet is large
in computation and storage. Table 1 shows the sizel

and the number of parameters of different models.
The largestmodel is VGGwith approximately 217MB
and 139 M parameters. This shows that the computa-
tional cost and memory when using the network in-
ference stage is huge. There is a limitation of deep
learning when applied in real-world applications with
small memory or computing. In particular, mobile
devices are currently dominant or have low hardware
power in startup or manufacturing. Many studies
have been proposed to resolve this problem. In this
research, we briefly describe the MobileNet architec-
ture and apply it to our architecture for human activ-
ity recognition in video. The architecture is based on
depthwise separable convolutions that are factorized
from a standard convolution and a 1x1 convolution,
as shown in Figure 11. This factorization has reduced
the computational cost for training and the size of the
model. The size of the model is approximately 17MB,
and the number of parameters is 4.2 M parameters,
a large reduction in both model size and parameters
in deep convolutional neural networks. This model
will be more practical when applied to real applica-
tions with limited computing power.

Classification
After extracting features, we have represented each
video as a set of descriptors from key frames. The next
problem is the identification of activity labels for each
video; this step is called recognition. In this phase,
we can use KNN or SVM algorithms to classify the
descriptors into semantic labels. In this research, we
used SVM to train a classifier for activity recognition.

EXPERIMENTS & DISCUSSION
In this section, we verify our transfer learningmethod
from ImageNet into video datasets in activity recog-
nition. The entire workflow of activity recognition
in video is as follows: i) extract visual transfer fea-
tures, ii) extract motion map and visual features, and
iii) build a pool of SVM classifiers to classify each
keyframe descriptor. The classification results for all
keyframes and image maps in a video are aggregated
using average pooling to identify the label of activity
in video.
Datasets. In this work, we evaluate our approaches on
the mainstream evolution of UCF datasets1–3. These
datasets were published by the Center for Research in
Computer Vision, University of Central Florida, from
2009 to 2012 with 3 versions of increasing the num-
ber of classes and complexity in activity. We visual-
ize several frames from three versions in Figure 12.
This will test our approaches in scalable and robust
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Figure 5: The network architecture of AlexNet 14 based on LeNet-5 23

Figure 6: The difference in network architecture of VGG 15 , the number of layers increased from 11 to 19
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Figure 7: The overall architecture of Google Net 16

Figure 8: The architecture of the interception module

Figure 9: The architecture of the auxiliary classifier module
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Figure 10: The residual block in RestNet 9 for residual learning

Table 1: Comparison of size and parameters of different network architectures

Model Size (MB) Parameters

AlexNet 217 62,970,000

VGG 553 138,360,000

GoogleLenet 163 42,710,000

RestNet-50 98 25,560,000

MobileNet 17 4,200,000

capacity in recognition rate when the datasets change
in complexity and size of classes. The UCF YouTube
(UCF 11)1 contains 11 activity categories. UCF1013

is an extended version of UCF 502. It contains 13,320
videos spread over 101 categories of human activi-
ties. This challenging dataset contains a wide range
of human activities that can be divided into 5 groups:
i) Human-Object Interaction, ii) Body-Motion Only,
iii) Human-Human Interaction, iv) Playing Musical
Instruments v) Sports. All three datasets are collected
from Youbute with wild human activity. Moreover,
the videos in each dataset are divided into 25 folders,
and each folder has more than 4 videos. Video from
the same group can share the same common charac-
teristics, such as the same person, similar background
or viewpoint. The settings of the dataset for training
and testing are the same as those used in original stud-
ies for UCF11 1, UCF 2, and UCF1013.
Results: We show the experiment’s results on three
datasets and five backbones in Tables 2 and 3. In Ta-
ble 2, we show the recognition rate from backbones

