Science & Technology Development Journal 2023, 26(1):2672-2680

Open Access Full Text Article

Engineering and Technology: Research Article

New model for low-end computers: ResNet and VGG-16

Hoang Linh Nguyen'-2, Kha Tu Huynh'2"*

Use your smartphone to scan this

QR code and download this article

"International University, Ho Chi Minh
City, Vietnam

*Vietnam National University, Ho Chi
Minh City
Correspondence

Kha Tu Huynh, International University,
Ho Chi Minh City, Vietnam

Vietnam National University, Ho Chi
Minh City

Email: hktu@hcmiu.edu.vn

History

e Received: 2023-01-03

o Accepted: 2023-03-11
e Published: 2023-04-15

DOI :
https://doi.org/10.32508/stdj.v26i1.4030

‘W) Check for updates

Copyright

© VNUHCM Press. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution 4.0 International license.

A

—
VNU-HCM Press

ABSTRACT

ResNet-50 is a powerful architecture of convolutional neural networks, which gives truly high ac-
curacy and very small error rate. However, this architecture seems not to be very effective when
executing in low-end computers because of the small batch size for satisfying limited resources,
which is not good for batch normalization. There is also an attempt to use VGG-16 as an alter-
native method, but vanishing gradients occur often. The proposed model is an improvement of
VGG-16 using ResNet for shortcuts to prevent vanishing gradients, and the new architecture does
not require batch normalization. As a result, the proposed model achieves a high test accuracy of
85.4%, while ResNet-50 achieves a test accuracy of 75.9% after 40 epochs of training 14,034 images
from the Natural Scenes from Image Classification Challenge by Intel. This model is effective for

applications related to image processing.

Key words: ResNet, VGG-16, convolutional neural networks, image classification

INTRODUCTION

Computer vision is a field that helps obtain mean-
ingful information from visual data such as images,
videos or other visual sources . Computer Vision in-
cludes common tasks such as Object Detection, Im-
age Segmentation, Image-to-Image Translation, etc.
Deep learning is considered a breakthrough in solv-
ing computer vision problems. The development of
deep learning has led to the explosion of many appli-
cations that bring high efficiency to computer vision
tasks, especially the emergence of convolutional neu-
ral networks (CNNss).

In recent years, many CNN architectures have been
created to improve the performance of computer vi-
sion tasks, especially in image classification. All the
architectures have convolutional layers to help ex-
tract image features from the image input. Com-
mon architectures for image classification are VGG-
16, VGG-19, ResNet, DenseNet, LeNet, AlexNet, In-
ception (GoogLeNet), and ResNeXt. Among these ar-
chitectures, residual networks? are extremely impor-
tant because they allow people to extend the layers
of models deeper without the negative effect of van-
ishing gradients. ResNet has many variants, such as
ResNet-18, ResNet-34, ResNet-50, and ResNet-152.
ResNet can train the images with a truly high accu-
racy. However, it seems to be less effective when run-
ning on low-end computers. With low-end comput-
ers, the memory is limited, and the batch size must be
small to avoid resource exhaustion errors when train-
ing. The small batch size can affect the training results,
such as increasing the error values.

The main contribution of the paper is to suggest an
alternative model to solve the problems for low-end
machines by:

o Analyzing the problems of the traditional model
for low-end computers.

« Proposing an improved model and showing the
results of the implementation.

Following this introduction, the paper presents six
contents: problem statements, proposed model,
dataset, experimental results, discussion and conclu-

sion.

PROBLEM STATEMENTS

ResNet-503 is an effective model for image classifica-
tion tasks with very high accuracy and a very low error
rate compared to many models. However, ResNet-
50 becomes ineffective with low-end computers. The
large number of parameters due to deep networks
could be a major problem for limited memory. Some
machines have resource exhaustion errors when at-
tempting to train large batch sizes of images by some
models with large parameters, such as ResNet-50. The
problem is how to build a model for low-end comput-
ers.

The temporary solution is to decrease the batch size,
but the accuracy is quite low because of batch normal-
ization, which is not good for small batch sizes. An
alternative that could be considered is the modified
version of VGG-16° by reducing some units at the
fully connected layer. Another problem is the van-
ishing gradient, when the accuracy almost does not
improve after many epochs pass.

