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Real-Time Convolutional Neural Network-Based Method for
Detecting and Tracking Human Motion on Quadcopters

Quoc Duy Tran, Duc Thien Tran”

ABSTRACT

This paper proposes a convolutional neural network (CNN) method for human motion detection
and tracking on a quadcopter. To address the challenges mentioned above, the proposed method-
ology is designed on computer vision techniques with an object tracking algorithm and a CNN
model. The object tracking algorithm isimplemented using a proportional integral differential (PID)
controller to calculate the control parameters, including the pitch and yaw angles, in real time.
These parameters are determined by calculating the offset between the position of the human
and the camera coordinate frame. To achieve accurate object detection, a CNN model is designed
based on the single shot multibox detector (SSD) architecture, which is crucial for object detection.
The model above is integrated with the MobileNet base network, which is responsible for feature
extraction of the object. The use of self-collected person data in model training ensures good per-
formance for this specific application. The object detection results demonstrate that the model
achieves a high level of accuracy (98%). The proposed methodology is applied to an NVIDIA Jetson
NANO computer. To rigorously assess the control system, the proposed methodology was used
to conduct outdoor flight tests on a campus. These tests prioritized minimal pedestrian traffic and
stable weather conditions, ensuring a controlled environment for evaluation. Analysis of the flight
data and signal graphs provided valuable insights into the effectiveness of the system.
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Embedded systems

INTRODUCTION

Recently, quadcopters have garnered significant at-
tention in various applications due to their verti-
cal take-off and landing capabilities, as well as their
hovering functionalities'. Additionally, quadcopters
can handle intricate tasks within crowded environ-
ments and have a simpler control system than other
types of UAVs2. Common applications are focused

4, mapping®, au-

on surveillance3, search and rescue
tonomous navigationﬁ, obstacle avoidance” and tar-
get tracking®. However, among the spectrum of
vision-based applications, object detection and track-
ing on quadcopters present significant challenges,
particularly in achieving real-time performance. Bal-
ancing computational efficiency with detection accu-
racy is crucial. Real-time operation demands fast pro-
cessing, while high accuracy ensures reliable object
identification. The integration of robust vision-based
estimation and control algorithms is essential for ad-
dressing these challenges and unlocking the full po-
tential of quadcopters in vision-based applications.

In practical applications, object detection relies
on various deep learning-based algorithms, such

as the Faster Region-based Convolutional Neural

Network®, Region-based Fully Convolutional Net-
works 10, You Only Look Once 11 and Single Shot De-

tector 12,

These algorithms have demonstrated re-
markable capabilities in object detection tasks. How-
ever, a common challenge associated with these
detectors is their high computational complexity,
which can hinder their implementation on resource-
constrained embedded platforms such as quad-
copters. This limitation is particularly relevant for
real-time applications that demand fast processing
times. To address this challenge, single-shot detectors
have emerged as a promising approach for object de-
tection. These detectors, such as YOLO and SSD, pro-
cess images in a single pass, significantly reducing the
computational overhead compared to two-stage de-
tectors such as Faster R-CNN and R-FCN 3. YOLO,
for instance, is renowned for its real-time processing
capabilities, making it suitable for applications that
require an immediate response“. In contrast, SSD
strikes a balance between speed and accuracy by pre-
dicting multiple bounding boxes for each object, of-
fering a more robust solution for tasks that demand
high detection accuracy '>1415,

Moreover, numerous control algorithms have been
created to address the challenges associated with
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tracking humans. In particular, the article presents
the identification and tracking of humans employ-
ing techniques for visual data manipulation with
OpenCV 1°.
was employed as part of a target tracking algorithm.

