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ABSTRACT
Introduction: α-Fe2O3 nanorods (α-Fe2O3 NRs), also known as hematite, possess a narrow band
gap, high chemical stability, extensive surface area, controllable size, and outstanding photoelectric
properties. These attributes make hematite a promisingmaterial for various applications, including
gas sensors, optical sensors, and notably, photocatalysis. In previous studies, α-Fe2O3 nanorods
were synthesized using various processes. However, these processes involve extensive use of
precursors, are expensive, and time-consuming, and have negative impacts on the environment.
Hence, this investigation introduces an uncomplicated, efficient, and high-precision hydrothermal
process for synthesizing α-Fe2O3 nanorods (α-Fe2O3 NRs). Methods: We utilized a short-term hy-
drothermal process to synthesize α-Fe2O3 nanorods. Characterization of the nanorods involved
XRD, VESTA, Raman, SEM, and EDX to examine their morphology and structure, with UV-Vis spec-
troscopy used to determine their absorption spectra. The photocatalytic efficiency of the α-Fe2O3
nanorods was assessed by their ability to degrade methylene blue dye at a concentration of 2.5
ppm. Results: VESTA simulations and XRD patterns confirmed that the α-Fe2O3 nanorods have
a rhombohedral crystal structure and belongs to space group R

_
3c. The optical bandgap was de-

termined to be 2.2 eV through calculations using Tauc's method. Through scanning electron mi-
croscopy (SEM), the average length and diameter of the α-Fe2O3 NRs were determined to be 415
nm and 110 nm, respectively. The photocatalytic capacity for degrading methylene blue (con-
centration of 2.5 ppm) was 55%. Conclusion: This exploration of the fundamental characteristics
of α-Fe2O3 NRs offers deeper insights into the properties of nanorod-structured hematite mate-
rials. Moreover, the synthesis of α-Fe2O3 NRs using this hydrothermal method addresses several
previously identified challenges, thereby contributing to broadening the potential applications of
α-Fe2O3 NRs across various fields in the future.
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INTRODUCTION
In recent decades, the synthesis of one-dimensional
(1D) nanostructures has garnered significant atten-
tion and extensive research across various fields
due to their unique physical and chemical prop-
erties 1. Additionally, the morphological diversity
of one-dimensional nanostructures offers numerous
advantages for various applications. For example,
nanowires possess a high surface area-to-volume ra-
tio, low defect density, and excellent optical conduc-
tivity, making them suitable for various applications,
such as nanobiosensors, chemical sensors, gas sen-
sors, and electrochemical sensors2. Due to their high
specific surface area, nanotube structures can serve as
frameworks or containers for other materials that can
be applied in fuel cells, photocatalytic systems, energy
storage, gas sensors, etc.,3. One particularly special
and easily fabricated form of the 1D nanostructure
is nanorods, which are characterized by large surface

areas, easily controllable dimensions, and excellent
optoelectronic properties. Nanorods have numer-
ous important applications in light-emitting diodes
(LEDs), light sensors, photocatalysis, gas sensors,
biosensors, etc,.4 Among the various types of 1Dma-
terials, α-Fe2O3 nanorods, also known as hematite,
stand out due to their narrow band gap (approxi-
mately 2.2 eV), chemical stability, and nontoxic na-
ture5. This makes hematite a highly significant ma-
terial in numerous fields, such as magnetic applica-
tions6,7, gas sensors8, lithium-ion batteries9, drug
delivery technology10, and particularly photocataly-
sis11–14. α-Fe2O3 nanorods have been synthesized
using various physical and chemical methods, such
as sol-gel methods15, hydrothermal methods16, vac-
uum thermal evaporation methods17, green chem-
istry methods18, and micelle methods19. However,
physical methods often require expensive equipment
and complex procedures, leading to limitations in
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practical applications hence, chemical methods are
usually preferred. Among them, the hydrothermal
method has become the preferred choice forα-Fe2O3

nanorod synthesis due to its low cost, simple synthesis
process, and high efficiency compared to other meth-
ods. Despite its numerous advantages, hydrothermal
synthesis still faces some challenges due to the use
of multiple toxic precursors and prolonged reaction
times, which can have negative environmental im-
pacts. This can be observed in some previous studies.
For instance,Gajendra and colleagues conducted a hy-
drothermal process for up to 36 hours, with an addi-
tional 3 hours required to obtain α-Fe2O3 nanorods
using precursors such as diammoniumphosphate and
iron (III) chloride hexahydrate20. Additionally, the
research group led by Suyuan Zeng synthesized α-
Fe2O3 nanorods using a hydrothermal method with
a total reaction time of 20 hours, employing sodium
sulfite and iron(II) sulfate as precursors21. Further-
more, by utilizing iron(III) nitrate nonahydrate and
sodium hydroxide for a 12-hour hydrothermal pro-
cess, Guo-Ying Zhang and colleagues successfully syn-
thesized α-Fe2O3 nanorods for photocatalytic appli-
cations22.
In addition to the challenges related to the use
of multiple precursors and long synthesis times,
most research on photocatalysis only utilizes α-
Fe2O3 nanorods (NRs) as a supporting material com-
bined with other substances, such as cadmium oxide
nanoparticles12, cadmium sulfide nanoparticles23,
chromium dopants13, or hybridization with reduced
graphene oxide (rGO)24. This inadvertently blurs the
distinctive properties of α-Fe2O3 NRs in photocatal-
ysis, significantly impacting the optimization and en-
hancement of material structures to achieve maxi-
mum performance for future studies. Therefore, in
this study, we focused on developing a simple hy-
drothermal process that saves time and utilizes fewer
precursors to synthesize α-Fe2O3 nanorods. Addi-
tionally, the properties of the hematitematerial are ex-
amined and clearly presented through a combination
of experimental work and simulation calculations.
Furthermore, the photocatalytic capability of the α-
Fe2O3 NRs was investigated through the degrada-
tion of methylene blue (MB) dye. With this method,
this study not only provides a clearer understanding
of the material but also partially addresses some of
the abovementioned challenges, thereby contributing
to expanding the potential applications of α-Fe2O3

nanorods in various fields in the future, both gener-
ally and particularly in the field of photocatalysis.

