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ABSTRACT
Introduction: Silver nanoparticles (Ag NPs) are pivotal in advancing surface-enhanced Raman
scattering (SERS) due to their exceptional plasmonic properties. Yet, conventional synthesis meth-
ods often fail to precisely control their shape and size, impacting SERS efficiency. This study in-
troduces a novel synthesis approach using hydrogen peroxide (H2O2) to tailor Ag NP morpholo-
gies, aiming to optimize their plasmonic resonance for improved SERS detection of hazardous sub-
stances. Methods: We utilized a chemical reduction process with H2O2 to etch and shape Ag NPs,
adjusting H2O2 concentrations to control nanoparticle morphology. The characterization of the
nanoparticles involved SEM, TEM, and XRD formorphology and structure, with UV-Vis spectroscopy
determining their absorption spectra. Results: The approach yielded Ag NPs with variable shapes
and absorption wavelengths (330 nm to 740 nm), directly correlating H2O2 concentration with
morphological changes. SEM and TEM showed diverse nanoparticle shapes, and XRD confirmed
their crystalline structure. Notably, nanoparticles tuned to specific absorption wavelengths signif-
icantly enhanced SERS detection of Rhodamine B. Conclusion: Our method effectively produces
multi-shapedAgNPswith tunable optical properties, enhancing SERS application in detecting trace
organic compounds. This streamlined synthesis process offers new possibilities for environmental
monitoring and safety assessments.
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INTRODUCTION
Over the decades, nanomaterials have played a cru-
cial role in various scientific fields, contributing sig-
nificantly to technological advancements and indus-
trial applications1–3. The synthesis of nanoparticles
using various noble metals has attracted consider-
able research interest due to their unique properties
and potential applications in optoelectronics, catal-
ysis, antibacterial agents, bio-sensors, and surface-
enhancedRaman scattering (SERS)4–7. Amongmetal
nanoparticles, such as Pd, Cu, Au, Zn, Sn, Co, etc., sil-
ver nanoparticles (AgNPs) have particularly attracted
researchers’ attention due to their excellent electri-
cal conductivity and strong plasmonic characteris-
tics8. Numerous studies have shown that the proper-
ties of silver nanoparticles depend on their shape, size,
size distribution, and crystal structure. For instance,
rice-shaped silver nanoparticles exhibit two absorp-
tion peaks in the visible and near-infrared regions9,
while spherical silver nanoparticles typically show ab-
sorption peaks in the near-ultraviolet region10. Ad-
ditionally, UV-Vis analysis reveals that small silver
nanoparticles have high optical absorption and ex-
hibit a redshift11,12. Consequently, extensive research

