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Annihilators of top local cohomologymodules and catenarity of
rings

Nguyen Thi Anh Hang*

ABSTRACT
Let (R, m) be aNoetherian local ring, I an ideal of R andM a finitely generated R-modulewith dimR(M)
= d. The annihilator of the top local cohomology module Hd

I (M) related to the catenarity of the
ring is given in this paper. The main result implies that the ring R is catenary if and only if the
annihilator of the top local cohomology modules is compatible under localization.
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INTRODUCTION
Throughout this paper, let (R, m) be a Noetherian lo-
cal ring, I an ideal of R and M a finitely generated R-
module with dimR(M) = d. We denote by Var(I) the
set of all prime ideals containing I. The i-th local co-
homology Hd

I (M) ofM with respect to I is defined by
Hd

I (M) = lim−−→
n∈N

Ext i
I (R/In,M) .

Annihilators of local cohomology modules play an
important role in the study of some Homology Con-
jecture [ 1, Introduction]. Annihilators of local co-
homology modules are also related to the structure
of rings (see 2–4). A formula for the top local coho-
mology module was given in1,5–7. Assume that 0 =∩

p∈AssR(M) N(p) is the reduced primary decomposi-
tion of 0. Set

UM (0) :=
∩

p∈AssR(M),dim(R/p)=d

N (p)

By [ 7, Corollary 1.3] (see also [ 5, Theorem 2.6]),

AnnRHd
m (M) = AnnRM/UM (0) . (1)

Note that AnnRp Mp = (AnnR M)p for every finitely
generated R-module M and for every ideal p ∈
SuppR(M). Naturally, we ask whether there is an ana-
log property for Artinian modules. It seems diffi-
cult to find a suitable notion of “co-localization” or
“dual to localization” for Artinian modules with cer-
tain necessary properties (see8). So, we concentrate
on Artinian local cohomology modules H i

m(M) with
support in the maximal ideal m. By Local Duality
Theorem (see9), H i−Rdim(R/ p)

p Rp
(Mp) is considered as

“co-localization” of H i
m (M). So it is natural to con-

sider the relation between AnnRp H i−Rdim(R/p)
p Rp

(Mp)

and (AnnRH i
m(M))Rp.

Recall that a ring is called catenary if for any twoprime
ideals p⊂ p′, two maximal chains of prime ideals be-
tween p and p′ have the same length. Now let (R, m)
be a Noetherian local domain of dimension 3 such
that R is not catenary (see [ 10, Appendix, Example 2]).
Since R is not catenary and dim R = 3, there exists a
prime ideal p ∈ Spec(R) such that dim R/p + ht(p) =
2. This follows that dim R/p = 1 and ht(p) = 1. By the
formula (1) for annihilators of top local cohomology
modules, we have(

AnnRH3
m (R)

)
Rp =

(AnnR (R/UR (0)))Rp =

AnnR (R)Rp = 0Rp

and AnnRp H3−dim(R/p)
p Rp

(
Rp

)
= AnnRp 0 = Rp. So

AnnRp H3−dim(R/p)
p Rp

(
Rp

)
̸=

(
AnnRp H3

m (R)
)

Rp

In2, the author and L. T. Nhan showed that R is cate-
nary if and only if

AnnRp Hdim(M)−dim(R/p)
p Rp

(
Mp

)
=
(

AnnRHdim(M)
m (M)

)
Rp

for every finitely generatedR-moduleMand every p∈
Spec(R). In this paper, we extend the above results to
Artinian modules Hd

I (M) for each given finitely gen-
erated R-module M. The main result is presented in
the next section.

MAIN RESULT
Assume 0 =

∩
p∈AssR(M) N(p) is the reduced pri-

mary decomposition of 0. The set of associated primes
of highest dimension is denoted by AsshR(M), i.e.

AsshR (M) =

{p ∈ AssR (M) |dim(R/p) = d} .
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Set

UM (0) :=
∩

p∈AsshR(M)

N (p) .

Note that UM(0) depends only on 0 andM and it does
not depend on the reduced primary decomposition
of 0. Moreover, UM(0) is the largest submodule of
M of dimension less than dim(M). The theory of sec-
ondary representation and the set of attached prime
idealswhich are dual to the theory of primary decom-
position and associated prime ideals respectively were
introduced by I. G. Macdonald (11). It is known that
every Artinian R-module A has a minimal secondary
representation A = A1 + . . . + An, where Ai is pi-
secondary. The set {p1, . . . , pn} is independent of
the choice of the minimal secondary representation
of A. This set is called the set of attached prime ide-
als of A, and denoted by AttR(A). Remind that local
cohomology modules with maximal support H i

m (M)

are Artinian (see [9, 7.1.3]). Attached prime ideals
of top local cohomology modules Hd

m (M) and asso-
ciated prime ideals of M have the following relation
(see [ 9, 7.3.2]).
Lemma 2.1. AttR(Hd

m(M)) = AsshR(M)

Then

UM (0) =
∩

p∈AttR(Hd
m(M))

N (p) .

