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Effects of Process and Heat Source Parameters on Temperature
Evolution in Thin-wall Wire Arc Additive Manufacturing using
Explainable Deep Learning
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ABSTRACT
The wire arc additive manufacturing (WAAM) process involves a multitude of uncertain parame-
ters, making WAAM a complex system for analysis. To comprehensively investigate their effects
and conduct sensitivity studies, a parametric approach is essential. However, such an approach ne-
cessitates a substantial number of simulations, each of which is time-consuming and can last up to
a few days. In response, we construct a deep learning-based surrogate model trained on the data
created by the validated finite element (FE)method. This surrogatemodel is used to conduct sensi-
tivity analysis via the SHapley Additive exPlanations (SHAP) method. The findings indicate that the
positioning of the laser and its proximity to individual nodal points during the printing process are
crucial features in predicting temperature evolution. Additionally, using the FFNN model instead
of solely the FE model significantly reduces the computational cost (3272 times) of predicting the
temperature field. This innovative approach promises to streamline the exploration of the intri-
cate parameter space of WAAM, offering valuable insights for enhanced process optimization and
control of complex manufacturing processes.
Key words: Additive manufacturing, wire arc additive manufacturing, deep learning, SHAP
method

INTRODUCTION
In the realm of additive manufacturing (AM) pro-
cesses, wire and arc additive manufacturing (WAAM)
stands out as a versatile method capable of producing
large parts with moderate shape complexity and com-
mendable dimensional accuracy1. This technique
boasts distinct advantages over other manufacturing
processes, primarily characterized by its high deposi-
tion rate and cost-effectiveness in terms of equipment
investment2,3. However, the WAAM method intro-
duces many inherent drawbacks resulting from com-
plex thermal evolution, high heat accumulation, low
dimensional accuracy, and poor surface quality 4,5.
Therefore, it is essential to perform a thorough sensi-
tivity analysis that quantifies the variation in the input
process parameters on the final printed quality.
Currently, thermal analysis during the WAAM pro-
cess can be conducted using the high-fidelity finite el-
ement (FE) method6–8 or by analyzing thermal sig-
nals acquired by thermal sensors, such as thermocou-
ples9, pyrometers10, and IR cameras11. In addition,
achieving high-quality printed products and ensur-
ing optimal manufacturing conditions involve deal-
ing with various sources of uncertainty12,13. These

encompass factors such as material properties, op-
erator expertise, process parameters, and boundary
conditions14. Gaining a comprehensive understand-
ing of these uncertainties typically requires a series
of experiments or FE simulations, which can be both
time-consuming and costly, often taking up to several
days14,15. This challenge has significantly reduced the
widespread adoption of WAAM in industry16.
One effective solution to this problem is to develop
a surrogate model through machine learning (ML)
techniques17–19. Such a model enables swift and
precise predictions of product quality. For instance,
prior studies by Mozaffar et al.20 and Pham et al.21