Cite this article : Nguyen H L, Huynh KT. New model for low-end computers: ResNet and VGG-16. Sci.

Tech. Dev. J.; 2023,26(1):2672-2680.

2672

https://crossmark.crossref.org/dialog/?doi=10.32508/stdj.v26i1.4030&domain=pdf&date_stamp=2023-4-15

Science & Technology Development Journal 2023, 26(1):2672-2680

Batch normalization

Batch normalization is a method to standardize the
inputs for each mini-batch. Batch normalization
helps the training faster and stabilizes the distribution
of inputs during training. However, batch normaliza-
tion works well with a large batch size.

In Rethinking ”Batch” in BatchNorm research con-
ducted by Facebook Al Research ©, batch size is closely
related to the error of the training using batch nor-
malization, as shown in the Figure 1. The smaller the
batch size is, the larger the error value of the training
result. The low-end machines can only afford a small
batch size of 16, 8 or smaller, or our machine satisfies
roughly the batch size of 16.

—— Validation set error - Lpop, Opop /T

Training set error - g, O /
——————— Validation set error - g, 0g

train/test
inconsistency

generalization

i
]
I
I
|
'
'
'
'
'
H gap

e training noise

10| e

1024 512 256 28 64 32 16 8
Normalization Batch Size

Figure 1: Batch Size and Batch Normalization’

Vanishing gradient

Another method to avoid the use of batch normaliza-
tion is using VGG-16. However, in some cases, the
training accuracy after a significant number of epochs
almost does not improve. The reason for this prob-
lem is the vanishing gradient®. The number of layers
of VGG-16 is much less than that of ResNet-50, but
without skip connections, VGG-16 still has the possi-
bility of leading to a vanishing gradient.

A vanishing gradient occurs when there are many lay-
ers in the network. In the backpropagation process,
the weights change to minimize the loss. With a van-
ishing gradient, the value of the product of deriva-
tives that determine the change in weights and biases
is close to zero. Therefore, the weights almost do not
update, and the network does not learn anymore. As
a result, the training accuracies at every epoch are
nearly the same.

PROPOSED MODEL
Proposed Model Architecture

CNNs have many architectures that can be used to
solve different types of problems. All the architec-
tures have convolutional layers to help obtain image

2673

features from the image input. Common architec-
tures for image classification are VGG-16, ResNet,
DenseNet, LeNet, AlexNet, Inception (GoogLeNet),
and ResNeXt. In addition, YOLO (You Only Look
Once) is a very popular choice to solve object detec-
tion problems. In image segmentation problems, U-
net, PSPNet and SegNet are also widely used.

The proposed model architecture is an improvement
of VGG-16 by using a residual network. The VGG-
16 originally has 16 layers as 13 convolutional layers
and 3 fully connected layers. In the proposed model,
a small change has been made in the fully connected
layers. We reduce the units in each fully connected
layer because of the limitations of our computer. With
the residual network applied, this model can avoid the
vanishing gradient. The residual network can solve
the problem by using skip connections (shortcuts).
The skip connection helps connect a layer to another
further layer, skipping some layers in between. The
skip connection model is shown in the Figure 2.

identity

Figure 2: Skip connection in ResNet?

Residual Network

A residual network (ResNet) is a type of deep neu-
ral network architecture designed to overcome the
problem of vanishing gradients, one of the difficulties
causing the training process to converge very slowly
or even become stuck. The gradients have to flow
through many layers to update the weights at the ear-
lier layers, so the vanishing gradient often occurs in
networks with a large number of layers.

ResNets allow the creation of much deeper networks
compared to traditional neural networks without en-
countering the vanishing gradient. The basic idea
of the solution is to add skip connections or short-
cuts between layers. The shortcuts help the gradients
flow more easily through the network. Therefore, the
residual network is considered an innovative solution
in making it possible to create deep networks with a
large number of layers for better training accuracy.