In'’, a fuzzy logic controller (FLC)

In'8, they proposed a tracking algorithm grounded
in Euclidean space equations and image processing
through cameras. While prior studies have demon-
strated commendable performances, their primary
focus lies within the realm of computer vision, ne-
glecting external disturbances such as environmental
factors. To achieve high precision in drone control,
several controllers have been applied. In'?, a target-
tracking control algorithm based on fuzzy PI was de-
vised. This algorithm incorporates a Fuzzy-PI con-
troller to dynamically adjust the parameters of the PI
controller, utilizing positional data and changes in po-
sition as inputs. In 20 4 gain-scheduled PID controller
was developed to guide a UAV by continuously ad-
justing the actuators based on real-time data from the
tracking unit and UAV dynamics. In?!, a comprehen-
sive double closed-loop proportion integral differen-
tial (PID) controller was meticulously designed, em-
ploying estimated states to accurately track and pur-
sue the target. Among them, PID is a promising can-
didate for drone control because it not only achieves
high accuracy but also remains robust to uncertain-
ties from external influences 2. The strengths of PID
include being model-free, requiring no information
about the mathematical model of the system, easy im-
plementation on embedded boards, and high preci-
sion?3.

This paper presents an approach for detecting and
tracking target objects using an SSD object detec-
tor on a UAV. To manage the above challenges, the
system is separated into two primary components:
(1) object motion estimation and (2) object recog-
nition. The object motion estimation algorithm uti-
lizes a proportional integral differential (PID) con-
troller to compute control parameters, which include
pitch and yaw angles in real time. These parameters
are determined based on the position of the object
and are calculated by measuring the offset between
the position of the human and the camera coordi-
nate frame. This module achieves robust object track-
ing across varying relative distances. Object recog-
nition focuses on accurately detecting “person” ob-
jects using the SSD architecture. A custom-trained
model differentiates between two classes: images con-
taining objects and images without a person present.
Self-collected person data training enhances detec-
tion performance. Finally, the proposed control is ap-
plied to an NVIDIA Jetson NANO embedded com-
puter. A comprehensive outdoor flight experiment is

conducted within a campus environment character-
ized by minimal pedestrian traffic. Additionally, pri-
ority is given to selecting days with favorable weather
conditions and stable illumination. The analysis in-
cludes assessing experimental flight data and signal
graphs to evaluate the proposed control system.

The remainder of this paper is structured as follows:
The problem statement, the object recognition algo-
rithm and the object motion estimation algorithm are
described in Section II. Section III describes the ex-
perimental analysis. Finally, Section IV offers conclu-
sions and outlines avenues for future work.

MATERIALS AND METHODS

Preliminary

In Figure 1, the coordinate frames employed for hu-
man tracking via a quadcopter are illustrated. The sys-
tem includes three coordinate frames: O — xgypzg
represents the world, Op — xgypzp denotes the quad-
copter and O¢ — xcyczc signifies the camera coor-
dinates. For computational convenience, we assume
that the quadcopter and camera share the same co-
ordinate frame. To address the challenge of the hu-
man motion estimation problem, the key challenge is
keeping the transformation matrix between the quad-
copter and the human being tracked unchanged. To
achieve this transformation matrix, which involves
both orientation and position, a proposed camera sys-
tem aims to determine both the orientation and posi-
tion through the entirety of the captured image. The
relative location of the human concerning the quad-
copter is calculated using the camera model, which
is expressed as (Pg) in the camera coordinates. The
target coordinates (P) are then determined in quad-
copter coordinates. The relationship between these
two coordinates is mathematically expressed as fol-
lows:

P, P,
|:IB:|:TBOPO: [10

where Rpg and Tp( represent the matrix for rotation

Rpo g0

0 1 W

and the matrix for transformation between the cam-
era framework and quadcopter framework, respec-
tively. 150 denotes the position of camera?4.

Additionally, to identify human subjects from the
camera output, a CNN (convolutional neural net-

work) system is utilized for object detection.

Hardware Specifications

To address the challenges mentioned above, the quad-
copter system comprises an executive structure and
ground station control, as illustrated in Figure 2. The
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Figure 1: Coordinate frame used for human tracking
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Figure 2: Quadcopter hardware specifications

ground station control is responsible for gathering tion of the transformation matrix Tpg. This control
data from the quadcopter, while the executive struc- . . . .

