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ABSTRACT
Feynman rules for self-couplings of the gauge bosons in the general 3-4-1 model based on the
gauge group SU(3)c⊗SU(4)L⊗U(1)X will be presented in this work. The results are checked to
be consistent with previous works. The results also confirm important relations between different
triple and quartic gauge couplings assumed previously for constructing general one-loop contri-
butions to physical processes searched by experiments.
Key words: cLFV, 341, ISS

INTRODUCTION
The self-couplings of the gauge bosons always appear
in the non-abelian field theories such as the standard
model (SM) and models beyond the SM (BSM) and
give contributions tomany physical processes. In par-
ticular, this coupling kind gives the key contributions
to loop-induced decay of the SM-like Higgs boson h
→ γγ observed by experiments. In BSMthe new self-
couplings of gauge bosonsmay give significant contri-
butions to this decay as well as many other processes
which are being searched for experiments such as h
→ Zγ 1, h→ f

_
f γ 2. These cubic and quartic coupling

types in 3-3-1 models were discussed in many previ-
ous works3–5. In this work, we will introduce them in
the 3-4-1 models in the general form (G341) reported
in Ref.6. All other particular 3-4-1 models discussed
previously7–11 can be derived from this general form.
Deviations from some of these couplings with the SM
predictions were searched experimentally at LEP 12.
They may be used to constrain the SU(4)L scale if
the future experimental sensitivities are good enough.
Experimental searches are also being paid attention
at LHC13. They will be also interesting objects for
planned experiments such as CLIC14, LHeC, and the
FCC-he15,16. Our results of gauge-boson couplings
will be used to calculate the one-loop contributions
predicted by the G341model to various loop-induced
decays relating to experiments such as h → γγ , Zγ ,
f
_
f γ .

THEMODEL AND PHYSICAL
SPECTRUM
Wewill base on themodel with the electric charge op-
erator defined as follows6:

Q̂ = T3 +bT8 + cT15 +X , (1)

where the coefficient in front of T3 equaling to 1, is
chosen to ensure that the SM group is a subgroup of
the model under consideration: SU(2)L ⊗ U(1)Y ⊂
SU(4)L ⊗U(1)X . The covariant derivative of the elec-
troweak group SU(4)L × U(1)X is:

Dµ = ∂µ − ig∑15
a=1 Waµ Ta − igX XB

′′
µ T16, (2)

where g, gX and Waµ , Bµ ′′ are gauge couplings and
fields of the gauge groups SU(4)L and U(1)X , respec-
tively. For any quadruplets being the fundamental
representation (rep.) of the SU(4)L group, the explicit
formulas of the Ta = λ a/2 is constructed following
Ref.17

as the expansions of the Pauli matrices, and T16 =
1/2λ 16 = 1

2
√

2
diag(1, 1, 1, 1). All of thesematrices

satisfy the condition that Tr
[

λa
2

λb
2

]
= δab

2 . Conse-
quently, all structure constants of the SU(4) group are
derived as fabc = -2iTr ([Ta, Tb]Tc) with Ta = λ a/2.
The non-zero values of fabc with 1 ≤ a < b < c ≤ 15
are:
f123 = 1, f147 = -f156 = f19(12) = -f1(10)(11) = 12,
f246 = f257 = f29(11) = f2(10)(12) = 12, f345 = -f367

= f39(10) = -f3(11)(12) = 12, f458 =
√

3
2 , f49(14) = -

f4(10)(13) = 12, f59(13) = f5(10)(14) = 12, f678 =
√

3
2 ,

f6(11)(14) = -f6(12)(13) = -12, f7(11)(13) = f7(12)(14) = 12,
f89(10) = f8(11)(12) = 1

2
√

3
, f8(13)(14) = -13, f9(10)(15) =

f(11)(12)(15) = f(13)(14)(15) =
√

2
3 . (3)

Other fabc values are derived from the total antisym-
metric property:
fabc = fcab = fbca = -facb = -fbac = -fcba.
In this work, the left-chiral leptons are chosen as three
quadruplets, namely

La =
(

va,ea,E
−q1
a ,a ,E

−q2
a

)T

L
∼ (1,4,XL) ,

a = e,µ,τ,
(4)
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where -q1 and -q2 are electric charges of the extra lep-
tons Ea and E

′
a. The electric chargeoperator in (1) is

written in terms of the electric charges of lepton in Eq.
(4) as follows

b =
2q1 −1√

3
, c =

3q2 −q1 −1√
6

,

XL =−q1 +q2 +1
4

.
(5)

The right-handed leptons are arranged as SU(4)L sin-
glets: eaR ∼ (1, 1, -1), EaR ∼ (1, 1, -q1), and EaR