Science & Technology Development Journal 2023, 26(1):2672-2680

Table 1: Proposed model parameters

Block 1

Shortcut

Block 2

Shortcut

Block 3

Shortcut

Block 4

Shortcut

Block 5

Shortcut

Layer

Input

Conv2D
Activation (ReLU)
Conv2D
Activation (ReLU)
Conv2D

Block 1 + Shortcut
Activation (ReLU)
MaxPooling2D
Conv2D
Activation (ReLU)
Conv2D
Activation (ReLU)
Conv2D

Block 2 + Shortcut
Activation (ReLU)
MaxPooling2D
Conv2D
Activation (ReLU)
Conv2D
Activation (ReLU)
Conv2D
Activation (ReLU)
Conv2D

Block 3 + Shortcut
Activation (ReLU)
MaxPooling2D
Conv2D
Activation (ReLU)
Conv2D
Activation (ReLU)
Conv2D
Activation (ReLU)
Conv2D

Block 4 + Shortcut
Activation (ReLU)
MaxPooling2D
Conv2D
Activation (ReLU)
Conv2D
Activation (ReLU)
Conv2D
Activation (ReLU)
Conv2D

Block 5 + Shortcut
Activation (ReLU)
MaxPooling2D

Output shape
(None, 224, 224, 3)
(None, 224, 224, 64)
(None, 224, 224, 64)
(None, 224, 224, 64)
(None, 224, 224, 64)
(None, 224, 224, 64)
(None, 224, 224, 64)
(None, 112, 112, 64)

(None, 112, 112, 128)
(None, 112, 112, 128)
(None, 112, 112, 128)
(None, 112, 112, 128)
(None, 112, 112, 128)
(None, 112, 112, 128)
(None, 56, 56, 128)

(None, 56, 56, 256)
(None, 56, 56, 256)
(None, 56, 56, 256)
(None, 56, 56, 256)
(None, 56, 56, 256)
(None, 56, 56, 256)
(None, 56, 56, 256)
(None, 56, 56, 256)
(None, 28, 28, 256)

(None, 28, 28, 512)
(None, 28, 28, 512)
(None, 28, 28, 512)
(None, 28, 28, 512)
(None, 28, 28, 512)
(None, 28, 28, 512)
(None, 28, 28, 512)
(None, 28, 28, 512)
(None, 14, 14, 512)

(None, 14, 14, 512)
(None, 14, 14, 512)
(None, 14, 14, 512)
(None, 14, 14, 512)
(None, 14, 14, 512)
(None, 14, 14, 512)
(None, 14, 14, 512)
(None, 14, 14, 512)
(None, 7, 7, 512)

Parameters
0

1792

0

36928

0

256

0

0

73856
0
147584
0

8320

0

0

295168
0
590080
0
590080
0
33024
0

0

1180160
0
2359808
0
2359808
0
131584
0

0

2359808
0
2359808
0
2359808
0
262656
0

0

Continued on next page

2674

Science & Technology Development Journal 2023, 26(1):2672-2680

Table 1 continued

Fully Connected Flatten (None, 25088) 0

Layers Dense (None, 256) 6422784
Activation (ReLU) (None, 256) 0
Dense (None, 128) 32896
Activation (ReLU) (None, 128) 0

Output Dense (None, x) (128+1)*x
Activation (Softmax) (None, x) 0

1x1 conv, 64

L ,

1x1 conv, 128
1x1 conv, 256 }

o™
[}
=
=
o
°

=

x

[3x3 cony, 512 | [1%1 conv, 512 J

. @© @© © © © & o ™ o | o
@ N N el [Tl 0 - - - - -
2 ~ - - ~ 5] 3 ~ o) 0 0 ~ o) ~ o
N S Bl E S Elr EHE S E > E > E LT E Elr s, &
3 3 -3 S 3 -

BPE8r—glarlar £7|1818 18 &7]&8[71&[718] £7)8 Er—gny
o & a a (] 53 a o (5] o a a |8
2 2] @ @ @ @« e]] «Q @«
2] ® < < x < b3 > < x x x

« « «© « « «© « «© « «
= {5} ©Q © =
g = =] ~ - ~
b [

ko o o

g 2 N N N 3
w %] (2} 0 2]

Figure 3: ResNet + VGG16 architecture

The proposed model uses shortcuts for each group
of convolutional layers. An extra convolutional layer
with a kernel size of 1x1 is inserted into each shortcut
to make the output dimensions from the skip connec-
tion identical to the output dimensions from the main
path. The input image of the model has dimensions of
224x224x3, where the image height is 224, the image
width is 224, and 3 means the image is in RGB with 3
channels (red, green, blue). The proposed model ar-
chitecture is shown in Figure 3.

Network Parameters

The parameters of the proposed model are shown in
Table 1.

