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ABSTRACT
Introduction: The use of Ni foam substrates for the growth of catalysts is a common practice in
electrochemical water splitting reactions, although their stability in some electrolytes can be prob-
lematic, hindering the scalability of synthesis. This study aims to explore alternative substrates for
catalyst growth, focusing on cobalt oxide (Co3O4) due to its potential in enhancing electrochemi-
cal water splitting efficiency. Methods: Co3O4 was synthesized on various conductive substrates
including fluorine-doped tin oxide (FTO), indium-doped tin oxide (ITO), and carbon cloth (CC), em-
ploying electrochemical deposition techniques. The morphological and crystalline properties of
the Co3O4 coatings on these substrates were characterized and analyzed to understand their in-
fluence on the catalyst's performance in water splitting reactions. Results: The electrochemical
deposition resulted in a more condensed coverage of Co3O4 on the CC substrate, attributed to
the crystal's oriented aggregation. The crystallization and lattice development of Co3O4 varied sig-
nificantly across different substrates, exhibiting high crystallization on FTO and ITO substrates but
poorer crystallization on the CC substrate. Notably, the Co3O4/CC electrode demonstrated superior
performance in hydrogen evolution reaction, achieving the lowest overpotential of -382 mV at a
current density of 10mA cm−2 . Conclusion: The findings suggest that CC presents a promising al-
ternative to Ni foam substrates for the growth of Co3O4 catalysts in electrochemical water splitting
applications. The enhanced performance of Co3O4/CC electrodes, particularly in terms of overpo-
tential and crystallization behavior, highlights the potential of using CC substrates to improve the
efficiency and scalability of water splitting reactions for sustainable hydrogen production.
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INTRODUCTION
Cobalt oxide (Co3O4) has emerged as a prominent
catalyst in electrochemical water splitting (EWS) ap-
plications, demonstrating significant efficacy in both
hydrogen evolution reaction (HER) and oxygen evo-
lution reaction (OER) due to its impressive charge
transfer capabilities and large surface area 1–5. Re-
cently, Liu et al. synthesized Co3O4 quantum dots
and combined them with TiO2 materials to improve
the efficiency of charge transfer between the two ma-
terials to increase the water-splitting activity of the
material 6. Similarly, Yuan et al. have developed a
composite material combining Co3O4 with nitrogen-
doped carbon, supported on Ni foam, to facilitate
comprehensivewater-splitting for bothHER andOER
reactions. Despite Co3O4’s efficiency, the use of Ni
foam substrates has been noted to pose stability is-
sues in acidic environments, suggesting a preference
for basic conditions for optimal water splitting reac-
tions7.

Recently, La et al. developed Co3O4/CC for over-
all water splitting and demonstrated that this mate-
rial has an efficient catalytic performance8,9. Fur-
thermore, Co3O4/CC also expressed a high ESWper-
formance at a Na2SO4 electrolyte that does not re-
act or interfere with most of the target electrode or
electrochemical reactions, respectively10. Moreover,
Na2SO4 solution is a stable electrolyte over electrodes
based on SnO2-glass11.
Various methods, including hydrothermal synthesis,
sol-gel, electrochemical deposition, and sputtering,
have been explored for synthesizing Co3O4 on sub-
strates12–17. Among these, electrochemical deposi-
tion stands out as a straightforward, eco-friendly ap-
proach that minimizes chemical use and production
time. This method is especially beneficial for fabri-
cating electrodes for EWS reactions, which necessi-
tate the integration of catalysts with conductive sub-
strates to ensure efficient electron transfer. The se-
lection of an appropriate conductive electrode—be
it graphite, carbon-based materials like carbon nan-
otubes (CNTs) or carbon cloth (CC), metal foams or
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meshes, conductive polymers, or transparent conduc-
tive oxides such as FTO and ITO—is crucial for opti-
mizing EWS efficiency and paving the way for future
practical applications18,19.
This study aims to synthesize Co3O4 on various con-
ductive substrates (FTO, ITO, and CC) using elec-
trochemical deposition under low potential and tem-
perature conditions. Characterization of the Co3O4

coatings was conducted via X-ray diffraction (XRD)
patterns and SEM observations. Furthermore, a
Na2SO4 solution was used as an electrolyte for the
EWS evaluation over catalytic electrodes.