′ ∼
(1, 1, -q2). To cancel gauge anomalies, the three quark
generationsmust be arranged as one anti-quadruplets
and two quadruplets. This property is beyondthe
scope of this work.
To generate the quark and lepton masses, four Higgs
quadruplets are needed in general. The vacuum ex-
pectation values (vev) of the neutral Higgs compo-
nents are:

⟨ϕ1⟩=
(

0,0,0, V√
2

)T
, ⟨ϕ2⟩=

(
0,0,0, ω√

2
,0
)T

,

⟨ϕ3⟩=
(

0, v√
2
,0,0

)T
, ⟨ϕ4⟩=

(
u√
2
,0,0,0

)T
. (6)

They give the followingmass and physical states of the
non-hermitian gauge bosons:

m2
W =

g2(v2+u2)
4 , m2

W13 =
g2(u2+ω2)

4 ,

m2
W23 =

g2(v2+ω2)
4 , m2

W14 =
g2(u2+V 2)

4 ,

m2
W24 =

g2(v2+V 2)
4 , m2

W34 =
g2(ω2+V 2)

4 , (7)

where Wi jµ is defined in the covariant part of the
SU(4)L fundamental rep. as follows

Wµ ≡ ∑15
i=1

λ
2 W i

µ = 1
2×

(11)
√

2W+
√

2W q13
13

√
2W q14

14√
2W− (22)

√
2W q23

23

√
2W q24

24√
2W−q13

13

√
2W−q23

23 (33)
√

2W q34
34√

2W−q14
14

√
2W−q24

24

√
2W−q34

34 (44)


(11) =

(
W3 +

W8√
3
+ W15√

6

)
µ
,

(22) =
(
−W3 +

W8√
3
+ W15√

6

)
µ
,

(33) =
(
− 2W8√

3
+ W15√

6

)
µ
, (44) =

(
− 3W15√

6

)
µ
, (8)

and

W± =
W1 ± iW2√

2
,

W±q13
13 =

W4 ± iW5√
2

, W±q23
23 =

W6 ± iW7√
2

,

W±q14
14 =

W9 ± iW10√
2

,W±q24
24 =

W11 ± iW12√
2

,

W±q34
34 =

W13 ± iW14√
2

.

(9)

We note that the electric charges of gauge bosons
given in the formula of Wµ are determined from the
electric charge operator Q̂ given in Eq. (1), where

fifteen gauge bosons are included in an adjoint rep.
of the SU(4)L group. Changing into the basis relat-
ing to fundamental rep. with generator being λa,
the action of Q̂ on the gauge multiplet is: Q̂Wµ =
[Q4Wµ , WµQ4], where Q4 = Q̂ [Ta = λ a/2] ; ∀a =_____
1, 15. The electric charge qij of a gauge boson Wi j

is
[
Q̂Wµ

]
i j
= qi jWi jµ . As a result, qi j is determined

in terms of the electric charges of the newleptons as
follows:
q12 = 1, q13 = q1, q14 = q2, q23 = q1 - 1, q24 = q2 - 1,
q34 = q2 - q1. (10)
In our calculation, we denote simply that Wi j = W qi j

i j

andW ∗
i j =W−qi j

i j with 1≤ i < j≤ 4.
As the usual previous assumption, the spontaneous
symmetry breaking follows the pattern
SU(4)L ⊗ U(1)X

V−→ SU(3)L ⊗ U(1)N
ω−→ SU(2)L ⊗

U(1)Y
u,v−−→ U(1)Q,

which is used for constructing the matching relation
of the gauge couplings and U(1) chargesof the group
SU(4)L × U(1)X and those of the SM gauge group
SU(2)L × U(1)Y , see detailsin Ref.6. We just focus
here necessary results used to determine the triple and
quarticcouplings of all gauge bosons. The following
relation should be in order: V≫ω ≫ u, v.Thematch-
ing with the gauge couplings of the SM gives:

u2 + v2 = v2
SM = 2462GeV 2, (11)

and

gt√
8+

(
b2 + c2

)
t2

= g1,

Ŷ
2
= bT 8 + cT 15 +XI4,

(12)

where g1 and Ŷ are theU(1)Y gauge coupling andU(1)
charge in the SM.The secondformula in (12) is consis-
tent with the identification of Ŷ from the definition of
the electriccharge operator given in Eq. (1). Further-
more, it can be seen that N̂ ≡ cT 15 +X and b ≡ β

√
3

are relations between parameters defined in the gauge
groups SU(4)L × U(1)X and SU(3)L × U(1)N .
From the equality g1/g = sW /cW , where g is identified
with the SU(2)L gauge couplingand s2

W = 0.231 from
experiments, we find that

t =
gx
g

=
2
√

2sW√
1−

(
1+b2 + c2

)
s2
W

, (13)

equivalently,

(q1 +q2 −1)2 +2(q2
1 +q2

2)≤ 6 (14)
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Eq. (14) results in electric charge constraints of the
new exotic leptons Ea and E

