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ABSTRACT
Cancer stem cells (CSCs) are considered the origin of tumors and cancer. Recently, CSCs have been
described as the cause of multidrug resistance (MDR) in almost all cancers. The MDR phenotype of
CSCs manifests as the upregulation of ATP-binding cassette subfamily G, isoform 2 protein (ABCG2)
in the cell membranes of CSCs. However, recent studies have demonstrated a relationship be-
tweenMDR and the autophagy process of CSCs. Based on publications indexed in PubMed, Google
Scholar, and Scopus, this review summarizes the relationship between autophagy andMDR in CSCs
and the approaches to targeting autophagy to reduceMDR in CSCs. Autophagy can be considered
a new target to overcome MDR in cancer treatment.
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INTRODUCTION
In recent years, cancer stem cells (CSCs) have been
identified as the main cause of tumor initiation,
growth, metastasis, and recurrence1–5. Therapies
aimed at targeting and eliminating CSCs have been
developed 6–11; however, the effect of these thera-
pies remains controversial12. To address these in-
consistencies, certain research fields have been pro-
moted to elucidate the characteristics and capabilities
of CSCs 13,14.
One of the research directions of interest is the resis-
tance of CSCs to therapeutic agents, especially their
resistance to chemotherapy15,16. Multidrug resis-
tance (MDR) of CSCs involves the autophagy pro-
cess, which responds to stress conditions and main-
tains cell survival. Research has demonstrated that
autophagy plays a pivotal role in the chemoresistance
of various cancer cell lines17–23.
However, observations of the correlation between au-
tophagy and MDR in CSCs are limited. Therefore,
this review aims to provide reliable evidence for eluci-
dating the close relationship between autophagy and
MDR in CSCs and suggests a promising therapy to
combine chemotherapy with autophagy regulation.

CANCER STEM CELLS
History of CSCs
The history of CSCs began in the first half of the 19th

century and has undergone many stages of develop-
ment over nearly two centuries to the present day24.
In the 19th century, Johannes Muller described can-
cer as an abnormal proliferation of “embryonic cells”

that were residual and unused during development25.
This idea was consolidated in the theory of cancer ori-
gin from “embryonal cell rests” that was pioneered by
his pupils, Rudolf Virchow and Julius Cohnheim26.
Based on this theory, a model of tumor initiation
from a small group of undifferentiated cells gradually
emerged.
However, it was not until the middle of the
20thcentury that evidence of stem cells in cancer be-
gan to receive attention from scientists. In the 1950s,
Leroy Stevens and Clarence C. Little demonstrated
that both teratomas and teratocarcinomas were
generated from highly undifferentiated cells, which
were subsequently called “pluripotent embryonic
stem cells”25,27. In 1961, Southam and Brunschwig
demonstrated that only a minority population of
cancer cells derived from patients had tumorigenic
capacity when autotransplanted to different sites6,28.
In 1963, Bruce et al. emphasized the pivotal role of a
small group of lymphoma cells in tumor initiation29.
In 1964, Kleinsmith and Pierce further demonstrated
that embryonal carcinoma (EC) cells isolated from
cancer tissue had diverse differentiation potentials27.
In 1971, Pierce published evidence that differentiated
cancer cells could not form tumors when injected
into experimental mice30. The results indicated that
tumor initiation and development were facilitated by
a small group of undifferentiated cancer cells that
were highly proliferative and had multidifferentiation
potential. This was the foundational basis of the
concept of CSCs.
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In the 1990s, studies on human acute myeloid
leukemia (AML) cells by Lapidot (1994) and Bon-
net and Dick (1997) indicated that only a subpop-
ulation of cells expressing specific surface markers
CD34+/CD38− acted as the initiating cells in tu-
mors14,30. Through this evidence, CSCs were of-
ficially identified and isolated from the cancer cell
population. Subsequent studies showed that tumor-
initiating cells, also known as CSCs, are characterized
by distinct markers for different cancer tissues14. To
date, numerous CSCs have been isolated and enriched
due to their specific cell markers. An increasing num-
ber of studies have targetedCSCs to improve the effect
of cancer therapies.