has been conducted to synthesize silver nanoparti-
cles with controllable morphology and distribution.
Various techniques, including chemical methods, mi-
crowave techniques, and biological synthesis, have
been employed to synthesize silver nanoparticles with
diverse shapes, such as spheres, rods, wires, sheets,
cubes, and arrays13–20. These methods each have
their own advantages for specific synthesis purposes.
However, they also face significant limitations, such
as low reaction efficiency, time consumption, ex-
pensive and complex equipment, and difficulties in
size control21. Thus, chemical reduction methods
are widely used for synthesizing silver nanoparticles
across various fields, including food technology, cos-
metics, medical and dental diagnostics, especially in
the detection and degradation of harmful organic
substances21–24. For example, a research group led
by Jagpreet Singh used Trigonella foenum-graecum
(TF) leaf extract as a reducing agent to synthesize sil-
ver nanoparticles for photocatalytic degradation ap-
plications25. In 2017, Mutasem M. Al-Shalalfeh and
colleagues used sodium borohydride as a stabiliz-
ing and reducing agent to synthesize spherical silver
nanoparticles for SERS substrate applications in de-
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tecting ketoconazole in agricultural products 26. Ad-
ditionally, Al-Shalalfeh’s team fabricated two types of
silver nanoparticles using sodium borohydride and
trisodium citrate dehydrate, aiming to use them as
SERS substrates for detecting 2-thiouracil. The av-
erage sizes of these silver nanoparticles were approx-
imately 15 nm and 60 nm, with peak absorption
around 400 - 430 nm27. In the VNUHCM Journal of
Science and Technology Development, Nguyen Tran
Gia Bao developed Ag NPs by reducing silver ions in
AgNO3 using sodium borohydride or sodium citrate
as reducing agents, along with surface-active agents
like poly(vinyl alcohol) (PVA), poly(vinyl pyrroli-
done) (PVP), and cetyltrimethylammonium bromide
(CTAB).The synthesized AgNPs solution, with an ab-
sorption peak in the range of 410 - 450 nm, was em-
ployed for the detection of organic substances, includ-
ing Crystal Violet (CV) and Rhodamine B (RhB), at a
concentration of 10^-8M 28.
In general, the studies mentioned synthesize
spherical-shaped silver nanoparticles (Ag NPs)
with an absorption wavelength of around 400 nm.
This characteristic limits their resonance with the
excitation wavelengths of lasers commonly used in
modern Raman spectroscopy devices (532 nm or 785
nm). Surface-enhanced Raman scattering (SERS) is
significantly augmented by the unique nanostructure
of noble metals, which can concentrate light through
localized surface plasmon resonance (LSPR)8. The
surface morphology of nanoparticles leads to varying
surface plasmon resonances (SPR)29, making it
crucial to develop methods to shift the absorption
wavelength to enhance SERS signals. Techniques
to modify the absorption of Ag NPs include the
electrochemical synthetic method 30, irradiation
methods31, and chemical reduction32, among
others. Yet, chemical synthesis, which involves
modifying the shape of pre-formed nanoparticles,
remains popular due to its straightforward experi-
mental procedures, high efficiency, and suitability for
large-scale production21.
In this study, we synthesized diverse morphologies
of silver nanoparticles (MAg NPs) in shapes such
as triangular, hexagonal, and disc-shaped, adjusting
the peak absorption wavelength between 330 nm and
740 nm by varying the concentration of the oxidiz-
ing agent hydrogen peroxide (H2O2). The shape
transformation reaction involves reducing silver ions
(Ag+) in a spherical silver solution using sodium
borohydride (NaBH4) in the presence of H2O2 and
citrate as a capping agent. Adjusting the H2O2
concentration allows for the development of silver

nanoparticles with desired morphology and absorp-
tion wavelength to enhance Raman signals. Further-
more, we synthesized a SERS substrate using MAg
NPs for detecting Rhodamine B (C28H31ClN2O3),
an industrial dye often used in unauthorized food
coloring, posing significant health risks. The Raman
spectroscopy results demonstrate the substrate’s effec-
tive detection of Rhodamine B (RhB), suggesting new
research avenues in detecting harmful substances in
food.

MATERIALS-METHODS

Chemical materials

Silver nitrate (AgNO3) - 99% (Sigma-Aldrich),
sodium citrate (Na3C6H5O7) - 99% (Sigma-Aldrich),
sodium borohydrid (NaBH4, 98,0%, Scharlau, Spain),
hydroxyl peroxide (H2O2, 30%, Sigma-Aldrich).

Characteristics

Silver nanoparticles’ size, morphology, and distribu-
tion were analyzed through scanning electron mi-
croscopy (SEM, Hitachi S-4800) and transmission
electron microscopy (TEM, JEOL, JEM-1400). The
crystal structure of MAg NPs were identified via X-
ray diffraction (XRD) using a D8 Advance-Bruker
diffractometer operating at 40 kV, 100 mA, with a
Cu/Kα radiation source (λ = 0.154 nm). Raman
spectra were recorded using a Raman spectrometer
with an excitation source at 532 nm.