′
a, namely

−q1 −q2 −q1q2 +
3
2

(
1+q2

1 +q2
2

)
≤ 4 (15)

Eq. (15) is equivalent to (q1 + q2 − 1)2 + 2(q2
1 +

q2
2) ≤ 6, implying that |q1,2| ≤

√
3. The physical-

states of neutral gauge bosons include one massless
photon Aµ and three massive bosons Z1, Z2, and
Z3. One of them is identified with the SM predic-
tion, Z1 ≡ Z. Denoting M2

NG isthe squared mass ma-
trix of the neutral gauge bosons in the flavor basis(

W3µ ,W8µ ,W15µ ,B
′′
µ

)
, which relates to the physical

basis (Aµ , Z1µ , Z2µ , Z3µ ) through the mixing angles
defined as follows6

c43 ≡ ct√
8+c2t2 , s43 ≡ 2

√
2√

8+c2t2 ,

s32 ≡
√

8+c2t2√
8+(b2+c2)t2

, c32 ≡ bt√
8+(b2+c2)t2

,

t2α =
4
√

2s43s32(−1+c43s43bt)ω2

8s2
43ω2−s2

32[(−1+c43s43bt)2ω2+9V 2]
. (16)

Combining the formulas in Eqs. (5), (14), and (16),
the mixing angles are expressed in terms of new elec-
tric charges as follows:

c32 =

√
3−4(q2

1−q1+1)s2
W√

3cW
,

s32 =
(2q1−1)tW√

3
,

c43 =− sW (q1−3q2+1)√
6−8(q2

1−q1+1)s2
W

, (17)

s43 =√
s2
W [(3q1−1)2+(3q2−1)2−6q1q2+7]−6

8(q2
1−q1+1)s2

W−6
.

Finally, the relations between physical and flavor base
are:

W3µ=Aµ sW+ cW Z1µ
W8µ = Aµ c32cW − s32sW Z1µ
−cα s32Z2µ + s32sα Z3µ ,

W15µ = Aµ c43cW s32 − c43s32sW Z1µ
+Z2µ (c32c43cα − s43cα )

+Z3µ (−c32c43sα − s43sα ) .

(18)

The above discussion is enough to derive all Feynman
rules for self-couplings of gauge bosons in the G341
model.

FEYNMAN RULES FOR
SELF-COUPLINGS OF GAUGE
BOSONS
The self-couplings of gauge bosons are included in
the covariant kinetic term of the nonabelian gauge

bosons:

Lkin
g =−1

4

15

∑
a=1

Faµν Fµν
a ,

Faµν = ∂µWaν −∂νWaµ
+g∑15

b,c=1 f abcWbµWcν ,

a, b, c = 1,2, ...,15.

(19)

We use the convention that the couplings g has the
plus in Faµν , consistent with the formulas of Dµ

given in Eq. (2)18,19. The total antisymmetry of fabc
gives a simpler form of theLagrangian parts L3g and
L4g corresponding to the triple andquartic couplings:

Lkin
g =−1

4

15

∑
a=1

(
∂µWaν −∂νWaµ

)
×(

∂ µW ν
a −∂ νW µ

a
)
+L3g +L4g,

L3g =−g f abc (∂µW a
ν
)

W bµW cν ,

L4g =−g2

4
f abc f ab′c′W b

µW c
ν W b′µW c′ν

=−g2

4
f abc f ab′c′

(
W b.W b′

)(
W c.W c′

)
.

(20)

For simplicity, we omit the sum over all repeated in-
dices a, b, c, a′, b′, c′ = 1, 2, ..., 15. In our calculation,
other conventions will be noted if needed.
Lagrangian L3g in Eq. (20) is written in the following
form:

L3g = g∑a=3,8,15 ∑b<c[ f abc (∂µW a
v
)(

W bµW cv −W cµW bv)+
(permutation [a, b, c])]
+g∑a<b<c ̸=3,8,15[ f abc (∂µW a

v
)(

W bµW cv −W cµW bv)+
(permutation [a, b, c])],

(21)

where permutation [a, b, c] in the second sum stands
for the two remaining terms generatedby the follow-
ing permutations [a, b, c] → [b, c, a] → [c, a, b].
Here, b, c ≠ 3, 8, 15 in both sumsabove, because fabc

does not contain simultaneously two indices of neu-
tral gauge bosons. This implies that there are no triple
couplings consisting of two real neutral gauge bosons,
which is consistent with the electric charge conversa-
tion and leads to the coupling typeV 0µV qv

1 V−qλ
2 . The

first term in Eq. (21) consists of all couplings with one
neutral real gaugeboson. In contrast, all couplings
in the second term have three charged gauge bosons.
The conservation of all electric charges given in Eq.
(10) will constrain allowed couplings, namely