Characteristics of CSCs
Based on the results of existing studies, previous re-
ports have proposed the characteristics of CSCs that
contribute to their role in tumor initiation, survival,
and development. These include (1) tumorigenesis
capability, (2) self-renewal and differentiation into
multiple cell lines, (3) expression of specific markers
for isolation, (4) maintenance of a “stemness prop-
erty” after more transplanted generations, and (5) re-
sistance to conventional therapies31–33.
The tumor-forming ability of CSCs involves their cell
origin. CSCs originate from normal stem cells or
progenitor cells acquiring “stem cell attributes”34–37.
By stimulating the microenvironment, these cells
undergo uncontrolled proliferation and transform
into CSCs38,39. Therefore, CSCs are inherited, self-
renewing, multilineage-differentiated stem cells that
are capable of driving tumor development. Similar
to normal stem cells, the self-renewal capability of
CSCs is regulated by specific signaling pathways, such
as the Wnt/β -catenin, Notch, and Hedgehog path-
ways40–43. In addition, the other pathways of tu-
mor suppressor genes, represented by phosphatase
and tensin homolog on chromosome 10 (PTEN) and
tumor protein p53 (TP53), contribute to both self-
renewal and tumor initiation in CSCs 44. Further-
more, the self-renewal and multidifferentiation po-
tential of CSCs results in a hierarchy population of
cancer cells that explains the existence of heteroge-
neous tumors45,46. The self-renewal characteristic of
CSCs is the main basis for maintenance of their tu-
morigenesis potential during serial transplantations
in subsequent mouse generations. Currently, the
transplantation assay is used to identify the hallmarks
of CSCs 47–51.
Another characteristic of CSCs is the expression
of specific markers (i.e., cell membrane receptor

proteins) on the cell surface. The difference in
cell surface markers between CSCs and other
tumor cells suggests a method for isolating CSCs
from the cancer cell population52–55. CSCs that
are isolated from different tissues express groups
of distinctive molecular markers31,33, such as
CD44+/CD24+/ESA+in pancreatic CSCs 56,57,
ESA+/CD44+/CD24−/Lin−in breast CSCs 58, and
CD133+/α2β1 and integrin/CD44+markers in
prostate CSCs 59. Due to the specificity of these
markers in CSCs, they have been proposed as
potential targets for cancer therapies60.
Although targetingCSCs seems promising to improve
tumor treatment efficiency, it encounters an inher-
ent problem that involves the resistance of CSCs to
a majority of commonly used treatments. In gen-
eral, the anti-therapymechanisms ofCSCs are divided
into two types of resistance: acquired and intrinsic61.
Acquired resistance is based on the response of the
CSCs to therapeutic agents. Radiotherapy not only
stimulates the DNA damage checkpoint and activates
the DNA-repair systems of CSCs 62, but it also ac-
tivates the defense mechanism against reactive oxy-
gen species (ROS)63. In contrast, chemotherapy is
both influenced by acquired resistance, like radiother-
apy, and affected by the intrinsic resistance of CSCs
through processes such as quiescence (or dormancy),
self-renewal, transformation between cell phenotypes
(or plasticity), and the expression of drug transporters
and detoxification proteins. In addition, the an-
titherapeutic activity of CSCs is supported by interac-
tion between the tumor microenvironment and CSCs
to generate resistance through signaling pathways64.
Understanding of the mechanisms of CSC resistance
paves the way for novel cancer treatment strategies
that focus on inhibiting thesemechanisms and revers-
ing the sensitivity of CSCs to therapeutic agents65.