have successfully built surrogate models for predict-
ing thermal histories in directed energy deposition
(DED) processes, employing recurrent neural net-
works (RNNs) and artificial neural networks (ANNs),
respectively. Similarly, Roy et al.22 proposed an
ANN-based surrogate model for predicting tempera-
ture evolution in fused filament fabrication (FFF) pro-
cesses. However, it is worth noting that these stud-
ies primarily focused on the DED process. To the
best of the author’s knowledge, the application ofML-
based surrogate models to WAAM is still in its early
stages2,3. Furthermore, some of these previous works
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utilized complex models such as RNNs and lacked in-
terpretability of the ML model. Hence, we developed
an explainable ML-based surrogate model that aims
to capture the relationships between input parameters
and temperature evolution efficiently and accurately.
To further illustrate our ML model, we conducted an
extensive sensitivity analysis (SA)23,24. This SA aims
to provide deeper insights into the underlying physics
of the WAAM process, further enhancing our under-
standing and potential for optimization. However, re-
lying solely on ML methods for SA proves inefficient,
as ML-based models often function as black boxes25.
Figure 1 illustrates the workflow employing the ML-
based surrogate model as a black box for predicting
temperature fields in the WAAM process. The input
parameters is learned by the ML-based model as a
blackbox to predict temperature fields. While these
models offer computational efficiency, their effective-
ness is constrained by their lack of debuggability and
the inability to provide human-understandable and
reconstructable explanations for the predicted tem-
perature fields. Additionally, it is not possible to ob-
tain insights into the models’ internal working, i.e.,
how and why temperature fields are predicted 26. The
current workflow’s lack of reactivity restricts its appli-
cability in real-time settings, a critical requirement in
industries where thoroughmodel verification and val-
idation are essential 27.
To address these issues, explainable ML research top-
ics have recently been developed 28,29. The explain-
able ML techniques provide meaningful insights into
the impact of selected input features on the output
target feature30. Figure 2 shows the workflow using
the surrogate model and explainable ML techniques
in the WAAM process. The ML-based model is inter-
preted by the explainable model to clarify better for
the process. Compared to Figure 1, the black box of
the ML-based model is now “open”. Owing to ex-
plainable ML techniques, the prediction of temper-
ature fields produced from an ML-based model, i.e.,
the peaks and cyclic behaviors of temperature evolu-
tion, is understandable.
Drawing upon these contextual foundations, this arti-
cle aims to perform an SA on the WAAM process us-
ing an explainable MLmodel. This study is organized
as follows: the FE model of WAAM is summarized
in Section 2. The ML-based surrogate model and ex-
plainable ML techniques are described in Section 3.
In Section 4, the numerical results of the FE and ML
models are discussed. Finally, the sensitivity analysis
and discussion are presented in Section 5 prior to the
conclusion.

FINITE ELEMENTMODEL FOR THE
WAAMPROCESS
Geometry and thermophysical properties
of theWAAMwall
Figure 3 (a) shows the baseplate geometry in this
study, which is 200 mm in length, 80 mm in width,
and 10 mm thick, and its corresponding 3D model
geometry. In this study, only the thermal problem
was studied. Stainless steel 316 L stainless steel (SS
316 L) was used for both the wall and baseplate ma-
terials, and the thermophysical properties were cho-
sen for the numerical simulation, as described in2,3.
As shown in Figure 3(a), the path of the laser encom-
passes both forward and reverse layers, with one track
per layer. This parameter significantly influences the
resultingmicrostructure andmechanical properties of
the additive manufactured part31.
The 3D model, depicted in Figure 3(b), features a six-
layered structure specifically designed for this study.
To capture areas with high thermal gradients, a re-
fined mesh with dimensions of 0.8x0.1x0.1 mm3 was
implemented in three regions: the clad and its imme-
diate vicinities on the substrate. With increasing dis-
tance to the deposition path, the element size coars-
ened toward the edges of the specimen. Based on a
convergence study, this mesh size can be evaluated
as sufficient, which is consistent with the result re-
ported in31. As one moves further from the deposi-
tion path, the element size gradually increases toward
the specimen’s edges. A convergence study validated
this mesh size as adequate, aligning with findings pre-
sented in31. Additionally, to develop the FEmodel for
thermal simulation, the thermophysical properties of
SS316L reported in31 and Goldak’s heat source model
(Figure 4) were chosen for the numerical simulations.
In this study, we assumed identical thermophysical
properties for both the base plate and the thin wall,
despite their differing microstructures. Additionally,
we understand that the entire process, including the
behavior of thewall geometry, is of paramount impor-
tance. While this assumption may appear simplified,
it aligns with previous studies in the field31. Never-
theless, it is important to note that this assumption
may introduce certain simplifications in the model.
Future work could explore the implications of con-
sidering distinct thermophysical properties for base
plates and thin walls, which may lead to a more com-
prehensive understanding of the process.

Heat input modeling
A Goldak volume heat source32 based on double el-
lipsoidal power density distributions was used in this
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Figure 1: Theworkflow employing theML-based surrogatemodel as a black box for predicting temperature fields
in the WAAM process.

Figure 2: The workflow using the surrogate model and explainable ML techniques in the WAAM process.

study. Figure 4 illustrates the heat distribution of a
double ellipsoidal heat source model. The heat flux is
modeled in Z-direction with its parameters were se-
lected as those in32: a f = 7 mm,ar = 13 mm, b = 4
mm, c =4 mm,f f = 0.6, and fr = 1.4.

Figure 4: Double-ellipsoidal heat source model.