METHODS

Materials

The following chemicals and materials were utilized:
Cobalt (II) nitrate hexahydrate (Co(NO3)2·6H2O,
GHTECH, 98.6%), ethylene glycol (EG, C2H6O2, Xi-
long, > 98%), potassium hydroxide (KOH, Merck,
99%), sulfuric acid (H2SO4, Xilong, > 98%), com-
mercially available carbon cloth (Viet Nam), deion-
ized (DI) water (18 MΩ.cm), and ethanol (C2H5OH,
Thermo Fisher Scientific, 99%).

Electrochemical Deposition Synthesis of
Co3O4

Initially, 2.91 g of Co(NO3)2·6H2O was dissolved in
100 mL of DI water to prepare a 0.1 M Co(NO3)2
solution. Substrates including FTO, ITO, and CC
were cleansed using DI water and ethanol through ul-
trasonication sequentially, followed by oven-drying.
Electrodeposition was performed in a standard three-
electrode system comprising the conductive electrode
(FTO, ITO, or CC), a Pt wire, and an Ag/AgCl elec-
trode (in saturated KCl solution) as the working elec-
trode, counter electrode, and reference electrode, re-
spectively. The procedure was conducted for 5 min-
utes at a constant voltage of -1.0 V, as previously de-
scribed8. The process resulted in the formation of
blue precipitate, presumed to be Co(OH)2, on the
working electrodes. The Co(OH)2/CC obtained was
oven-dried and subsequently annealed in air at 400◦C
for 2 hours to yield Co3O4-decorated electrodes, fol-
lowing optimized parameters from our earlier study8.

Characterizations

XRDwas employed to ascertain the crystalline phases
of the materials, utilizing a Bruker D8 instrument
with aCuKα radiation source (λ =1.5406Å), an elec-
tron accelerating voltage of 45 kV, current of 45 mA,
and a scanning rate of 0.02◦. Surfacemorphology was

examined using a JSM-IT500 scanning electron mi-
croscope (JEOL), with samples being Au-coated prior
to insertion into the measurement chamber. An elec-
tron accelerating potential of 20 kV was applied for
all SEM imaging. Elemental distribution and quan-
tification were conducted via EDX mapping with the
Oxford Instruments.

Linear Sweep Voltammetry Experiments

Linear sweep voltammetry (LSV), a potentiometric
method measuring current while linearly scanning
potential over time, was utilized to identify oxidation
or reduction peaks indicative of HER and OER activ-
ities. Co3O4-decorated substrates (1 cm2 total area)
were evaluated in a standard three-electrode system
using a Biologic SP-200 potentiostat. LSV was con-
ducted at a scan rate of 10 mV s−1 in 1.0 M Na2SO4

solution, with Ag/AgCl (saturated KCl) as the refer-
ence electrode and Pt wire as the counter electrode.
HER polarization curves were recorded from -0.5 V
to -1.5 V (vs. Ag/AgCl), and OER polarization curves
from -1.0 V to 1.0 V (vs. Ag/AgCl) 20.

RESULTS

X-ray Diffraction Analysis

The XRD patterns of Co3O4 decorated on various
substrates are depicted in Figure 1. Thepatterns reveal
peaks corresponding to the underlying substrates of
CC, FTO, and ITO. Additionally, distinct peaks at 2θ
values of 19◦, 31.2◦, 36.8◦, 44.8◦, 59.3◦, and 65.2◦ are
observed, which correlate with the (111), (220), (311),
(400), (511), and (440) lattice planes of Co3O4, re-
spectively [JCPDS #80-1532]. Notably, the (440) and
(311) planes of Co3O4 are prominently featured when
deposited onto FTO and ITO substrates, respectively.
Conversely, the crystalline intensity of Co3O4 on the
CC substrate appears to be weaker.

Scanning Electron Microscopy Observa-
tions

SEM analysis was conducted to examine the mor-
phology of Co3O4 on the substrates, as illustrated in
Figures 2, 3 and 4. Figure 2 presents Co3O4/ITO
with a porous structure distinctly different from the
smooth structure of the underlying ITO. Figure 3
highlights the morphology of Co3O4/FTO, indicat-
ing slight variations with non-uniform Co3O4 par-
ticle sizes. In contrast, Figure 4 shows Co3O4/CC
densely covered with a uniform layer of Co3O4, ap-
proximately 4-5 µm thick, exhibiting a consistent
porous structure across the CC substrate.
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Figure 1: XRD patterns of Co3O4 decorated on different substrates.

Figure 2: SEM images of Co3O4/ITO with different scales: (a) 10 µm, (b) 5 µm.
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Figure 3: SEM images of Co3O4/FTO with different scales: (a) 10 µm, (b) 5 µm.