2675

Science & Technology Development Journal 2023, 26(1):2672-2680

Convolutional Neural Network Layers
Convolutional Layer

The convolutional layer is the most important layer
in convolutional neural network layers. It is the first
layer that extracts the features from the images. Im-
age features are necessary information such as edges
or sets of points to represent the content of the image.
The layer consists of filters or kernels, which have di-
mensions of 3x3. The images that go through the con-
volutional layer will be processed by the convolution
operation with the filters. The filters slide over the ar-
eas of the input images, and they take the dot product
with the area that is slid. The principle of the convo-
lution operation is shown in Figure 4.

Input Image Filter Activation
y— Map
3|8
8|4 1]0]|-1 . 9| -8
8|4 ® 110/~ = [3]|2]|3
2|8|7|2|7 1 0 |- 310]-2
I514I4 5[4

Figure 4: Convolution operation®

The output of the convolution operation between each
kernel and an image is the activation map (or feature
map), which is also a matrix containing the feature
of the image. The dimensions of the feature map are
shown in (1).

Feature map dimensions = (h - f;, + 1) x (w - f, + 1)
x1(1)

where

Filter dimensions = f}, x f,, x d

Input image dimensions =h x w x d

h: input image height,

w: input image width

d: input image depth

fj: filter height

f,,: filter width

Information at the edge of the images may be ne-
glected or the dimensions of the output decrease when
the size of the filters is larger than 1x1. Therefore, we
use zero-padding, or padding =same] to insert the
zero values into the boundaries of the image input
to prevent the problems above. An input image after
adding one layer of zero around the edges is shown in
Figure 5.

The padding length will vary depending on the size
of the filters. The formula of the padding =’same’ is
shown in (2).

p = (kernel size -1)/2 (2)

where

Figure 5: Zero-padding added to an image '°

filter size = filter height x filter width
padding height = (filter height -1)/2
padding width = (filter width -1)/2

Pooling Layer

The pooling layer, which is usually inserted between
the convolutional layers, is used to reduce the size of
the feature map so that the computational costs de-
crease. The feature map after going through the pool-
ing layer still holds the important properties of the im-
ages. This layer summarizes the features in the areas
of the feature map.

The dimensions of the feature map after going through
the pooling layer are shown in (3).

Feature map dimensions = (h - f;, + 1)/s x (w - f,, +
1)/sxd (3)

where

Input (old feature map) dimensions = h x w x d; Pool-
ing filter dimensions = f;, x f,,; Stride length: s

h: Input (old feature map) height

w: Input (old feature map) width

d: Input (old feature map) depth

fj: filter height

f,,: filter width

s: Stride length

Max pooling and average pooling are common types
of pooling operations. We choose max pooling for use
in the proposed model. This operation chooses the
maximum element from the area of the feature map
with the specified pooling filter size. The operation is

shown in Figure 6.

2676

Science & Technology Development Journal 2023, 26(1):2672-2680

Figure 7: Fully Connected Layers '2

12 120|130 | O

8 1121 2 | 0 | 2x2MaxPool |20]30

34 | 70 [37 | 4 112 | 37

112100 25 | 12

Figure 6: Pooling layer with size 2x2 "

Fully Connected Layer

The fully connected layers consist of many neurons
connected to the neurons in the next layer, as shown
in Figure 7.

An output feature map from the previous layer, which
is in matrix representation, is converted into a vec-
tor. Then, the vector will be the input of the fully con-
nected layer. The classification process is performed
at the fully connected layers. In these layers, ReLU has
been used as an activation function (not in the output
layer). The function returns maximum input if it is
positive or 0 if the input is negative. The ReLU func-
tion has simple mathematical operations, so it makes
the calculation faster than using sigmoid and tanh.
Finally, the output goes into the last layer called the
output layer. This layer gives the desired predictions
through the activation function. The common acti-
vation functions of the output layer are Softmax, Sig-
moid, and Linear. The proposed model uses the soft-
max function as the activation function for the output
layer, which is specifically used for multiclass classifi-

2677

cation tasks. The Softmax function returns the prob-
ability of each class.

Softmax function

The Softmax function is a mathematical function
mapping a vector of real numbers to a probability dis-
tribution by transforming the input values into prob-
abilities that have a total of 1.