W−W13W ∗
23 → h.c.=W+W ∗

13W23, ... (22)
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Now, we start from the first line in Eq. (21), which is
rewritten precisely as follows:

LG0G±

3g = [
(
∂µW 3

v
)(

W 1µW 2v −W 2µW 1v)
+ (permutation)]
+[

(
∂µW 0

13v
)(

W 4µW 5v −W 5µW 4v)
+ (permutation)]
−[

(
∂µW 0

23v
)(

W 6µW 7v −W 7µW 6v)
+ (permutation)]
+[

(
∂µW 0

24v
)(

W 9µW 10v −W 10µW 9v)
+ (permutation)]
−[

(
∂µW 0

24v
)(

W 11µW 12v −W 12µW 11v)
+ (permutation)]
+[

(
∂µW 0

34v
)(

W 13µW 14v −W 14µW 13v)
+ (permutation)].

(23)

whereW 0
i j,v is the linear combinations ofW 3

v ,W 8
v , and

W 15
v , namely

W 0
12µ =W 3

µ = Aµ sW + cW Z1µ ,

W 0
13µ = 1

2

(
W 3

µ +
√

3W 8
µ

)
= Aµ q13sW

− cα k1Z2µ
2cW

+
sα k1Z3µ

2cW
+

Z1µ(1−2q13s2
W )

2cW
,

W 0
34µ = 1√

3

(
−W 8

µ +
√

2W 15
µ

)
= Aµ q34sW − s2

W Z1µ q34
cW

+
cα Z2µ(−2cW k2tα+k2

1+2k3s2
W−1)

2cW k1

− cα Z3µ(2cW k2+tα(k2
1+2k3s2

W−1))
2cW k1

,

W 0
14µ = 1

2
√

3

(√
3W 3

µ +W 8
µ +2

√
2W 15

µ

)
=W 0

13µ +W 0
34µ

= Aµ q2sW +
z1µ(1−2q14s2

W )
2cW

− cα Z2µ(2cW k2tα−2k3s2
W+1)

2cW k1

− cα Z3µ(2cW k2+tα(2k3s2
W−1))

2cW k1
,

W 0
24µ =

1
2
√

3

(√
3W 3

µ −W 8
µ −2

√
2W 15

µ

)
=W 0

23µ −W 0
34µ

= Aµ q24sW −
z1µ

(
1+2q24s2

W
)

2cW

−
cα Z2µ

(
2cW k2tα −2k3s2

W +1
)

2cW k1

−
cα Z3µ

(
2cW k2 + tα

(
2k3s2

W −1
))

2cW k1
,

(24)

and

k1 ≡
√

3−4
(
q2

1 −q1 +1
)

s2
W ,

k2 = 2− s2
W (3q2

1 −2q1 (q2 +1)
+q2 (3q2 −2)+3),
k3 ≡ 2q1q2 +1−q1 −q2.

(25)

Every gauge boson pairW b
µ andW b+1

µ with b ∈ {1, 4,
6, 9, 11, 13} given in Eq. (9) relatesto the two physical

states G±Q
µ ∼ {W±, W13, W23, W14, W24, W34} by

the same followingformulas:

W b
µ =

GQ
µ +G−Q

µ√
2

,

W b+1
µ =

i
(

G+Q
µ −G−Q

µ

)
√

2
.

(26)

Then Eq. (23) is written in the following form:

LG0G±

3g = ∑i≤ j≤4[
(

∂µW 0
i j,v

)
×(

W bµW (b+1)v −W (b+1)µW bv
)

+(permutation)],

(27)

Then, each line in Eq. (23) is written in term of the
physical states as follows:(

∂µ G0
v
)[

W bµW (b+1)v −W (b+1)µW bv
]

= i
(
∂µ G0

v
)(

−G+µ G−v +−G−µ G+v) ,
=−

(
p1G+

)(
V 0G−)+ (

p1G−)(V 0G+
)
,

G0v
[(

∂µW b
v
)

W (b+1)µ −
(
∂µW b+1

v
)

W bµ
]

= iG0v [−(
∂µ G+

v
)

G−µ +
(
∂µ G−

v
)

G+µ]
=−

(
p2G−)(V 0G+

)
+
(

p3G+
)(

V 0G−) ,
−G0µ

[(
∂µW b

v
)

W (b+1)v −
(
∂µW b+1

v
)

W bv
]

=−iG0v [−(
∂µ G+

v
)

G−v +
(
∂µ G−

v
)