TheWAAM process simulation was performed using
ANSYS software. Before the simulation, all the clad
layers are considered inactive (dead) elements since
they do not exist before the WAAM process (phase

prestep). During the process, the dead elements are
reactivated successively under the effect of the weld-
ing torch using an activation time that was modeled
through the welding speed. This method suffers from
a computational time disadvantage, but it can help to
model the process in practice accurately.

In general, the temperature evolution can be predicted
as

T = T (q) .

where q = [x, y, z, t, mi] is a multidimensional vector
of the spatial coordinates (x,y,z), the time (t), and the
other input parameters (mi), i.e., the current inten-
sity. As discussed in the introduction section, solving
the above equation is time-consuming, i.e., six hours
for one simulation. As a result, we constructed an
ML-based surrogate model to reduce computational
costs. The following section introduces the specific
ML-based surrogate models employed in this study.
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Figure 3: Geometry of the 3D WAAM model, (a) trajectory of the 3D model and (b) 3D view of the geometry.

SENSITIVITY ANALYSIS USING
EXPLAINABLEML FOR THEWAAM
PROCESS
In this section, we introduce the SA using the explain-
able MLmethod, constructed using the outcomes de-
rived from the FEmodel. The FEmodel is responsible
for calculating the temperature variations within the
WAAM process under various input heat energy con-
ditions. Additionally, we incorporate an ML-based
explainability method to further elucidate the surro-
gate model’s decision-making process.

ML-based surrogatemodel

Model selection
Several algorithms, including linear regression,
random forest, and feedforward neural networks
(FFNNs), can be used to construct ML-based sur-
rogate models. In this study, we choose the FFNN
architecture owing to its ability to approximate highly

nonlinear relationships within the physics of WAAM.
Moreover, the FFNN will be expanded to incorporate
an explainable method, thereby enhancing the
interpretability of the sensitivity analysis.

Data collection
The training data for the ML model are generated
through simulations using the FE model outlined in
Sec. 2. These simulations consist of various values of
key WAAM process parameters, namely, the current
intensity (I) and velocity (U). The resulting training
dataset includes four distinct simulations, detailed in
Table 1. Each of these FE simulations results in a tem-
perature field corresponding to a specific combination
of U and I.
In each FE simulation, we accumulate a substantial
dataset, with a total of 19,126,800 data points (10626
nodes× 1800 timesteps = 19,126,800) for a given pair
of U and I. As demonstrated in Table 1, we employ
four FE simulations with {I, U} = {120, 0.2}, {126,
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Table 1: Dataset obtained from FE simulation used in training and testing for FFNNmodel

Current inten-
sity (I)

120 126 132 138 144

Velocity (U) 0.2 0.3 0.4 0.5 0.6

Training ü ü ü ü

Testing ü

0.3}, {138, 0.5}, and {144, 0.6} to train the ML model,
yielding approximately 76,507,200 data points. These
training datasets are subsequently partitioned into
two sets, one for training and the other for valida-
tion, allowing for fine-tuning of the ML model’s per-
formance.
To assess the predictive accuracy, we subject the ML
model to an unseen FE simulation for {I, U} = {132,
0.4} as our testing dataset. This evaluation ensures
the robustness and reliability of our model’s predic-
tion capabilities.
In addition to improving the prediction accuracy of
the model, we added four additional features, namely,
the heat source position xa, za and the distance from
the heat source to the FE nodes dx, dz. Note that these
features are chosen by the trial-and-error approach.
To avoid adding substantial length to the paper, the
overall description of these features and the feature
selection process can be found in 6.
In general, the ML model can be represented as

g(q|W )≈ T (q) ,

where W is the weight and q is the input, which in-
cludes the spatial coordinates (x, y, z), the time (t),
the current intensity (I), the velocity (U), the heat
source position (xa, za), and the distance from the
heat source to the FE nodes (dx, dz). The output is
the temperature at each spatial coordinate at a specific
time.