The softmax function is often used as the last layer of
a neural network, where the input to the function is a
vector of activations from the previous layer and the
output is a set of class probabilities. The higher the
probability value of the class is, the higher the proba-
bility that the input data belong to that class.

The formula for the softmax function is shown in (4)
as follows:

e

- ZIKZO el

7 : The input vector containing zo

softmax(7);)

..... 2

i: The index i in the input vector
z;: The value at the index i in the input vector
k: The last index in the input vector

DATASET

The dataset is about natural scenes around the world.
These data were first published on the website https://
datahack.analyticsvidhya.com to host an Image Clas-
sification Challenge by Intel 1. The dataset is down-
loaded from Kaggle. The dataset includes 17,034 im-
ages of 14,034 images used for training (~81%), 1,580
images used for validation (~10%) and 1,420 images

Science & Technology Development Journal 2023, 26(1):2672-2680

used for testing (~9%). All the images are divided into
6 classes: buildings, forest, glacier, mountain, sea, and
street.

>14 and

In addition, two other datasets of “flowers
“dogs and cats” !° are used.

The flowers dataset includes 3,670 images with 2,934
images used for training (~80%), 364 images used
for validation (~10%) and 372 images used for test-
ing (~10%). All the images are divided into 5 classes:
daisy, dandelion, roses, sunflowers, and tulips.

The dataset includes 24,998 images with 19,644 im-
ages used for training (~80%), 2,463 images used for
validation (~10%) and 2,891 images used for testing
(~10%). All the images are divided into 2 classes: dog
and cat.

To increase the number of images in the dataset and
reduce overfitting, data augmentation techniques '°
are performed. We use the API of TensorFlow, which
is ImageDataGenerator, to support increasing the di-
versity of the dataset. The original images are changed
by rotating, shifting horizontally and vertically, shear-
ing, zooming and flipping.

EXPERIMENTAL RESULTS

Training

The experiment is executed on an ASUS laptop with
an AMD Ryzen 7 4800H CPU @ 2.90 GHz, NVIDIA
GeForce GTX 1650 Ti GPU and 8 GB RAM. The batch
size of training is set to 16 due to the memory limit of
the GPU and RAM.

The proposed model and ResNet-50 are trained for 40
epochs for comparison with each other in terms of
training accuracy, validation accuracy, training loss
and validation loss. Both models are optimized by the
Adam optimization algorithm with the initial learn-

ing rate set to 0.001. Sparse Categorical Cross-entropy
is chosen as the loss function for both models.

RESULTS

The proposed model gives 86.1% accuracy and 0.37
loss on the training set and 85.4% accuracy and 0.39
loss on the test set, while the ResNet-50 model pro-
duces a training accuracy of 86.4%, a training loss
of 0.38, a test accuracy of 75.9%, and a test loss of
0.73. Figure 8 and Figure 9 show the training accu-
racy, training loss, validation accuracy, and validation
loss of the proposed model and ResNet-50 through 40
epochs.

In addition, some other results on the flower dataset
and dog and cat dataset are also shown in Figure 10,
Figure 11, Figure 12 and Figure 13.

0.8

0.5

—— Train accuracy (Proposed model)
—— Validation accuracy (Proposed model)
= Train accuracy (ResNet-50)

0.4 —— Validation accuracy (ResNet-50)

0 5 10 15 20 25 30 35 40
Epoch

Figure 8: Training and validation accuracy of the
proposed model and ResNet-50

—— Train loss (Proposed model)
—— Validation loss (Proposed model)
—— Train loss (ResNet-50)

—— Validation loss (ResNet-50)

0 5 0 15 20 25 30 35 40
Epoch

Figure 9: Training and validation loss of the pro-
posed model and ResNet-50

—— Train accuracy (Proposed model)
Validation accuracy (Proposed model)

—— Train accuracy (Resnet 50)

—— Validation accuracy (Resnet 50)

0 2 4 6 8
Epoch

Figure 10: Training and validation accuracy of the
proposed model and ResNet-50 (flowers dataset)

DISCUSSION

From the above figures, it is clear that with the com-
bined model of ResNet and VGG-16, the difference
between the training accuracy (the blue line) and val-
idation accuracy (the orange line) is relatively stable
and small, while the difference between the training
accuracy (the green line) and validation accuracy (the
red line) fluctuates with unstable amplitude. This is
the same as the difference between the training loss