G+v]
=−

(
p2V 0)(G−G+

)
−
(

p3V 0)(G+G−) ,

(28)

where we have replace the derivatives with the mo-
menta incoming vertex containing therespective field:
∂µ G0

v = −ip1µ G0
v , ∂µ G+

v = −ip2µ G+
v and ∂µ G−

v =

−ip3µ G−
v . In addition,G0 = A, Z1, Z2, Z3 belong

to the linear combinations of neutral gauge bosons.
Then, theLagrangian (23) is written in a standard
form as follows:

LG0G±

3g = ∑G0,G± (−1)×gG0,i j × τµνα (p1, p2, p3)[
G0µ (p1)W v

i j (p2)W ∗α
i j (p3)

]
,

(29)

where the factor −igG0,i j is the vertex factors of the
respective Feynman rule and

τµνα (p1, p2, p3) = gµν (p1 − p2)α
+gνα (p2 − p3)µ +gµα (p3 − p1)ν

(30)

The explicit expressions of gG0,i j is defined in Eq. (29)
are listed in the table I. They are derived from the lin-
ear combinations of neutral gauge bosons given in Eq.
(23), namely,they are exactly the factors in front of the
physical states ofW 0

i j defined in Eq. (24):

W 0
i jµ = ∑G0 gG0,i jG

0
µ = gA,i jZ1µ

+gZ2,i j Z2µ +gZ3,i j Z3µ .
(31)

We can see that the couplings of gauge boson W with
photon and Z1 are consistent with the results from
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Table 1: Feynman rules for triple gauge couplings consisting of a neutral gauge boson in thegeneral 3-4-1
model i.e., the coefficients gG0 ,i j of Eq. (29) Here G0

µ = Aµ , Zkµ with k = 1, 2, 3.

G0µW ν
i j W

∗α
i j −igG0,i j G0µW ν

i j W
∗α
i j −igG0 ,i j

AW+W− -ie AWi jW ∗
i j −ie×qi j

Z1W+W− −igcW Z1W13W ∗
13 − ig(1−2q1s2

W )
2cW

Z1W23W ∗
23

ig(1+2q23s2
W )

2cW
Z1W14W ∗

14 − ig(1−2q14s2
W )

2cW

Z1W24W ∗
24

ig(1+2q24s2
W )

2cW
Z1W34W ∗

34 − igq34s2
W

cW

Z2W13W ∗
13

igcα k1
2cW

Z2W23W ∗
23 − igcα k1

2cW

Z2W14W ∗
14

igcα(2cW k2tα−2k3s2
W +1)

2cW k1
Z2W24W ∗

24
igcα(2cW k2tα−2k3s2

W +1)
2cW k1

Z2W34W ∗
34 − igcα(−2cW k2tα+k2

1+2k3s2
W −1)

2cW k1
Z3W13W ∗

13 − gcα k1tα
2cW

Z3W23W ∗
23 − gcα k1tα

2cW
Z3W14W ∗

14
igcα(2cW k2+tα(2k3s2

W −1))
2cW k1

Z3W24W ∗
24

igcα(2cW k2+tα(2k3s2
W −1))

2cW k1
Z3W34W ∗

34
igcα(2cW k2+tα(k2

1+2k3s2
W −1))

2cW k1

SM. In addition, the photon always couples with two
identical charged gauge bosons Wij, confirming the
consequence of Ward Identity shown in Ref.20. This
form of photon couplings is also consistent with that
assumed in Ref.21 necessary for calculating one-loop
contributions of gauge bosons to lepton flavor violat-
ing (LFV) decays as well as the anomalous magnetic
moments (AMM) of charged leptons.
Now we pay attention to the triple couplings of three
non-hermitian gauge bosons given in the second line
of Eq. (21). Because the relations between the
two flavor and physical base of these gauge bosons
are generalized simply by Eq. (26), the vertex fac-
tors corresponding to the Feynman rules are (±) g

2 ×
τµνα (p1, p2, p3).
In general, Lagrangian for all triple couplings is always
written in the following form:

L3g = ∑G1,G2,G3 (−1)×g123τµνα (p1, p2, p3)[
Gµ

1 (p1)Gν
2 (p2)Gα

3 (p3)
]
,

(32)

which the Feynman rule for a coupling
Gµ

1 (p1)Gν
2 (p2)Gα

3 (p3) is the vertex factor
ig123, where g123 ≡ g0± for the vertex consisting
of a neutral gauge boson, as given in Table I. For
allnon-zero couplings between three non-hermitian
gauge bosons, the Feynman rules are listed in the
table II.
The quartic couplings is included in the following La-
grangian

L4g =−g2

4
f abc f ab′c′

(
W bW b′

)(
W cW c′

)
(33)

In the physical basis of all Gµ
1 Gν

2 Gα
3 Gβ

4 , this La-

grangian is written in the following form:

L4g ∼ Gµ
1 Gν

2 Gα
3 Gβ

4 ×Γµν ,αβ → igG1234×

Γ′

µν ,αβ = i
∂ 4L4g(

∂Gµ
1
)(

∂Gν
2
)(

∂Gα
3
)(

∂Gβ
4

) , (34)

where the last expression in Eq. (34) is the Feynman

rule for calculating vertex factors of quartic couplings.