Fabrication processes

The synthesis process of MAg NPs includes two main
steps: nucleation and fabrication of multi-shaped sil-
ver nanoparticles.
Step 1: Nucleation
Three beakers were simultaneously prepared, each
containing a solution of silver nitrate (AgNO3, 0.25
mM), sodium citrate (Na3C6H5O7, 0.25 mM), and
sodium borohydride (NaBH4, 10 mM), respectively.
Subsequently, AgNO3 and Na3C6H5O7 were stirred
together at room temperature for 30 minutes. Next,
NaBH4 was slowly added to themixture above, result-
ing in the formation of a germ solution (Figure 1a).
Step 2: Fabrication of multi-shaped silver nanoparticles
5ml H2O2, 0.02M AgNO3 and 0.05287M NaBH4

were added to the germ solution which was diluted
with DI water (ratio 2:5). The resulting silver solution
was then continuously stirred for 30 minutes to stabi-
lize the MAg NPs (Figure 1b).
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Figure 1: Synthesis process of a) germ solution and b)multi-shaped silver nanoparticles

RESULTS
The X-ray diffraction pattern of the multi-shaped sil-
ver nanoparticles that were synthesized according to
the above process is presented in Figure 2b. The
diffraction peaks at 2θ values with 27.81◦, 32.16◦,
38.12◦, 46.21◦, 54.83◦, and 57.39◦, correspond to the
lattice surfaces (210), (122), (111), (231), (142), and
(241) within the face-centered cubic (FCC) structure
of pure silver (JCPDS, no. 04-0783) 33. We synthe-
sized multi-shaped silver solutions labeled as S0, S1,
S2, S3, S4, corresponding to different concentrations
of H2O2 at 0 %, 7 %, 8 %, 9 %, 10 %, respectively, to
investigate the wavelength absorption changes. Also,
the absorption spectra of five MAgNPs samples (Fig-
ure 2a) revealed peaks at 392 nm, 487 nm, 548 nm,
660 nm, and 738 nm.

The SEM and TEM images in Figure 3 depict the
size and morphology outcomes of MAg NPs. The
silver nanoparticle solution prepared exhibits various
shapes, including triangles, hexagons, spheres, etc.,
ranging in size from 30 nm to 150 nm, with an average
particle size of 38.641 nm.
The samples with distinct absorption peaks (487 nm,
548 nm, 660 nm, 738 nm) were employed as SERS
substrates to explore their efficacy in detecting RhB at
a concentration of 1 ppm (Figure 4a). The results re-
veal that all samples exhibit the capability to amplify
Raman signals of RhB at 620, 1197, 1279, 1360, 1509,
1525, 1595, and 1645 cm−1 (Table 1).
An essential criterion for assessing the reliability of a
SERS sample is the synchronization of Raman signals.
As depicted in Figure 4b, the SERS signal was exam-
ined at random locations on sample S2 with a RhB
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Figure 2: a) UV-Vis absorption spectra and b) XRD diffraction pattern of MAg NPs

Figure 3: a) SEM images and b) TEM images of MAg NPs

Table 1: Band assignment of Rhodamine B 34,35

Solid Raman SERS Vibrational Description

619 cm−1

1195 cm−1

1275 cm−1

1356 cm−1

1506 cm−1

1525 cm−1

1595 cm−1

1645 cm−1

620 cm−1

1197 cm−1

1279 cm−1

1360 cm−1

1509 cm−1

1525 cm−1

1595 cm−1

1645 cm−1

Aromatic bending
Aromatic C-H bending
C-C bridge-bands stretching
Aromatic C-C stretching
Aromatic C-C stretching
Aromatic C-C stretching
C=C stretching
Aromatic C=C stretching

concentration of 1 ppm.