MULTIDRUG RESISTANCE OF CSCS
Antichemotherapeutic activity of CSCs
One of the most popular cancer therapies is
chemotherapy. Numerous drugs that are efficient in
inducing cell death have been used to treat a variety
of cancers66,67. MDR is defined as the “simultaneous
resistance of cancer cells toward a broad spectrum
of structurally unrelated cytotoxic drugs that have
different modes of action”68. There are two types
of chemoresistance in tumors: primary (or de novo)
resistance and acquired resistance, which can be
observed in ovarian cancer69, glioblastoma68,70,71,
pancreatic cancer72, breast cancer73, neuroblastoma,
and hepatoblastoma66. Primary resistance (also
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called intrinsic resistance) confers drug resistance
via factors that are intrinsic to cancer cells in tumors,
usually due to CSC aptitude, before the adminis-
tration of chemotherapies. Acquired resistance (or
extrinsic resistance) is the acquired ability formed
by the responsiveness of cancer cells to chemother-
apy via genetic and epigenetic modifications for
detoxification68,69,74.

Mechanisms of MDR in CSCs
Recent insights into CSCs have indicated their es-
sential roles in MDR. Investigation of MDR mecha-
nisms in CSCs provides an opportunity to overcome
them75–77. MDR of CSCs is based on many cellular
activities, such as the DNA repair system, transporter
efflux pump, detoxification enzymes (aldehyde de-
hydrogenase, DNA topoisomerase, protein kinase C,
dihydrofolate reductase, glutathione and glutathione
S-transferases [GST]), EMT, autophagy, oncogenes
(EGFR, PI3K/AKT, ERK, and NF-кB), microRNAs,
tumor suppressor genes (e.g., p53), and B-cell lym-
phoma 2 (Bcl-2). In addition, microenvironmental
conditions, such as hypoxia, pH, and paracrine sig-
nals, affect the drug-resistance capacity of CSCs 78–83.
Protein activity plays a role in the form of efflux
pumps that excrete a broad range of chemothera-
peutic drugs (e.g., doxorubicin [DOX], cisplatin, 5-
fluorouracil [5-FU], colchicine, methotrexate, etopo-
side) out of CSCs, thereby preventing their cytotoxi-
city and supporting the chemoresistance of CSCs 82.
A main protein family for this task is ATP-binding
cassette (ABC) transporters. Their crucial function is
to transport a variety of substances, such as peptides,
inorganic anions, amino acids, polysaccharides, pro-
teins, vitamins, and metal ions. In CSCs, they func-
tion as a system to efflux toxins. ABC transporters
are divided into seven subfamilies with 49 members,
named ABC-A to ABC-G. An ABC protein has four
domains: two nucleotide-binding domains (NBDs)
and two transmembrane domains (TMDs)84. The ex-
pression of ABC transporters is affected by the signal-
ing pathway, and energy from the hydrolyzation of a
pair of ATP molecules that bind to transporters can
drive the active transport of drugs and/or other sub-
stances out of cells85.
DNA repair systems that help to detect and repair
mismatches on DNA strands are another important
MDR mechanism in CSCs 86. In general, DNA dam-
age induced by both intra- and extracellular fac-
tors (e.g. , endogenous ROS, ultraviolet radiation,
X- and gamma rays, plant toxins, mutagenic chemi-
cals, and chemotherapeutic agents)80 activates a re-
sponse network. First, DNA errors are identified