Figure 4: SEM images of Co3O4/CC with different scales: (a) 5 µm, (b) 5 µm.

Linear Sweep Voltammetry Analysis

LSVmeasurements were utilized to evaluate the EWS
activity of Co3O4 on various substrates, as depicted in
Figure 5. The HER performance, showcased in Fig-
ure 5(a), reveals Co3O4/CC as the most active elec-
trode, achieving the lowest onset potential of -382
mV at a current density of 10 mA cm−2. Compar-
atively, Co3O4/FTO and Co3O4/ITO require signif-
icantly higher overpotentials of -975 mV and -1610
mV, respectively, to reach -10 mA cm−2, underscor-
ing the superior HER efficiency of Co3O4/CC.
OER activities, shown in Figure 5(b), indicate that
none of the electrodes—FTO, ITO, or CC—exhibit
effective EWS performance for OER, as measured in
1.0 M Na2SO4 at a scan rate of 10 mV s−1. This
suggests that while Co3O4/CC demonstrates promis-
ing HER capabilities, improvements are needed to
enhance OER performance across all evaluated sub-
strates.

DISCUSSION
XRD patterns depicted in Figure 1 reveal distinc-
tive crystal structures among the conductive sub-
strates used. Notably, both FTO and ITO exhibit high
crystallinity, with predominant orientations at the
(110) and (222) planes, respectively. This variance in
diffraction peaks can be attributed to the unique crys-
talline characteristics of each substrate, which in turn
influence the nucleation and growth of Co3O4 dur-
ing the electrochemical deposition process. Specif-
ically, the pronounced crystalline growth of Co3O4

along the (440) and (311) planes onFTOand ITOsub-
strates, respectively, contrasts with the weaker crystal
intensity observed on the CC substrate. However, the
presence of both (440) and (311) planes of Co3O4 on
the CC substrate suggests a nuanced texture develop-
ment that directly impacts Co3O4’s morphology21.
The observed disparities in Co3O4 crystal growth
across different substrates might be elucidated by ori-
ented aggregation phenomena, where crystals tend to
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Figure 5: LSV plots of Co3O4 decorated on different substrates for HER (a) and OER (b) processes.

cluster around emerging seed sites. This process re-
sults in a non-uniform size distribution of Co3O4, as
evidenced by the SEM images in Figure 4. These im-
ages further demonstrate that the CC substrate facili-
tates amore uniformdistribution of Co3O4 compared
to FTO and ITO substrates, enhancing the HER per-
formance of Co3O4.
Moreover, the electrochemical measurements high-
lighted in Figure 5 and Table 1 indicated that
Co3O4/CC and Co3O4/FTO electrodes require rela-
tively low cell voltages of 1.13 V and 1.34 V, respec-
tively, to achieve a current density of 10 mA cm−2.
This contrasts with the difficulty in determining the
necessary voltage for the Co3O4/FTO electrode, un-
derscoring the effectiveness of the electrochemical de-
position method in preparing Co3O4 on various sub-
strates.
The comparative analysis of overpotentials for HER
and OER across Co3O4-decorated substrates reveals
significant variations, possibly due to differences in
electrolyte environments. While prior studies pre-
dominantly employed 1.0 M KOH, this research uti-
lized 1.0 M Na2SO4, showcasing the Co3O4/CC elec-
trode’s superior activity and lower overpotential in
comparison to other electrodes. This suggests that
the choice of electrolyte can markedly influence the
EWS performance of Co3O4 electrode systems, with
the Co3O4/CC configuration exhibiting enhanced ac-
tivity at reduced overpotentials.

CONCLUSION
In summary, we has successfully synthesized Co3O4

on various substrates, including FTO, ITO, and CC,
through an electrochemical deposition, as confirmed
by XRD and SEM analyses. The findings reveal that
Co3O4 exhibits distinct (440) and (311) planes when

deposited on the CC substrate, which significantly
influences its morphology. Notably, the Co3O4/CC
electrode demonstrates superior EWS performance in
both HER and OER. Specifically, the Co3O4/CC elec-
trode achieved the lowest observed overpotentials of
-382 mV for HER and 1130 mV for OER at a consis-
tent current density of 10 mA cm−2, utilizing a 1.0 M
Na2SO4 electrolyte. These results underscore the po-
tential of Co3O4/CC as a highly effective catalyst for
EWS applications, highlighting its promising capac-
ity for energy conversion processes. The study paves
the way for further exploration into the optimization
of Co3O4-based electrodes for sustainable hydrogen
and oxygen production.
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