transferred from different models trained from Ima-
geNet without tuning. The results are over 93% for all
datasets, and ResNet has proven its power in trans-
ferring the knowledge from ImageNet into the video
domain by using key frame approaches. With a small
dataset such as UCF1, all networks are robust and ef-
ficient in accuracy, and MobileNet also has over 93%
accuracy when the size of the model is much smaller
than the others. They confirm that we can transfer
ImageNet models into the video domain in novel ap-
proaches that still have high performance. However,
when the number of classes increases 5 or 10 times,
such as 50 and 101 classes, the performance of the sys-
tem decreases by approximately 10% for the best ar-
chitecture ResNet. The accuracy is still over 86% for
101 classes, which shows the robustness of ResNet in
the wild dataset. The smallest network is MobileNet,
which still has a promising recognition rate of 76.14%.
From these results, we have turned the parameters of
these networks based on images and motion images
from target datasets. The performance of the system
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Figure 11: Illustration of convolution factorization in pointwise convolution 25 with standard, depthwise, and 1x1
convolution filters

has a significant improvement of over 10-12% for all
architectures. ResNet is the most robust and efficient
in performance, and MobileNet is the lowest. The re-
sults confirm that we can transfer visual features from
image to video w.r.t. turning and video transforma-
tion that convert video data into image format to still
capture visual information. We show a practical ap-
proach in which we can build a video understanding
system based on knowledge that is trained from large-
scale datasets such as ImageNet.
Comparison: We compare the recognition rate
of these different network architectures on several
datasets in Tables 2 and 3. These deep convoluted net-
works that have nearly the same depth in architecture,
such as AlexNet14, VGG15 and GoogleNet16, have
similar performance. The deeper ResNet9 still powers

the video domain the same as the image domainwhen
we try to convert video data into image format for
transfer learning. These results show that MobileNet
has a performance lower than that of ResNet9 by ap-
proximately 7%. Meanwhile, the size of MobileNet25

is less than 5 times that of ResNet. This means we can
think that applying MobileNet in applications will be
more practical than big networks. Furthermore, Ta-
bles 1 and 2 show that we will increase from 2% for a
small dataset and 11% for a large dataset when tuning
the networks to fit with the dataset. This proves that
the hypothesis of applying a deep learningmodel from
image to video is feasible and highly effective whenwe
use digital image and video processing techniques in
representing video content based on spatial-temporal
mapping images.
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Figure 12: Sample activity frames: (a) UCF11, (b) UCF50, and (c) UCF101

Table 2: The accuracy of three datasets with transferring visual features

Networks Accuracy (%)

UCF11 UCF50 UCF101

AlexNet 95.08 83.25 79.25

VGG-16 95.38 85.69 81.26

GoogleLenet 95.82 87.30 82.4

RestNet-50 97.24 92.71 86.34

MobileNet 93.59 79.40 76.14

Table 3: The accuracy of three datasets that apply tuning parameters of the network for transferred visual
features

Networks Accuracy (%)

UCF11 UCF50 UCF101

AlexNet 97.01 94.73 92.48

VGG 97.76 95.31 92.56

GoogleLenet 97.46 95.67 94.34

RestNet-50 98.58 97.11 95.63

MobileNet 97.31 93.86 88.14

CONCLUSION
In this article, we proposed a deep transfer learning
approach from the image classification problem to re-
alistic activity recognition in video. Because the re-
alistic activity in video is extremely small, we can-
not train a large deep convolutional network to have
a good performance that does not use augmentation
techniques to generate a huge amount of data frames.
However, these approaches are easy for image prob-
lems, and data generation for video is amajor problem

due to spatial-temporal relationships in video con-
tent. To overcome this obstacle, we propose a robust
approach based on transfer learning from a huge net-
work that is trained from the ImageNet dataset. We
transfer video data into image data format to apply
transfer learning from convolutional neural networks
that are trained from ImageNet. To keep two impor-
tant pieces of information in video, shape and motion
features, we trained two networks for each piece of in-
formation. The overall recognition accuracy is higher
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than 88% on several datasets (UCF11, UCF50 and
UCF101). Based on the experimental results from
several datasets, our proposed methods are efficient
and robust in realistic activity recognition in video.
In future work, we will apply this research to more
complex datasets for crowd video surveillance and
train motion networks that can be transferred to mul-
tiple tasks. A limitation of current research is the use
of two networks for shape and motion description in
separation models. This problem can be resolved by
using multitask learning, which will be addressed in
future research.
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