DISCUSSION
In Figure 2b, the diffraction peaks corresponding to
the crystallographic planes (210), (122), (111), (231),
(142), and (241) of the face-centered cubic (FCC)
structure of pure silver confirm the formation of sil-
ver crystals in the solution after the reaction. Fur-
thermore, the UV-vis absorption spectra reveal the

multimodal plasmon resonance oscillations of the
MAg NPs. A distinct peak at 338 nm is attributed
to the out-of-plane quadrupole plasmon resonance
(OPQPR), while absorption bands at 487 nm, 548
nm, 660 nm, and 738 nm in the four MAg NP sam-
ples correspond to the in-plane dipole plasmon reso-
nance (IPDPR)36. Additionally, an increase in H2O2
concentration leads to a redshift, suggesting oxida-
tive corrosion of the initial silver seeds and a sub-
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Figure 4: The Raman spectra of RhB (1 ppm) a) based on distinct SERS substrates, and b) at different locations on
sample S2

sequent increase in size or edge length 10. This ob-
servation underscores that silver nanoparticles, with
their diverse morphologies, often exhibit more com-
plex plasmon vibration modes than simple spheres,
enabling control over the absorption wavelength by
adjusting the H2O2 concentration. The size andmor-
phological characteristics of the MAg NPs, as shown
in Figure 3, also demonstrate the successful synthe-
sis of multi-shaped silver nanostructures through the
growth corrosion method. The investigation of the
Rhodamine B (RhB) detection capability of the SERS
substrate based on MAg NPs, presented in Figure 4a,
clearly indicates that all samples enhance Raman sig-
nals through characteristic oscillations as detailed in
Table 1. Notably, sample S2 shows the highest signal
enhancement among the samples tested, attributed to
its absorption wavelength of 548 nm effectively res-
onating with the excitation laser source’s wavelength
of 532 nm. Importantly, Figure 4b shows no signif-
icant disparity in the intensity of characteristic peaks
in the Raman spectra at different locations, indicating
that the synthesized samples possess practical consis-
tency and high reliability.
The etching-growth process, which employs hydro-
gen peroxide (H2O2), was used to produce multi-
shaped silver nanoparticles with the desired absorp-
tion wavelength. The synthesis procedure consists of
two main stages: the corrosion stage and the growth
stage. Importantly, the corrosion process is crucial
in determining the final structure of the nanocrys-
tals. It accomplishes this by either completely remov-
ing energetically unfavorable particles or by etching
to form sharp corners and edges37. Hydrogen per-
oxide exhibits aspect-selective corrosive properties to-
wards metallic silver species while also acting as a re-
ducing agent for silver ionic species, as demonstrated

by equations (1) to (5)38–41.
H2O2 as an oxidizing agent:
Ag+ + e− → Ag (E0 = 0.7996 V) (1)
H2O2 + 2e− → 2HO− (E0 = 0.867 V) (2)
2Ag + H2O2 → Ag+ + 2HO− (E0 = 0.068 V) (3)
H2O2 as an reducing agent:
H2O2 + 2HO− → 2H2O + O2 + 2e− (E0 = 0.146 V)
(4)
H2O2 + 2Ag+ + 2HO− → 2Ag + 2H2O + O2 (E0 =
0.947 V) (5)
During the growth period, AgNO3 and NaBH4 are
introduced sequentially, resulting in the reduction of
Ag+ ions and the generation of MAg NPs, as illus-
trated by the following equation (6):
2Ag+ + 4BH4

− + 7H2O → 2Ag0 + B4O7
2− + 15H2

(6)
Due to its potent reducing capability, NaBH4 rapidly
reduces Ag+ ions and facilitates the growth of sym-
metrical facets in MAg NPs and secondary seed par-
ticles 42. Consequently, the resulting silver nano solu-
tion exhibits diverse morphologies, resulting in vary-
ing absorption wavelengths when altering the H2O2

concentration.

CONCLUSIONS
Multi-shaped silver nanoparticles were successfully
synthesized, exhibiting absorption at distinct wave-
lengths (487, 548, 660, and 738 nm) through a rapid
and straightforward process. Notably, among these
nanoparticles, those with an absorption peak at 548
nm demonstrated superior enhancement of the Ra-
man signal for Rhodamine B (RhB) at a concentration
of 1 ppm. Furthermore, the corrosion-growthmecha-
nism behind the formation of these nanoparticles has
been elucidated. We anticipate that the findings from
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this study will pave the way for the application of sil-
ver nanoparticles in various fields, especially in de-
tecting low-concentration toxic organic compounds
in the future.
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