In general, Γµν ,αβ ̸= Γ′

µν ,αβ , depending on the re-

lations between four physical states, see for example

for 3-3-1 models introduced in ref.4. Here the tensor

structures are:

Γ′

µν ,αβ → Sµν ,αβ ≡ 2gµα gνβ −gµν gαβ −gµβ gνα (35)

Applying the same step of calculations shown pre-

cisely in ref.22, the Feynman rules ofthese couplings

are divided into different classes as follows.

Firstly, all couplings consisting of only charged bosons

W µ
i j W ν

i jW
∗α
i j W ∗β

i j , . . . are writtenin the following
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Table 2: Feynman rules for triple non-hermitian gauge couplings in the G341model i.e., the coefficients g123 of
Eq. (32).

Gµ
1 Gν

2 Gα
3 -ig123 Gµ

1 Gν
2 Gα

3 -ig123

W+W ∗
13W23

ig√
2

W−W13W ∗
23 − ig√

2

W+W ∗
14W24

ig√
2

W−W14W ∗
24 − ig√

2

W13W ∗
14W34

ig√
2

W ∗
13W14W ∗

34 − ig√
2

W23W ∗
24W34

ig√
2

W ∗
23W24W ∗

34 − ig√
2

forms:

Lc
4g

g2 =
4

∑
i< j=1

[
(
Wi j.W ∗

i j
)2 −

(
Wi jWi j

)(
W ∗

i jW
∗
i j
)
]

+∑(i, j,kl)∈X [
(
Wi jWkl

)(
W ∗

i jW
∗
kl

)
−

1
2
(
(
Wi j.W ∗

i j
)
(Wkl .W

∗
kl)+

(
Wi j.W ∗

kl
)(

Wkl .W
∗
i j
)
)]

+∑(i, j,kl)∈Y [
(
Wi jW ∗

kl
)(

W ∗
i jWkl

)
−

1
2
(
(
Wi j.W ∗

i j
)
(Wkl .W

∗
kl)+

(
Wi j.Wkl

)(
W ∗

kl .W
∗
i j
)
)]

+[−1
2

W+W24W ∗
13W ∗

34 −
1
2

W24W ∗
34W+W ∗

13

+W ∗
13W24W+W ∗

34 +h.c.]

+[−1
2

W+W23W ∗
14W ∗

34 +W23W ∗
14W+W ∗

34

−1
2

W ∗
23W34W+W ∗

14 +h.c.]

+[−1
2

W13W ∗
23W ∗

14W24 −
1
2

W13W ∗
14W ∗

23W24

+W13W24W ∗
23W ∗

14 +h.c.]

(36)

whereW+ ≡W12 is the SM charged gauge boson and

X = {(12, 13), (12, 14), (13, 14), (13, 23),
(13, 14), (23, 24), (14, 24), (14, 34), (24, 34)}
Y = {(12, 23), (12, 24), (13, 34), (23, 34)}.

(37)

The respective Feynman rules for couplings given in
Eq. (36) are listed in table III. It can be seen that
the Lorentz structures have the same form as the SM
couplingW+W+W−W−. Regarding the quartic cou-
plings consisting of two neutral gauge bosons. Keep-
ing all neutral states as linear combinations W 0

i j of
W3,8,15 given in Eq. (24), we have derived that:

LG0
1,2G3,4

= ∑4
i< j=1 g2[

(
W 0

i jWi j

)(
W 0

i jW
∗
i j

)
−(

Wi jW ∗
i j

)(
W 0

i jW
0
i j

)
],

(38)

which results in the following forms in terms of the
physical states:

LG0Wi j=gG0G0 ,i j
[
(
G0G0)(Wi jW ∗

i j

)
−
(
G0Wi j

)(
G0W ∗

i j

)
]

→ G0µ G0νW α
i j W ∗β

i j , ig
G0G0 ,i j

×Sµν ,αβ (39)

and

LG0
1G0

2Wi j=gG0
1G0

2 ,i j
[2
(
G0

1G0
2
)(

Wi jW ∗
i j

)
−
(
G0

1Wi j
)(

G0
2W ∗

i j

)
−
(
G0

2Wi j
)(

G0
1W ∗

i j

)
]

→ G
0µ

1 G
0ν

2 W α
i j W ∗β

i j , ig
G0

1G0
2 ,i j

×Sµν ,αβ

(40)

where G0,G0
1 ≠ G0

2 = A with k = 1, 2, 3. The second

line in Eq. (39) or (40) shows the Feynman rules de-

rived based on Eq. (34). Using the relations of W 0
i j

given in Eq. (24), which is written generally in Eq.