2678

Science & Technology Development Journal 2023, 26(1):2672-2680

—— Train loss (Proposed model)
Validation loss (Proposed model)
L —— Train loss (Resnet 50)

—— Validation loss (Resnet 50)

Loss

Epoch

Figure 11: Training and validation losses of the pro-
posed model and ResNet-50 (flowers dataset)

—— Train accuracy (Proposed model)

—— Validation accuracy (Proposed model)
—— Train accuracy (Resnet 50)

— Validation accuracy (Resnet 50)

o 2 4 6 8
Epoch

Figure 12: Training and validation accuracy of
the proposed model and ResNet-50 (dogs and cats
dataset)

—— Train loss (Proposed model)
Validation loss (Proposed model)

—— Train loss (Resnet 50)

0.8 —— Validation loss (Resnet 50)

05

Epoch

Figure 13: Training and validation loss of the pro-
posed model and ResNet-50 (dogs and cats dataset)

and validation loss in the two models.

If we consider and analyze the accuracy in Figure 8,
Figure 10 and Figure 12, the accuracy (both training
accuracy and validation accuracy) from the suggested
model is higher than the accuracy from the traditional
ResNet. In terms of loss in Figure 9, Figure 11 and
Figure 13, the loss from the suggested model is lower
than the loss from the traditional ResNet.

2679

Based on the experimental results of two models on
the dataset, the proposed model works better than
ResNet-50 with higher accuracy and lower loss. The
accuracy and loss of the proposed model are more sta-
ble than those of ResNet-50.

CONCLUSION

This paper proposes a new model using ResNet in a
modified VGG-16 architecture to satisfy the strict re-
quirements of low-end machines. ResNet-50 is not
very effective with a small batch size because of batch
normalization. The new model is based on the VGG-
16 architecture, which does not need BatchNorm lay-
ers. The original VGG-16 model has very large units
at the fully connected layers, which can exceed the
limit memory when performing calculations. Addi-
tionally, the VGG-16 model reveals a new challenge,
the vanishing gradient. Therefore, we add ResNet
for VGG-16 and reduce the units to solve the prob-
lem. The experimental results show that the pro-
posed model has higher accuracy and lower loss than
ResNet-50 in the training set, validation set and test
set. The test accuracy of the proposed model is 85.4%,
while that of ResNet-50 is 75.9%. Therefore, in the
condition of limited memory for low-end computers
with a small batch size, the proposed model has bet-
ter performance than ResNet-50. With this result, the
proposed model can be used to replace former ResNet
models for applications run on low-end computers.
The implementation of this proposed model to solve
the problems of object classification and image assess-

ment is our next research direction.

LIST OF ABBREVIATIONS

CNN - Convolutional neural networks.

ResNet - Residual neural network.

VGG - Visual Geometry Group (VGG-16 was pro-
posed by Karen Simonyan and Andrew Zisserman of
the Visual Geometry Group Lab of Oxford University
in 2014).

ACKNOWLEDGEMENT
We thank the AIoT group of the School of Computer

Science and Engineering for giving me the motivation
to complete the model with the expected effectiveness.

CONFLICT OF INTEREST

The authors declare that they have no competing in-
terests.

Science & Technology Development Journal 2023, 26(1):2672-2680

AUTHOR’S CONTRIBUTIONS

Hoang Linh Nguyen built and implemented the

model, and analyzed the results.
Kha Tu Huynh proposed idea, supervied the im-
plementation, evaluated the efficiency of the model,

wrote the paper, reviewed and revised the paper.

REFERENCES

1.

What is computer vision? | IBM;Available from: https://www.
ibm.com/topics/computer-vision.

. HeK, Zhang X, Ren S, Sun J. Deep residual learning for image

recognition 2015. cite. arXiv preprint arXiv:1512.03385;PMID:
26180094. Available from: https://doi.org/10.1109/CVPR.
2016.90.

. Rezende E, Ruppert G, Carvalho T, Ramos F, De Geus P. Mali-

cious software classification using transfer learning of resnet-
50 deep neural network. In2017 16th IEEE International Con-
ference on Machine Learning and Applications (ICMLA). [EEE
Publications; 2017 Dec 18. p. 1011-4;Available from: https:
//doi.org/10.1109/ICMLA.2017.00-19.