by sensor complexes, including Mre11-Rad50-Nbs1
(MRN), which recognize DNA double-strand breaks
(DSBs), while the RPA-ATRIP complex recognizes
single-strand breaks (SSBs). Then, the repair systems
restore DNA damage via six mechanisms: (1) the di-
rect reversal pathway (MGMT, ABH2, ABH3), (2) the
mismatch repair (MMR) pathway, (3) the nucleotide
excision repair (NER) pathway, (4) the base excision
repair (BER) pathway, (5) the homologous recombi-
nation (HR) pathway, and (6) the nonhomologous
end-joining (NHEJ) pathway87,88.
Despite the activation of DNA repair systems, drugs
still cause extensive damage. To survive, CSCs may
prevent apoptosis by promoting the action of the Bcl-
2 protein family, such as Bcl2-associated-X-protein
(Bax), Bcl-2 homologous antagonist killer (Bak),
B-cell lymphoma-extra small (Bcl-XS), and anti-
apoptosis proteins, such as Bcl-2, B-cell lymphoma-
extra-large (Bcl-XL), and myeloid cell leukemia 1
(Mcl-1)79,89. Under normal circumstances, apop-
tosis is induced by proapoptotic proteins via stimu-
lation of apoptogenic proteins, such as cytochrome
c produced by mitochondria. However, proapop-
totic proteins are associated with antiapoptotic pro-
teins that reduce their activity and interfere with cel-
lular apoptosis90. The Bcl-2 protein family entirely
restricts a variety of drugs: dexamethasone, cyto-
sine arabinoside (Ara-C), methotrexate, cyclophos-
phamide, adriamycin, daunomycin, S-fluoro-deoxy-
uridine, 2-chlorodeoxyadenosine, fludarabine, pacli-
taxel (Taxol), etoposide (VP-16), camptothecin, ni-
trogen mustards, mitoxantrone, cisplatin, vincristine,
and some retinoids. Although these drugs affect dif-
ferent pathways, antiapoptotic Bcl-2 and its family
members impede the effectiveness of drugs by inhibit-
ing signals inducing cell death. Therefore, even if toxic
molecules can penetrate the cell and destroy the DNA
structure, cancer cells still survive and are able to pre-
vent the effects of the drugs, repair DNA damage, and
proliferate91.
Another MDR mechanism of CSCs involves a
group of enzymes that are essential components in
metabolism pathways: drug metabolism enzymes
(DMEs). There are two phases of DMEs distinguished
by two basic but distinct reactions. Phase I enzymes
or metabolism enzymes comprise cytochrome P450
enzymes (CYPs), oxidoreductases, and epoxide hy-
drolases that oxidize appropriate substrates, namely
therapeutic drugs. This oxidation alters the substrates
to form favorable molecular structures for activat-
ing enzymes in phase II. Subsequently, phase II en-
zymes or transferase enzymes, such as GSTs, UDP
glucuronosyltransferases (UGTs), sulfotransferases,
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and arylamine N-acetyltransferases (NATs), conju-
gate definite complexes to targeted substrates to cre-
ate nontoxic compounds88,92–94. For example, UGTs
have been demonstrated to transfer the glucuronic
acid component of UDP-glucuronic acid to anthra-
cycline (daunorubicin), which correlates with a re-
duction in daunorubicin cytotoxicity 95. Finally, these
compounds are pumped out of cells via ABC trans-
porters88.
The conditions of the microenvironment, such as hy-
poxia or low pH, also contribute to hindering drug
efficacy. Under hypoxic conditions, the low oxygen
concentration reduces the cytotoxicity of chemother-
apeutic drugs due to their oxidation requirement to
transform into cytotoxic structures 88. In addition,
the hypoxia-inducible factors (HIFs) produced in re-
sponse to hypoxia induce the expression of ABC
transporters78. Furthermore, hypoxic conditions fa-
cilitate intracellular accumulation of lactic acid via
the glycolysis pathway. Therefore, cancer cells induce
proton pumps to efflux H+ions into the extracellular
space and promote acidification of the microenviron-
ment. The high concentration of extracellular H+ions
causes “ion trapping,” ionizing weak bases to become
positively-charged complexes. Because of the ion
trapping phenomenon, the cell permeability ofweakly
basic chemotherapeutic agents (e.g., DOX, mitox-
antrone, vincristine, anthracyclines, anthraquinones,
vinca alkaloids) is decreased, and the effects of the
drugs are impaired96,97. Other components of the
tumor microenvironment, including the extracellu-
lar matrix (ECM), matrix rigidity, hypervasculariza-
tion, and paracrine factors, mediate chemoresistance
by controlling drug availability, stimulating EMT, and
promoting oncogenic signaling pathways.