The following result was proved in [ 7, Corollary 1.3]
(see also [ 5, Theorem 2.6]).
Lemma 2.2. AnnRHd

m (M) = AnnRM/UM (0) .
It is known that the top local cohomology module
Hd

I (M) is Artinian (see [ 9, 7.1.6]). The attached prime
ideals of Hd

I (M) were given in12. Recall that for a
finitely generated R-module L, the cohomological di-
mension of L with respect to an ideal I of R is defined
as follows

cd(I, L) := sup
{

i ∈ Z| H i
I(L) ̸= 0

}
and cd(m, L) = dimRLby theNon-VanishingTheorem
(see [ 9, 6.1.4])
Lemma 2.3. ([ 12, TheoremA]) AttR(Hd

I (M)) = {p ∈
AssR(M)|cd(I, R/p) = d}.
Set N∗ =

∩
p∈AttR(Hd

I (M)) N(p). Since
AttR(Hd

I (M)) ⊆ AsshR(M), UM(0) ⊆ N∗. Fur-
thermore if I = m then UM(0) = N∗ . We have the
following result on the annihilator of the top local
cohomology module Hd

I (M) (see 7).
Lemma 2.4. Assume that Hd

I (M) ̸= 0. Then
(i) N∗ =

∩
cd(I,R/p)=d N (p) = H0

b (M) where b =

∏cd(I,R/p)̸=d . Further more, N∗ is the largest submod-
ule of M such that cd(I, N∗ ) < d.

(ii)AnnRHd
I (M) = AnnRM/

∩
cd(I,R/p)=d N (p) =

AnnRM/N∗.

Therefore, we naturally consider the relation
between AnnRp Hd−pdim(R/p)

pRp
((M/N∗)p) and(

AnnRHd
I (M)

)
Rp where p ∈ Spec(R). The follow-

ing theorem which is the main result of this paper
clarifies the structure of local rings such that the
above two annihilators are equal.
Theorem 2.5. The following statements are equivalent:
(i) R/AnnRHd

I (M) is catenary;
(ii) AnnRp Hd−pdim(R/p)

pRp
((M/N∗)p) =(

AnnRHd
I (M)

)
Rp for all p ∈ Spec(R) .

Proof. (i) ⇒ (ii). Let p ∈ Spec(R). By Lemma
2.4, AnnRHd

I (M) = AnnRM/N∗. Thus if p ̸∈
Var(AnnRM/N∗), then (M/N∗)p = 0 and p ̸∈
Var(AnnRHd

I (M)). In this case we get that
AnnRp Hd−pdim(R/p)

pRp
((M/N∗)p) =

(
AnnRHd

I (M)
)

Rp

= Rp

Now we assume that p ⊇ AnnRM/N∗. By the as-
sumption (i), R/AnnRHd

I (M) is catenary. Since
AnnRM/N = AnnRHd

I (M),M/N∗ is equidimentional,
that is dim R/p = dim M/N∗ for all p ∈ min AssR M.
We get that

dim(M/N∗)p = dim(M/N∗)−dim(R/p)
= d −dim(R/p) .

Note that N∗ =
∩

p∈AttR(Hd
I (M))N (p) is a pri-

mary decomposition of submodule N∗ in M and
AttR(Hd

I (M)) ⊆ AsshR(M). Thus dim(Rp/qRp) =

dim(M/N∗)p for all qRp ∈ AssRp(M/N∗)p. Then
U(M/N∗)p

(0) = 0. By Lemma 2.2,

AnnRp Hd−dim(R/p)
pRp

((M/N∗)p) =

AnnRp ((M/N∗)p) /U(M/N∗)p
(0) = AnnRp(M/N∗)p.

By Lemma 2.1,
(

AnnRHd
I (M)

)
Rp =

AnnRp(M/N∗)p. So we get (ii).
(ii) ⇒ (i). We can assume that Hd

I (M) ̸= 0. Let
q ∈ min

(
Var(AnnRHd

I (M))
)
. We need to prove that

R/q is catenary. Let p ∈ Spec(R) such that p ⊇
q. Then we have qRp ∈ min

(
AnnRHd

I (M)
)

Rp. By
(ii), qRp ∈ min

(
AnnRp Hd−dim(R/ p)

pRp

(
(M/N∗)p

))
.

Hence by11, qRp ∈ AttR(H
d−dim(R/p)
pRp

(
(M/N∗)p

)
).

This follows Hd−dim(R/p)
pRp

(
(M/N∗)p

)
̸= 0. Since

Hd−dim(R/p)
pRp

(
(M/N∗)p

)
̸= 0, dim(M/N∗)p = d −

dim(R/p). As

qRp ∈ AttR(H
d−dim(R/p)
pRp

(
(M/N∗)p

)
),

by Lemma 2.1, we get that

dim(Rp/qRp) = d −dim(R/p),
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i.e. ht(p / q) = d − dim(R/ p). Since q ∈
min

(
Var

(
AnnRHd

I (M)
))
, q ∈ AttR(Hd

I (M)) and
then dim(R/q) = d. Hence

ht(p/q) = dim(R/q)−dim(R/p).

This proves that R/q is catenary. By [13,Theorem 2.2],
R/AnnR(Hd

I (M)) is catenary. □
Wehave the following corollary that is one of themain
results in 2.
Corollary 2.6. The following statements are equiva-
lent:
(i) R is catenary.
(ii) AnnRp Hdim(M)−dim(R/p)

pRp
(Mp) =(

AnnRHdim(M)
m (M)

)
Rp for every finitely gener-

ated R-module M, every p ∈ Spec(R) and every integer
i≥ 0.
Proof. Let M be a finitely generated R-module. If I
= m then N∗ = UM(0). Since dim(UM(0))p < d −
dim(R/p), from the exact sequence

0 → (UM (0))p → Mp → (M/UM (0))p → 0,

we get that

Hd−dim(R/p)
pRp

(
(M/UM (0))p

)
∼= Hd−dim(R/p)

pRp

(
(M)p

)
.

(i)⇒ (ii) follows fromTheorem 2.5 and (1).
(ii) ⇒ (i). Let p ∈ Spec(R). Note that
AnnR

(
Hdim(R/p)

m (R/ p)
)
= p. Set M = R/p. By

(ii), Theorem 2.5 and (1), we get that R/p is catenary.
So, R is catenary. □
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