. loffe S, Szegedy C. Batch normalization: accelerating deep

network training by reducing internal covariate shift. In: Inter-
national conference on machine learning; 2015 Jun 1. p. 448-
56. PMLR;.

. Simonyan K, Zisserman A. Very deep convolutional net-

works for large-scale image recognition. arXiv preprint
arXiv:1409.1556. 2014 Sep 4.

. Wu Y, Johnson J. Rethinking batch” in batchnorm. arXiv

preprint arXiv:2105.07576. 2021 May 17;.

15.
16.

. Yao Z, Cao Y, Zheng S, Huang G, Lin S. Cross-iteration batch

normalization. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition 2021. p. 12326-
35;Available from: https://doi.org/10.1109/CVPR46437.2021.
01215.

. Tan HH, Lim KH. Vanishing gradient mitigation with deep

learning neural network optimization. In2019 7th interna-
tional conference on smart computing & communications (IC-
SCQ). IEEE Publications; 2019 Jun 28. p. 1-4;Available from:
https://doi.org/10.1109/ICSCC.2019.8843652.

. Antoniadis P. Calculate the output size of a convolutional layer.

Baeldung on computer science; 2022, Nov 6;Available from:
https://www.baeldung.com/cs/convolutional-layer-size.

. GeeksforGeeks. Introduction to padding. Cable News Net-

work; 2021, Oct 22;Available from: https://www.geeksforgeeks.
org/cnn-introduction-to- padding/.

. Papers with code - max pooling explained; n.d;Available from:

https://paperswithcode.com/method/max-pooling.

. Ramsundar B. TensorFlow for deep learning. O'Reilly on-

line learning;Available from: https://www.oreilly.com/library/
view/tensorflow- for- deep/9781491980446/ch04.html.

. ;Available from: https://www.kaggle.com/datasets/puneet6060/

intel-image- classification.

. ;Available from: https://www.TensorFlow.org/datasets/catalog/

tf_flowers.

;Available from: https://www.kaggle.com/c/dogs- vs-cats.
Chlap P, Min H, Vandenberg N, Dowling J, Holloway L, Ha-
worth A. A review of medical image data augmentation tech-
niques for deep learning applications. J Med Imaging Radiat
Oncol. 2021;65(5):545-63;PMID: 34145766. Available from:
https://doi.org/10.1111/1754-9485.13261.

2680

https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision
https://www.ncbi.nlm.nih.gov/pubmed/26180094
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICMLA.2017.00-19
https://doi.org/10.1109/ICMLA.2017.00-19
https://doi.org/10.1109/CVPR46437.2021.01215
https://doi.org/10.1109/CVPR46437.2021.01215
https://doi.org/10.1109/ICSCC.2019.8843652
https://www.baeldung.com/cs/convolutional-layer-size
https://www.geeksforgeeks.org/cnn-introduction-to-padding/
https://www.geeksforgeeks.org/cnn-introduction-to-padding/
https://paperswithcode.com/method/max-pooling
https://www.oreilly.com/library/view/tensorflow-for-deep/9781491980446/ch04.html
https://www.oreilly.com/library/view/tensorflow-for-deep/9781491980446/ch04.html
https://www.kaggle.com/datasets/puneet6060/intel-image-classification
https://www.kaggle.com/datasets/puneet6060/intel-image-classification
https://www.TensorFlow.org/datasets/catalog/tf_flowers
https://www.TensorFlow.org/datasets/catalog/tf_flowers
https://www.kaggle.com/c/dogs-vs-cats
https://www.ncbi.nlm.nih.gov/pubmed/34145766
https://doi.org/10.1111/1754-9485.13261

	New model for low-end computers: ResNet and VGG-16
	INTRODUCTION
	PROBLEM STATEMENTS
	Batch normalization
	Vanishing gradient

	PROPOSED MODEL
	Proposed Model Architecture
	Residual Network
	Network Parameters
	Convolutional Neural Network Layers
	Convolutional Layer
	Pooling Layer
	Fully Connected Layer
	Softmax function

	DATASET
	EXPERIMENTAL RESULTS
	Training

	Results
	DISCUSSION
	CONCLUSION
	LIST OF ABBREVIATIONS
	ACKNOWLEDGEMENT
	CONFLICT OF INTEREST
	AUTHOR'S CONTRIBUTIONS
	References