AUTOPHAGYOF CSCS
Discovery and definition
Autophagy is a combination of two words that orig-
inate from Greek: “auto” means self, while “phagy”
means eating, so autophagy means “self-eating”98.
This process was discovered many years ago. In 1859,
this term was first introduced under the name “au-
tophagie” in a magazine published by the French
Academy of Science and was used by physiologist M.
Anselmier99. In 1963, Christian de Duve was the first
to use the term autophagy in accordance with its cur-
rent functional definition: a process by which cellu-
lar materials are taken to and decomposed in lyso-
somes (in animals) or vacuoles (in plants, yeasts)100.
To date, 42 autophagy-related genes (ATGs) respon-
sible for autophagosome formation and autophagy

regulation have been identified 101. Microtubule-
associated protein 1 light chain 3 (LC3), which is the
main autophagy indicator in mammals, was identi-
fied by Kabeya et al. 102. Beclin 1 was reported to play
dual roles as an autophagy inducer when it binds to
phosphatidylinositol 3-kinase103 and as a tumor sup-
pressor due to its mediation of E-cadherin localiza-
tion104,105.
In summary, many previous reports have indi-
cated that autophagy is an important cellular process
through which different cytoplasmic components are
broken down and recycled via lysosomal degrada-
tion106. This process is often activated in response to a
shortage of nutrients, leading to regeneration of other
organelles and substances to provide essential precur-
sors for metabolic activity107.

In vitro and in vivomechanisms
There are three main types of autophagy: macroau-
tophagy, microautophagy, and chaperone-mediated
autophagy (CMA) 100. Macroautophagy (hereafter
termed “autophagy”) is the most studied form.
Macroautophagy mainly involves the degradation of
long-lived proteins via lysosomes108, especially faulty
proteins in specific diseases, such as huntingtin (in
Huntington’s disease109), a-synuclein (in Parkinson’s
disease110), or fibrinogen g-chain (in hypofibrino-
genemia111). After receiving a stress signal, macroau-
tophagy begins in the cytoplasm with the formation
of a double-membrane-bound structure called an au-
tophagosome112. Autophagosomes then fuse with
lysosomes to form autolysosomes, where their cyto-
plasmic contents are degraded by hydrolases and sent
back to the cytoplasm as recyclingmaterial for cellular
metabolism112. In microautophagy, the membranes
of lysosomes or vacuoles are randomly invaded and
differentiate into autophagic tubes enclosing cytoso-
lic components113, which are then degraded by hy-
drolases100.
The two phenomenamentioned abovewere described
by Duve and Wattiaux in rats in 1966 113. Fifteen
years later, CMAwas first described in human fibrob-
lasts cultured in medium without serum containing
growth factors114. The CMA process begins when
degraded proteins are recognized by cytosolic chap-
erone complexes and brought to the surface of lyso-
somes. At the lysosomal membrane, after binding to
specific molecules, the proteins are translocated into
the lumens of lysosomes, where they are completely
degraded115. CMA is known to be activated as part
of the amino acid response during prolonged nutri-
tional starvation116.
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Recently discovered types of autophagy with roles
in specific organelles are being studied to elucidate
their mechanisms and functions. Typical exam-
ples include mitophagy (mediating mitochondria re-
moval) 117, ribophagy (degradation system for ribo-
somes)118, xenophagy 119, and lipophagy (connection
between autophagy and lipid metabolism)120.