) ] consists of two main components: vision-based esti-
ture runs the tracking and detection algorithms.

mation and object tracking control. These parts han-

Control System Overview dle the detection of the targeted human and subse-

The proposed control aims to maintain the trans- . . . .
) ] quent human tracking, respectively. The design of this

formation matrix between the quadcopter and the

tracked human by ensuring consistent output re- suggested control system overview is outlined in Fig-

sponses. As analyzed in Section II, this transforma-  jpe 3.

tion matrix involves both the orientation and posi-
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Figure 4: Structure of SSD-MobileNet

Vision-Based Estimation

As illustrated in Figure 4, once an image of an object
is received, a CNN algorithm is implemented.

In this study, the SSD method relies on a feed forward
convolutional network that generates a bounding box.
A subsequent nonmaximum suppression step is ap-
plied to produce the final detection results 12. Fig-
ure 4 illustrates the MobileNetSSD system, which is

25, However, it eliminates

an extension of MobileNe
the fully connected layers and softmax components.
MobileNet employs depthwise separable convolution
for constructing streamlined deep neural networks,
leading to enhancements in computational speed and
2627 Additionally, MobileNet exhibits

strong performance in high-quality image classifica-

model size

tion tasks, contributing to its popularity in scenarios
where transfer learning aids in performance improve-
ment.

The aim of the project is to scale the image to a size
of 300x300x3 and feed it into the model through 13
depthwise-separable convolution layers to extract the

feature maps, as shown in Figure 52°. A feature layer
with dimensions of 10x10x1024 is selected to detect
objects of various sizes. The initial layers (1-5) in this
project are utilized for identifying typical character-
istics present in the object image. The following lay-
ers (from 6 onward) contain more specific informa-
tion about the object. Next, the output of Conv_13
in the MobileNet base network is sequentially con-
volved with a 3x3 kernel, Stride = 2, and a 1x1 kernel,
Stride = 1, to generate subsequent downsized feature
maps. The project requires a total of 6 feature maps
to serve as object detection layers. For every cell in
the detection feature map, 4 default boxes are set up,
each having 5 distinct aspect ratios to encompass size
variations. To obtain a single bounding box for a rec-
ognized object (person), the prediction box with the
greatest level of confidence is selected. Any bounding
boxes with an intersection over union (IoU) threshold
greater than the set threshold are removed. This pro-
cess is repeated until only one bounding box remains
to be output.
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Figure 5: Depthwise-separable convolution layers

Bounding box

Figure 6: The bounding box after applying SSD-MobileNet

Following the application of SSD-MobileNet, Figure 6
depicts the presentation of a bounding box around the
identified person. The positional data of the detected
target are then extracted and employed as an input for
initiating the object motion estimation algorithm to
commence the estimation process.

Control of Object Motion Estimation

Figure 7 indicates the human’s position in the camera
coordinate system. To track a human using the entire
captured image, it is essential to determine the hu-
man’s position in the coordinate framework fixed to
the camera. The O¢ — xcycze coordinate framework
represents the camera coordinates. Py (xo,y0,20) rep-
resents the human’s position at the center of the cam-
era coordinates, where signifies the width [in pixels]
and represents the height [in pixels] of the entire im-
age. Figure 8 illustrates the connection between the

camera coordinates and the global coordinates. Cal-
culating the coordinates (yc,z¢) is feasible because
the whole image is two-dimensional. However, it is
difficult to calculate the distance in xc. Consequently,
Xc is computed as follows:

2ye|+b
61 = 907|y62|v‘vF v &)
_ 2‘yC| +by

= 2tan(6)) 3

where 6 is the angle of view of the camera and 6, is
the angle between the straight line and the z¢-axis.