(31), we can derive all formulas of gG0
1G0

2,i j , namely

gG0
1G0

2,i j ∼W 0
i jW

0
i j → gG0

1G0
2,i j =

−g2
G0

1,i j −−g2
G0

2,i j −gG0
1,i jgG0

2,i j.
(41)

As a result, all Feynman rules for gG0
1G0

2,i j of two neu-

tral gauge boson are listed in Table IV, where the

formulas of gG0,i j ≡ gG0
1,i j,gG0

2,i j are shown explic-

itly in table I. We note here some interesting results.

Firstly, the vertex factors always contain two identical

charged gauge bosons. The couplings consist of pho-

ton and only SM gauge bosons Z1, W ± are the same

as the SM forms. The relations between vertex fac-

tors AZkWi jW ∗
i j, AWi jW ∗

i j , and ZkWi jW ∗
i j have same as

those assumed in Ref.23. Therefore, the general one-

loop contributions to the decays h→ Zγ , f
_
f γ given in

Ref.23,24 are applicable in the G341 model.
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Table 3: Feynman rules for quartic charged gauge couplings with G =W,Wi j with i < j =
___
1,4. Here gG1234 and

Γ′
µν , αβ are respectively the scalar factors and Lorentz structure derived from Eq. (34) for specific couplings

appearing in Eq. (36).

Gµ
1 Gν

2 Gα
3 Gβ

4 igG1234 Γ′
µν , αβ

Wi jWi jW ∗
i jW

∗
i j ig2Sµν , αβ

Wi jW ∗
i jWklW ∗

kl , (i j,kl) ∈ X ig2

2 Sµα , νβ

Wi jW ∗
i jWklW ∗

kl , (i j,kl) ∈ Y ig2

2 Sµβ , να

W+W ∗
13W24W ∗

34, h.c. ig2

2 Sµβ , να

W+W ∗
23W14W ∗

34, h.c. ig2

2 Sµβ , να

W13W ∗
23W ∗

14W24, h.c. ig2Sµν , αβ

Table 4: Feynman rules for quartic couplings with two neutral gauge bosons in the G341modeli.e., the
coefficients gG0

1G0
2 ,i j defined in Eq. (40), whereW12µ ≡W+

µ ; 1 ≤ i < j ≤ 4; and k = 1, 2, 3.The case of G0
1 = G0

2 is
allowed here.

G0µ
1 G0ν

2 W α
i j G∗β

i j igG0
1G0

2 ,i j

AAWi jW ∗
i j −ie2q2

i j

ZkZkWi jW ∗
i j −i

(
gzk,i j

)2

AZkWi jW ∗
i j −ieqi jgzk,i j

ZkZlWi jW ∗
i j (k ̸= l) −i

(
gzk,i jgzl,i j

)

The quartic couplings containing one neutral real
bosons are:

LG0234/g2 =
1√
2
{−

√
3
(

W 8W+
)
(W23W ∗

13)

+
[(

2W 0
13 +W 0

23
)

W23
](

W+W ∗
13
)

−
[(

W 0
13 +2W 0

23
)

W ∗
13
](

W+W23
)
+h.c.}

+
1√
2
{
[(

−W 0
13 +W 0

23 −2W 0
34

)
W+

]
(W24W ∗

14)

+
[(

2W 0
13 +W 0

23 +W 0
34
)

W24
](

W+W ∗
14
)
+(

−W 0
13 −2W 0

23 +W 0
34
)

W ∗
14
(
W+W24

)
+h.c.}

+
1√
2
{−W13W34W ∗

14

(
W 0

13 +2W 0
34

)
+W34W13W ∗

14
(
2W ∗

13 +W 0
34
)

+W ∗
14W13W34

(
W 0

34 −W 0
13
)
+h.c.}

+
1√
2
{
[(

W 0
23 −2W 0

34

)
W23

]
(W ∗

24W34)

+
[(

W 0
23 −W 0

13
)

W34
](

W23W ∗
24
)
+[(

2W 0
13 +W 0

23
)

W ∗
24
]
(W23W34)+h.c.},

(42)

where W 0
i j is given in Eq. (24). Changing into the

physical states of neutral gauge bosons G0, it can be
written in the following forms:

LG0234 ∼ (a3 +a4)
(
G0G2

)
(G3G4)

+a3
(
G0G3

)
(G2G4)+a4

(
G0G4

)
(G2G3)

→ iΓµν ,αβ G0µ Gν
2 Gα

3 Gβ
4 ,

Γµν ,αβ ≡−(a3 +a4)gµν gαβ+

a3gµα gνβ +a4gµα gνβ ,

(43)

where the two factors (a3, a4) are derived from the
particular case of (G0, G2, G3, G4). For example the
first line of Eq. (42) gives (G0, G2, G3, G4) = (G0, W+,
W ∗