RELATIONSHIP BETWEEN
AUTOPHAGY ANDMDR IN CSCS
Autophagy contributes toMDR in CSCs
The contribution of autophagy to MDR development
in CSC lines has been investigated for many years.
An underlying mechanism of autophagy-stimulated
MDR in CSCs has also been gradually elucidated. In
2013,Wu et al. evaluated the resistance of colonCSCs,
which were isolated from the SW1222 and HCT116
cell lines via CD44+/CD24+ markers, to paclitaxel. A
cytotoxic result indicated that SW1222 stem cells were
more resistant to paclitaxel than HCT116 stem cells.
A further experiment on signaling pathways demon-
strated that Cdx1 stimulated autophagy activation by
increasing Bcl-2 and LC3-II levels in SW1222 stem
cells. In addition, silencing Cdx1 expression with siR-
NAs or inhibiting autophagy with the lysosomal in-
hibitor bafilomycinA250 (BafA) caused SW1222 stem
cells to becomemore sensitive to paclitaxel. However,
HCT116 stem cells do not express Cdx1 but express
p53, which induces apoptosis due to increased expres-
sion of the Bax protein. Reviving the expression of
Cdx1 in HCT116 stem cells promotes autophagy, sig-
nificantly restricting apoptosis in these cells121. In
conclusion, Cdx1-induced autophagy based on the
Cdx1-Bcl-2-LC3-II signaling pathway plays a pivotal
role in the resistance of colon CSCs to paclitaxel.
Another study on colorectal cancer (CRC) was pub-
lished by Yang et al. in 2015. The role of autophagy in
chemoresistance was investigated in both CRC cells
and CSCs. In the CRC cell lines SW620 and SW480,
autophagy is induced by oxaliplatin; otherwise, the
hypoxia/starving (H/S) environment enhances au-
tophagy activation in CRC cells. The results indi-
cated that autophagy reduced cell death by inhibiting
oxaliplatin-induced apoptosis in CRC cells cultured
in an H/S environment. In addition, treatment with
oxaliplatin was demonstrated to enrich CD44+ CRC
cells, especially when they were cultured in an H/S
environment. In further investigations, the enriched
CD44+ CRC cells were sorted to obtain CSCs based
on CD44, which is a characteristic surface marker for
colon cancer CSCs. CSCs (CD44+ cells) and CD44−

cells were exposed to oxaliplatin. The data indicated

that autophagy enhanced by theH/S environment im-
proved the survival proportion of CD44+ cells, which
was higher than that of CD44− cells. In contrast, the
presence of 3-methyladenine (3-MA) prevented au-
tophagy activation so that the survival of both cell
groups was not significantly different122. Therefore,
autophagy stimulated by stress conditions functions
to inhibit the oxaliplatin effect and promotes the sur-
vival of colorectal CSCs.
In another study, Yue You et al. demonstrated that au-
tophagy regulated by BCRA1 enhanced the drug re-
sistance of ovarian CSCs to cisplatin. BCRA1 is a tu-
mor suppressor gene that contributes to multiple cell
processes in cancerous tissues, especially drug resis-
tance. The results revealed that SKOV3 cells, an ovar-
ian cancer cell line, inhibited increased expression of
both autophagy proteins and BCRA1. SKOV3 cells
were isolated from epithelial ovarian cancer stem cells
(EOCSCs) via CD133. Comparison of EOCSCs and
parental cells revealed that EOCSCs had higher acti-
vation of autophagy and BCRA1 than SKOV3 cells,
which had a greater effect on stemness and drug re-
sistance. Furthermore, transfection of the BCRA1
plasmid into EOCSCs resulted in overexpression of
BCRA1 and upregulation of Beclin-1, ATG5, P-gp,
and ABCG2. The increase in the LC3-II/I ratio con-
firmed the regulation of autophagy by BCRA1. Fur-
thermore, knocking down BCRA1 and inhibiting au-
tophagy sensitized EOCSCs to cisplatin due to in-
creased apoptosis and interference with the cell cy-
cle. In addition, treatment with torkinib stimulated
autophagy and attenuated cell cycle arrest in EOC-
SCs with BRCA1 knockdown123. The results indi-
cate crosstalk between BCRA1 and autophagy that al-
lows BCRA1 to increase cisplatin resistance in EOC-
SCs through autophagy.
A recent report by Li et al. suggested a relation-
ship between autophagy and chemoresistance in gas-
tric CSCs. Stem cells were isolated from the gastric
cancer cell lines MGC-803 and MKN-45 using CD54
and CD44 markers. The LC3-II proportion was en-
hanced in CD44+/CD54+ gastric cells to induce in-
creased activity of autophagy in these cells compared
with the original cancer cells. Treatment of gastric
CSCs with a combination of chloroquine (CQ) and 5-
FU revealed that autophagy inhibition increased the
chemosensitivity of gastric CSCs. Furthermore, sup-
pressing the Notch signaling pathway enhanced cell
death in chemotherapy-treated gastric CSCs. This re-
sult indicated an association of the Notch signaling
pathway with autophagy-mediated chemoresistance
in gastric CSCs124. This evidence indicates the ef-
fect of autophagy on chemoresistance in gastric CSCs
based on the Notch signaling pathway.
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The described studies investigated the effective mech-
anisms of autophagy through signaling pathways to
regulate MDR in CSCs from different tissues. These
results consolidate an essential contribution of au-
tophagy to chemoresistance in CSCs.