Figure 1 illustrates the coordination frames utilized
for human tracking. Op — xpypzp represents the
quadcopter coordinate system. Within this system,
vy [m/s] denotes the translational velocities of the
quadcopter along the xg-axis in Op — xpypzp. Ad-
ditionally, y; [rad/s] signifies the angular velocity of
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the quadcopter around the zg-axis in Op — xpypzB-
The desired human position is designated Py(¥o(=
const), ¥o(=0), Zo(=0)). In Figure 3, a block di-
agram of position conversion (PID) concerning the
quadcopter velocity for human tracking is depicted. It
is necessary to give velocities such that Py (xo,y0,z0)
comes to the center (yc = zc = 0) of images captured
by the camera of the quadcopter while maintaining
the distance (x¢ = const) between the quadcopter and
the human. Subsequently, the translational velocities
vy [m/s] and the angular velocity y; [rad/s], which
enable the quadcopter to track the human, are deter-
mined as follows:

de,

by = px€x+kixf(§ ex (‘C)dl"i’kdx; (4)
. de;
Y, = k[)zez +kiZ fO ¢z (T) dT+de? ®

where e, = Xo —xp and e; = ) — yp are the errors be-
tween the position of the human in the center of the
camera coordinate frame and the desired human po-
sition. When the human is undetected in the captured
images, the values of vy [m/s] and y; [rad/s] are both
set to zero. The quadcopter continues human track-
ing until a terminal command signal is received. The
proposed method effectively enables quadcopters to
track humans.

The object tracking algorithm is shown in Algorithm
1. The algorithm takes as input from the image of a

person. Following initialization, the quadcopter un-
dergoes a series of checks to ensure safe and reliable
operation. This initialization phase might involve cal-
ibrating sensors, verifying battery levels, and confirm-
ing proper motor function. Once it is given the all-
clear, the quadcopter autonomously ascends to a pre-
determined altitude. This chosen altitude offers a suit-
able vantage point for the search mission, allowing the
camera to capture a wider field of view and potentially
increasing the chance of human detection. The quad-
copter then starts on a 36-second search mission for
a human target. It continuously scans the environ-
ment using the SSD-MobileNet model. Upon success-
ful detection, the center offset method is used to track
the target by calculating the offset between the person
and the center of the image captured by the camera. If
the offset exceeds zero and the image center lies out-
side the bounding box, the quadcopter rotates accord-
ingly; otherwise, it moves forward and backward. In
the absence of human detection within a designated
timeframe, the system assumes that the target is no
longer present. To optimize the search efficiency, the
quadcopter performs a preprogrammed 10-degree ro-
tation, expanding the search area and increasing the
probability of detection. This iterative process of scan-
ning, tracking (if detected), and rotating continues for
atotal of 36 seconds. If no human is detected through-
out this period, prioritizing safety, the system auto-
matically initiates a landing sequence, returning the
quadcopter to the ground.
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RESULTS AND DISCUSSION

To further assess the benefits of the suggested control,
a series of experiments and evaluations on an actual
system are carried out.

Experiment description

Figure 9 illustrates the basic movements of the quad-
copter during object detection and tracking. We con-
ducted a series of experiments to quantitatively evalu-
ate the algorithm’s performance on real hardware. We
utilized an NVIDIA Jetson NANO embedded com-
puter for this purpose. The algorithm was imple-
mented in Python within the Ubuntu Linux environ-
ment. The experiments were carried out outdoors on
the HCMUTE campus. To minimize the presence of
multiple objects in the scene, we chose a location with
minimal pedestrian traffic. Additionally, favorable

weather conditions were ensured to obtain accurate
evaluation results. The experiments and results were
divided into three parts. First, we evaluated the post-
training data to assess the algorithm’s ability to detect
humans accurately using metrics such as precision, re-
call, and F1-score. Second, the flight data evaluation
focused on system stability and tracking performance.
This involved assessing the quadcopter’s stability dur-
ing takeoff, hovering, landing, and directional move-
ments (forward, backward, and rotational). Finally,
the data are evaluated when combining object detec-
tion and object tracking.