Explainable MLmethod

To provide a deeper understanding of the predic-
tive capability of the FFNN-based surrogate model
g, we subsequently describe the explanatory ability
of the FFNN-based model. In this work, the SHAP
method33,34 is used to explain the FFNN-based sur-
rogate model. The SHAP method was developed
based on Shapley from cooperative game theory 35.
Let N be the set of all input features of the FFNN g,
and S denotes a subset of N. The SHAP value assigns
a value ϕ i (q), with i = 1,2,…,n, to each feature rep-
resenting this feature’s contribution to the model pre-

diction. This value is computed as

ϕi (q) = ∑S⊆N\{qi}
|S|!(|N|− |S|−1)!

|N|!
×[

gq (S∪{qi})−gq (S)
] (1)

where |N| is the number of features in the set N and
|S| is the number of features in the set S. However,
the SHAP method requires training the model gq for
all subsets S ⊆ N and thus significantly increases the
computational cost. Additionally, most of the ML-
basedmodels do not accept arbitrary patterns ofmiss-
ing input. Therefore, the SHAP method was devel-
oped to overcome these problems. In particular, the
SHAP method proposed an approximation based on
conditional expectation as

gq (S) = E [g(Z) |zS = qS] , (2)

where qS and zS are |S|-dimensional vectors that
collect values of the features in S from vectors q
and z, respectively. As a consequence, the miss-
ing features qi in Eq. (1) can be randomly drawn
from the background data (normally the mean value)
to obtain an approximation for gq (S). Therefore,
the SHAP method significantly decreases the com-
putational cost compared with the original Shapley
method. The SHAP method ranks the importance of
features on the task performance of the ML model.

RESULTS
This section presents the results, including the FE re-
sults in Sec. 4.1 and the FFNN-based surrogatemodel
results in Sec. 4.2.

Finite element results
Figure 5 depicts the temperature evolution at themid-
dle point of the first layer in the clad, as obtained from
the finite element (FE) model in this study. The tem-
perature shows an oscillation behavior named as tem-
perature oscillations that strongly influences the final
microstructure. Additionally, after six thermal cycles,
the temperature peak exhibits a progressive decrease.
This can be attributed to the phenomenon of heat ac-
cumulation during the wire and arc additive manu-
facturing (WAAM) process. It is noteworthy that the
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number of temperature peaks in the thermal cycle
corresponds to the number of layers deposited in the
clad. Note that our ongoing experiments are aimed at
validating the results obtained from the finite element
model. Additionally, we would like to acknowledge
that, in the FE simulation, we treated the wall height
as a constant, and this can be considered an assump-
tion. It is important to consider how altering the cur-
rent intensity or laser velocity often leads to variations
in wall height. Thus, we will consider this assumption
in our future study.

Machine learning-based surrogate model
results

This section presents the results of the temperature
field prediction by the FFNN-based surrogate model,
as discussed in Sec. 3.
For ease of visualization, we selected three specific
points to showcase the temperature evolution. These
points are situated in the middle of the first, second,
and third layers in the clad, denoted as P1, P2, and P3,
respectively, as depicted in Figure 6. It is worth not-
ing that these points are anticipated to demonstrate
the most intricate thermal cycles during the WAAM
process, characterized by high-temperature peaks fol-
lowed by gradual cooling cycles, as illustrated in Fig-
ure 5. Furthermore, these points were extracted from
a distinct test dataset that the model had never en-
countered during its training and validation phases.
Figure 7 displays the temperature evolutions derived
from both the FE model and the FFNN-based surro-
gate models for three specified points, namely, P1, P2,
and P3. The FFNN-based surrogate model accurately
captures the thermal cycles at these points, reproduc-
ing both the temperature peaks and the subsequent
cooling phases. Specifically, the R2 values36,37 calcu-
lated for these three points exceeded 0.99.
In essence, the FFNN-based surrogate model demon-
strates good accuracy in predicting temperature evo-
lution. The subsequent section will discuss the ex-
planation of the FFNN-based surrogate model, em-
ploying the SHAP method discussed in Sec. 3. Here-
after, we carry out the discussion section to determine
the physics inside WAAM using the ML explainable
method.

DISCUSSION
In this section, the sensitivity of the process parame-
ters to the WAAM process is discussed, and the ML-
based model is explained using the SHAP method.

Sensitivity analysis of the process parame-
ters

The sensitivity analysis of the temperature evolution
in response to variations in the current intensity and
velocity is depicted in Figure 8. As anticipated, in-
creasing the current intensity facilitates more efficient
heat propagation within the printed component, aug-
menting the energy delivered to the laser and con-
sequently elevating the temperature. Conversely, a
reduction in velocity leads to an increase in temper-
ature. This phenomenon can be attributed to the
fact that higher scanning speeds entail reduced time
spent by the laser at any specific point on the pow-
der bed. Consequently, the energy transferred to the
material diminishes, resulting in lower temperatures
compared to those of the case with slower scanning
speeds.