13, W23) then a3G0W ∗
13 ∈

[
−
(
W 0

13 +2W 0
23
)

W ∗
13
]

and a4G0W ∗
23 ∈

[(
2W 0

13 +W 0
23
)

W ∗
13
]
. The vertex fac-

tor corresponding to the Feynman rule is IΓµν ,αβ .
Values of (a3, a4) are shown in two tables V and VI
corresponding to the two classes of vertices contain-
ing SM-like and exotic neutral gauge bosons. The an-
alytic formulas of A, B, and C are:

A =

√
2+

[
2(q1q2 +q1 +q2)−3

(
q2

1 +q2
2 +1

)]
s2
W√

6−8
(
q2

1 −q1 +1
)

s2
W

B =
5−2s2

W
(
4q2

1 −2q1q2 −3q1 +q2 +3
)

cW

√
6−8

(
q2

1 −q1 +1
)

s2
W

,

C =
s2
W
(
2q2

1 +2q1q2 −3q1 −q2 +3
)
−2

cW

√
6−8

(
q2

1 −q1 +1
)

s2
W

.

(44)

We can see that the couplings relating with photons
are always proportional to the electric charges.

CONCLUSIONS
Feynman rules for all triple and quartic self-couplings
of gauge bosons in the G341 model were presented
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Table 5: Formulas of a3 and a4 defined in Eq. (43) relating to the Feynman rules for quarticgauge couplings
consisting of one neutral real SM-like gauge boson in the G341model.

G0µ Gν
2 Gα

3 Gβ
4

√
2a3

√
2a4

AW+W ∗
13W23, h.c. (q1 −2)e (q1 +1)e

Z1W+W ∗
13W23, h.c. − g[3+2(q1−2)s2

W ]
2cW

g[3−2(q1+1)s2
W ]

2cW

AW+W ∗
14W24, h.c.

√
2(q2 −2)e

√
2(q2 +1)e

Z1W+W ∗
14W24, h.c. − g[3+2(q2−2)s2

W ]√
2cW

g[3−2(q2+1)s2
W ]√

2cW

AW13W ∗
14W34, h.c.

√
2e(q2 −2q1)

√
2e(q1 +q2)

Z1W13W ∗
14W34, h.c.

g[−1+2(2q1−q2)s2
W ]√

2cW

g[1−(q1+q2)s2
W ]

cW

AW23W ∗
24W34, h.c.

√
2e(−2q1 +q2 +1)

√
2e(q1 +q2 −2)

Z1W23W ∗
24W34, h.c. s2

W [4q1−2(q2+1)+1]√
2cW

√
2[s2

W (q1+q2−2)+1]
cW

Table 6: Formulas of a3 and a4 defined in Eq. (43) relating to the Feynman rules for quarticgauge couplings
consisting of one neutral real exotic gauge boson in the G341model.

G0µ Gν
2 Gα

3 Gβ
4 , h.c.

√
2a3

√
2a4

Z2W+W ∗
13W23, h.c. −

gcα
√

3−4(q2
1−q1+1)s2

W
2cW

−
gcα

√
3−4(q2

1−q1+1)s2
W

2cW

Z3W+W ∗
13W23, h.c. −

gsα
√

3−4(q2
1−q1+1)s2

W
2cW

−
gsα

√
3−4(q2

1−q1+1)s2
W

2cW

Z2W+W ∗
14W24, h.c. − gcα [2s2

W (2q1q2−q1−q2+1)−1]

cW

√
6−8(q2

1−q1+1)s2
W

− 2esα
cW

A
√

2a3

Z3W+W ∗
14W24, h.c. − gsα [2s2

W (2q1q2−q1−q2+1)−1]

cW

√
6−8(q2

1−q1+1)s2
W

− 2esα
cW

A
√

2a3

Z2W13W ∗
14W24, h.c. gcα B−2gsα A 2gcαC−2gsα A

Z3W13W ∗
14W24, h.c. −gsα B−2gcα A −2gsαC−2gcα A

Z2W23W ∗
24W34, h.c. gcα B−2gsα A 2gcαC−2gsα A

Z3W23W ∗
24W34, h.c. −gsα B−2gcα A −2gsαC−2gcα A

precisely in this work. They will be necessary for cal-
culating many importantprocesses paid attention by
experiments such as h → γγ , Zγ , f

_
f γ ; cLFV decays

of SM-likeHiggs boson, Z boson, and charged lep-
tons. The results showed that all of the couplings
of the photon with other gauge bosons predicted by
the G341 model satisfy all relations assumed in previ-
ous works21,23,24 needed for implementing these gen-
eral one-loop formulas in theG341model framework.
The detailed investigation of these contributionswill
be discussed elsewhere.
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