Experimental results
CNN Training

Figure 10 illustrates the process of collecting and
preparing data for model training.
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Table 1: Algorithm 1: Object Tracking Algorithm

Algorithm 1: Object Tracking Algorithm

input: Image person
outputs: v, and y;
begin

/* Initialize */

Sensor calibration, battery level verification, motor confirmation

Take off quadcopter

while (within 36 seconds)

Detect human using SSD-MobileNet

if (objects) then

Calculate the center of the frame, the person P

Calculate the offset between the person and the frame ( ey, ey)

if (offset > 0) & (not centered) then

Calculate PID control for rotation v,

Send the rotation control command

end

else

Calculate PID control for forward, backward v,
Send the forward, backward control command
end

end

Rotation by an angle of 10 degrees

end while

Landing

end

This study employed a single shot detector (SSD) im-
plemented on a powerful processing unit for human
detection on a quadcopter. The SSD model was specif-
ically trained to recognize a single class: individu-
als (persons). To train and evaluate this model effec-
tively, we constructed a comprehensive image dataset
containing two distinct categories: images with ob-
jects (primarily featuring individuals) and images de-
void of objects. The images were carefully curated
to ensure their suitability for real-world applications
involving human detection in a quadcopter environ-
ment. The image acquisition process involved cap-
turing video footage from the quadcopter’s camera.
The footpad showcased a diverse range of human sub-
jects, including group members and other individuals
within the research laboratory. This footpad was then
painstakingly segmented into individual frames, re-
sulting in a raw dataset of approximately 1000 images.
To augment the dataset and enhance its learning po-
tential, we employed data augmentation techniques.
Redundant images were removed, and a subset of im-
ages was transformed using basic manipulations (ro-
tation, scaling, flipping, and brightness) to introduce
variations, enrich the dataset and promote model gen-
eralizability. Figure 11 shows the process of labeling
the data from the dataset.

The dataset comprised a total of 1000 images, main-
taining a 3:1 ratio between images with and without
objects. Each image featuring a person was meticu-
lously labeled for accurate object identification dur-
ing training. Subsequently, these images were di-
vided into three distinct sets—training (70%), valida-
tion (20%), and testing (10%)—for network training
and evaluation. The network configuration included
a dropout ratio of 0.7, a kernel size of 3x3, a box code
size of 4, and a learning rate of 0.001. The training
process was conducted through 200 iterations using
Google Colab. Figure 12 illustrates the model’s out-
comes after completion of the training process.

To assess how well the proposed object detection
method performs on an embedded computer, exper-
iments were conducted using the confusion matrix
method. The experiments were conducted 50 times
and included both positive and negative person in-
stances. These experiments yielded the following met-
rics: precision = 0.96078, recall = 0.98, and F1 =
0.9703. Figure 13 illustrates the results of the train-
ing model.

Additionally, the object detection process analyzed a
frame and generated an output for the detected object
within a time span of 5 ms. During this 5 ms interval,
frames captured by the quadcopter’s camera under-
went processing, and the CNN provided the output
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Figure 13: Output of the CNN model
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Figure 14: Evaluate the processing speed of the model

in the form of an image featuring the bounding box
around the identified object, achieving a frame rate of
27 frames per second (FPS), as shown in Figure 14.

Altitude Control

To test the performance of the proposed controller, an
altitude experiment is first carried out. The objective
of this altitude test is to control the quadcopter to take
off vertically to a desired altitude of approximately 2.5
meters and maintain that altitude for approximately
100 seconds before landing. In Figure 15, the initial
altitude (Z) is set to zero because the altitude of the
quadcopter remains fixed at 2.5 meters upon takeoff.
After removal, the quadcopter hovers at this fixed al-
titude (Z).