Autophagy facilitates reversal of MDR in
CSCs
Autophagy has been declared a “double-edged
sword”125,126. In brief, this process not only plays
a pro-survival role to protecting cancer cells from
therapeutic drugs, but it also kills resistant cells by
stimulating programmed cell death and facilitating
MDR reversal 23. Although the mechanism of
autophagy-mediated cell death in cancer cells, espe-
cially CSCs, is unclear, some evidence indicates that
autophagy can induce cell death of MDR cells127–129

or promote apoptotic signaling pathways23.
Some studies on rottlerin, a plant-derived chemo-
preventive agent isolated from Mallotus philippen-
sis 130,131, reported that autophagy induced by rott-
lerin is followed by induction of apoptosis132. CSCs
treated with rottlerin exhibited enhanced conver-
sion of LC3-I to LC3-II, which is a hallmark of au-
tophagy 131. In addition, rottlerin increased the ex-
pression of Atg7 and Beclin-1 in pancreatic CSCs 132,
Atg12 in breast CSCs130, and other genes in prostate
CSCs131, which accumulated during autophagy pro-
cessing. In contrast, silencing of the Atg7 and
Beclin-1 genes led to the inhibition of rottlerin-
induced autophagy132. Furthermore, rottlerin-
treated CSCs suppressed the phosphorylation of the
PI3K/AKT/MTOR signaling pathway, which is asso-
ciated with the maintenance of CSCs 133, decreased
expression of anti-apoptosis proteins, such as Bcl-2,
Bcl-XL, XIAP, and cIAP-1, induction of Bax, activa-
tion of caspase-3 and -9, and concomitant degrada-
tion of poly (ADP-ribose) polymerase (PARP). These
results confirmed the correlation between rottlerin
treatment and apoptosis induction. Moreover, there
are also data indicating that the inhibition of au-
tophagy by 3-MA and bafilomycinmay arrest apopto-
sis130. In summary, rottlerin-induced autophagy me-
diates apoptosis in CSCs from different tumors via in-
hibition of the PI3K/AKT/mTOR signaling pathway.
Another report in MDR human A549 lung cancer
cells by Kaewpiboon et al. demonstrated that fer-
oniellin A (FERO) reduces the expression of NF-κB,
which correlates with MDR reversal and leads to sen-
sitization to apoptosis via downregulation of P-gp.
In addition, FERO enhances the conversion of LC3-
I to LC3-II and induces autophagy, and the activation

of autophagy by rapamycin increases FERO-induced
apoptosis. This evidence suggests that FERO-induced
autophagy functions as amediating factor in reversing
MDR and facilitating apoptosis inMDR human A549
lung cancer cells134. Furthermore, Xu et al. reported
that cryptotanshinone (CTS), an active quinoid diter-
pene isolated from Salvia miltiorrhiza Bunge, induces
autophagic cell death inMRDcolon cancer cells based
on activation of the ROS-p38/MAPK/NF-kB signal-
ing pathway135.
These studies provide evidence that autophagy in-
duced by the identified substances can stimulate pro-
grammed cell death and MDR reversal in both CSCs
and MDR cancer cell lines in some cases.