Sensitivity analysis of the ML-based surro-
gatemodel

Figure 9 shows the 95% quantile SHAP values corre-
sponding to each feature. The absolute SHAP value
is a measure of the feature contribution to the differ-
ence between the predicted temperature and its aver-
age value. Note that the 95% quantile is chosen since
it is a standard evaluation criterion in statistics. As
observed in Figure 9, dz,za,dx,and xa constitute the
most influential additional features for temperature
prediction. In contrast, other features, such as x, y, z, t,
U, and I, play a minor role in temperature prediction.
Note that these features are basic features; therefore,
they should not be translated as negligible parameters.
Using the SHAP analysis information in Figure 9, this
section introduces one base and four reduced FFNN-
based models, resulting in five models to verify the
ranking of the feature importance for temperature
prediction and to determine the relevant features con-
tributing to the temperature evolution behavior. The
base model consists of only six basic features. The five
consecutive reduced FFNN-based models are built by
adding each feature in the order of their 95% quantile
SHAP values. The description and R2 values of the
five FFNN-based models are included in Table 2.
As listed in Table 2, the base model poorly predicts
the temperature fields, with a low R2 value of 0.7211.
In addition, the R2 values of each reduced model in-
crease gradually with the addition of each feature. The
R2 value of the FFNN-basedmodel reached 0.9964 for
all the features. This result confirms that dz plays a vi-
tal role in temperature prediction.
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Figure 5: Temperature evolution predicted by the FE model for the middle point of the first layer in the clad.

Figure 6: Three points are selected to represent the thermal cycle predicted by the surrogate model.

Table 2: The description and R2 values of the five FFNN-basedmodels

Model Input features R2

Base model (BM) x,y,z, t,U, I 0.7211

Reduced model 1 (RM1) x,y,z, t,U, I,xa 0.9120

Reduced model 2 (RM2) x,y,z, t,U, I,xa,dx 0.9278

Reduced model 3 (RM3) x,y,z, t,U, I,xa,dx,za 0.9811

Full model (FM) x,y,z, t,U, I,xa,dx,za,dz 0.9964

Table 3: Computational cost using FFNN-based and FEmodels

Training time Single temperature field prediction

FFNN-based model 4 h 20 s (0.0055 h)

FE model - 18 h
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Figure 7: Comparison of the thermal cycles predicted by the FE model and the FFNN-based surrogate model for
3 points P1, P2, and P3.

Figure 8: Sensitivity of the (a) current intensity I and (b) velocity U to the temperature evolution at point P1.

Computational cost assessment
Table 3 illustrates the computational cost incurred
when employing both the FFNN-based and FE mod-
els for temperature field prediction. As depicted,
the FFNN-based model achieves this task in approx-
imately 20 seconds, a substantial reduction of 3272
times compared to that of the FE model, which re-
quires 18 hours. In summary, utilizing the FFNN
model significantly speeds up the optimization and
uncertainty quantification process, especially when

thousands tomillions of temperature field predictions
for varying process parameters are needed.

CONCLUSION
In this study, we developed an interpretable machine
learning model capable of quickly and accurately pre-
dicting the temperature field during the WAAM pro-
cess. This model was trained using data generated
from validated FE simulations. The key contributions
of this research include the following:
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Figure 9: The 95% quantile SHAP values correspond to each feature.

• The model shows a high R2 value of 0.99 for
predicting the temperature history. Moreover,
its implementation substantially reduces com-
putational costs from 18 hours to approximately
0.0055 hours.

• Instead of adopting a conventional black-box
machine learning model, we employed the
SHAP method to enhance its interpretability,
providing invaluable insights into the underly-
ing processes.

• A comprehensive sensitivity analysis was per-
formed to determine the fundamental physics of
WAAM.This result can lead to subsequent anal-
yses, including optimization strategies and un-
certainty quantification.

In perspective, we will develop an optimization
framework that accounts for uncertainties, with the
ultimate goal of producing high-qualityWAAMprod-
ucts based on the findings of this study.
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