Forward, reverse motion control

Following the altitude experiment, rotation and
forward-backward experiments are conducted. The
aim of this experiment is to control the aircraft to
move at predetermined speeds and angles. The pre-
set speed is 1 m/s, and the rotation angle is set to 90
degrees; this process is repeated three times within a
60-second flight time. The resulting data are repre-
sented as squares in Figure 16.

Combined Control

After conducting two flight experiments involving
tracking in the forward, backward, and object rota-
tion directions, the goal is for the quadcopter to de-
tect objects within the frame and simultaneously per-
form forward-backward movement and object track-
ing. Figure 17 shows the real-world object tracking

experiment. The detected object will move freely to
verify the accuracy of the system. The validation flight
process took place over approximately 300 seconds.
Based on the signals from the graphs, we can observe
the aircraft’s status during the tracking process in the
forward, backward, and rotation directions. The roll
angle is approximately equal to 0. In the yaw angle re-
sponse graph, the aircraft rotates from approximately
180 degrees to 0 degrees within 80 seconds, from the
50th to the 130th second, after which it moves north-
ward. During this time, the yaw angle experiences
only slight rotation in the north direction. This in-
dicates that the quadcopter tracks the detected object
relatively well. From the velocity response graph in
the x-direction, it is evident that the aircrafts velocity
in the x-direction is very low, indicating slow forward
movement. However, it still responds effectively to
track the object. Furthermore, the engine pulse out-
put graph shows that the engines pulse continuously
when the aircraft is in a combined state. Pulse gener-
ation during takeoff and landing is very fast, demon-
strating stable takeoff and landing. The resulting data
are represented as squares in Figure 18.

While our object detection and tracking algorithm
demonstrated promising results, its real-world im-
plementation presented unforeseen hurdles. A sig-
nificant challenge arose from the delayed response
data received from the quadcopter. This latency, at-
tributed to the limitations of Bluetooth data transmis-
sion, created a disadvantage in the real-time process-
ing pipeline. Furthermore, the hardware of onboard
cameras occasionally hinders the ability of SSD ob-
ject detectors to consistently identify target objects.
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Figure 15: Output responses of the altitude control experiment

This limitation was particularly evident under varying
lighting conditions, where real-time object detection
proved challenging.

CONCLUSION

This study presents a novel approach for human mo-
tion detection and tracking on a quadcopter, lever-
aging the power of convolutional neural networks
(CNNs).
an embedded computer, comprises two key compo-

The proposed system, implemented on

nents: object recognition and object motion estima-
tion. The object recognition module employs a CNN-
based SSD model to identify moving objects within
the camera’s field of view. This model effectively gen-
erates bounding boxes around detected objects, ex-
tracting their center positions for precise tracking.
Simultaneously, the object motion estimation mod-
ule, powered by a PID controller, dynamically ad-
justs the quadcopter’s flight path to pursue the tar-
get object even under varying speeds. The experi-
mental results demonstrate the impressive capabili-
ties of the system. The object recognition algorithm
boasts high accuracy in object detection and catego-
rization while maintaining low power consumption

and achieving a high frame rate (fps). However, real-
time implementation has revealed limitations asso-
ciated with communication latency due to Bluetooth
data transmission and onboard camera hardware con-
straints. These limitations manifested as occasional
delays in receiving data and hindered object detection
accuracy under varying lighting conditions.

In the future, this work paves the way for further
advancements. Integrating vision-based techniques
with a stereo camera to estimate the distance between
the quadcopter and the target object has emerged as
a crucial area for future research and development.
This advancement would enable more precise object
tracking and navigation, particularly in complex en-
vironments. Additionally, the focus will shift toward
developing more sophisticated algorithms for han-
dling multiple objects. By incorporating techniques
for multiobject tracking, the system could effectively
track and differentiate between multiple people in
high-density environments. This advancement would
be invaluable for applications such as search and
rescue operations in crowded areas or autonomous

surveillance tasks involving multiple targets.
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