Autophagy is a potential target to over-
come theMDR of CSCs
According to the previously mentioned studies, au-
tophagy and MDR in CSCs have an intimate rela-
tionship. Therefore, autophagy has become a poten-
tial target to overcome the MDR of CSCs in the last
decade. A report by Pagotto et al. indicated that in-
hibiting autophagy using CQ or CRISPR/Cas9 ATG5
knockout reduced both chemoresistance in vitro and
tumorigenicity in vivo in human ovarian CSCs136.
Another study demonstrated that autophagy suppres-
sion by CQ in CSCs promoted chemosensitivity to
cisplatin in non-small cell lung carcinoma137. A re-
port on colon CSCs showed that microRNAs could be
utilized to disrupt autophagy to promote apoptosis,
overcome MDR, and decrease the tumorigenicity of
CSCs138. Furthermore, Liao et al. demonstrated that
autophagy blockade by Ai Du Qing formula, a tra-
ditional Chinese medicine, attenuated the GRP78/β -
Catenin/ABCG2 signaling pathway and stimulated
the chemosensitivity of breast CSCs139. In the same
case, Sun et al. demonstrated that the combination of
inhibiting autophagy and chemotherapy by nanopar-
ticles loaded with CQ, DOX, and docetaxel (DTXL)
increased the effect of the drug on breast CSCs140.
Bousquet et al. investigated whether inhibition of
the autophagic pathway of breast CSCs reverses the
chemoresistance of these cells in pretreatment biop-
sies of triple negative breast cancer patients141. Other
studies have provided additional evidence that au-
tophagy inhibition leads to sensitization of cancer
cells to drugs, apoptosis induction, and decreased re-
sistance in MDR cancer cells (Table 1).

CONCLUSION
Evidence from scientific reports reveals an intimate
correlation between MDR and autophagy in CSCs.
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Table 1: Overcoming chemo-resistance of CSCs andmulti-drug resistant cells by targeting to autophagy

Type of cancer cell Inhibitor of au-
tophagy

Result Reference

Ovarian CSCs Chloroquine or
CRISPR/Cas9 ATG5
knockout

Reducing chemo-resistance and tumori-
genic potential

136

Non-small cell lung CSCs Chloroquine Suppressing tumor
growth

137

Colorectal CSCs miR-140 / miR-502 Decreasing tumorgenicity in vivo 138

Breast CSCs Ai Du Qing Formula Chemo-sensitizating 139

Breast CSCs Chloroquine Promoting the efficacy of chemothera-
peutics

140

Breast CSCs Chloroquine Reversing
chemo-resistance

141

Multidrug resistant colorectal
cancer cells

Vitexin Inducing apoptosis 142

Multidrug resistant v-Ha-ras-
transformed NIH 3T3 cells
(Ras-NIH 3T3/Mdr cells)

PP2 (4-amino-5-(4-
chlorophenyl)-7-(t-
butyl) pyrazolo[3,4-
d] pyrimidine)

Modulating autophagy lead to
inhibition of growth in Ras-NIH
3T3/Mdr cells

143

Multidrug resistant breast cancer
cells

Curcumin Re-sensitizing to cisplatin 144

Multidrug resistant gastric can-
cer cells

MicroRNA-495-3p Modulating autophagy to inhibits mul-
tidrug resistance

145

Multidrug resistant gastric can-
cer cells

miR-30 Modulating cell autophagy to decrease
multidrug resistance

146

The elucidation of this relationship will pave the way
to understanding the anti-therapeutic mechanism of
tumors, thereby contributing to resolving challenges
in current cancer treatment.
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