MATERIALS-METHODS
Chemical materials
The chemicals used in this experiment included
iron(III) chloride hexahydrate (FeCl3·6H2O, 99%,
SigmaAldrich, USA), sodium nitrate (NaNO3, 99%,
SigmaAldrich, USA), and methylene blue (82%, Sig-
maAldrich, USA).

Characteristics
The surface morphology and density of the nanorods
were examined using scanning electron microscopy
(SEM, Hitachi S-4800). The crystalline structure
of the α-Fe2O3 nanorods was observed via X-ray
diffraction (XRD) performed on a D8 Advance-
Bruker X-ray diffractometer operating at 40 kV and
100 mA with a Cu/Kα radiation source (λ = 0.154
nm). The optical properties of the nanorods were
determined through UV−Vis spectroscopy (JASCO
V670). Raman spectra were recorded using a Raman
spectrometer (Xplora One, HORIBA) with an excita-
tion wavelength of 532 nm, a power of 5 mW, a 10×
objective, and an acquisition time adjusted to 15 sec-
onds per spectrum. 3D structural models and XRD
patterns based on computational simulations of α-
Fe2O3 nanorods were generated using VESTA soft-
ware (Visualization for Electronic Structural Analy-
sis).
The photocatalytic efficiency of the α-Fe2O3

nanorods (NRs) was assessed by their ability to
degrade methylene blue (MB) dye. The sample,
with a size of 2 cm × 2 cm of α-Fe2O3 thin film,
was added to 20 mL of the 2.5 ppm MB solution
and then stirred evenly in the dark for 2 hours to
ensure adsorption equilibrium. Subsequently, the
sample was irradiated under visible light for 8 hours.
The illumination source was a visible light lamp,
equivalent to 1 sun, and a cooling fan was utilized to
maintain the ambient temperature. The absorbance
spectra of the MB solution were recorded at 2-hour
intervals.

Fabrication processes
The synthesis of the α-Fe2O3 nanorods followed a
hydrothermal method similar to that used in Dong
Chen’s study25 . Initially, a solution containing
FeCl3·6H2O (0.15 M) and NaNO3 (1 M) with a to-
tal volume of 10 mL was prepared at room tempera-
ture. Once the precursors were completely dissolved
in the solution, the mixture was transferred to a 25
mL Teflon-lined autoclave. Subsequently, a clean sil-
icon substrate was placed inside the autoclave, which
was then placed in an oven at 100 ◦C for 4 hours to

3454



Science & Technology Development Journal 2024, 27(2):3453-3462

formFeOOHnanorods. Next, the sample waswashed
multiple times with deionized water and ethanol to
remove impurities. Finally, the FeOOH sample was
transferred to a furnace and annealed at 550 ◦C for 2
hours to convert it into α-Fe2O3 nanorods.

RESULTS
Thesimulated structure ofα-Fe2O3 is depicted in Fig-
ure 1. Hematite possesses a rhombohedral crystal
structure and belongs to the space group R

_
3c26. In

each primitive cell, there are two formula units (arh =
5.427 Å; a = 55.3) (Figure 1a), whereas the unit cell
contains six formula units (a = b = 5.034 Å; c = 13.75
Å) (Figure 1b)27. Furthermore, the arrangement of
anions and cations results in an octahedral structure
comprising one iron atom and six oxygen atoms (Fig-
ure 1c).
X-ray diffraction (XRD) patterns obtained experi-
mentally and through simulation were utilized to
evaluate the crystal structure of α-Fe2O3, as shown
in Figure 2. There are 14 characteristic diffraction
peaks of α-Fe2O3 obtained experimentally at 2θ an-
gles of 24◦, 32◦, 35◦, 39◦, 40◦, 43◦, 49◦, 53◦, 57◦,
61◦, 63◦, 69◦, 71◦, and 74◦ corresponding to lattice
planes (012), (104), (110), (006), (113), (202), (024),
(116), (018), (214), (300), (208), (119), and (217), re-
spectively. These peaks coincide with the simulated
diffraction peaks and are all in good agreement with
JCPDS number 33-0664 28.
The optical properties of α-Fe2O3 are illustrated in
Figure 3, which shows the light absorption of our sam-
ple in the wavelength range from 380 nm to 1000 nm.
Clearly, the absorption peak is found ca. 400 nm
(Figure 3a). A further analysis using Tauc’s plot (Fig-
ure 3b) revealed that the optical bandgap of our iron
oxide material was approximately 2.2 eV, which is
similar to the band gap values ofα-Fe2O3 in other re-
ports29. Additionally, the bandgap energy (Eg) is cal-
culated to be approximately 2.2 eVusing theKubelka–
Munk equation30:

(αhv)n = A
(
hv−Eg

)
whereA is a constant, hv is the intensity of the incident
light, α is the absorption coefficient, and n is 1/2 for
the indirect bandgap and 2 for the direct bandgap.
Figure 4a-c displays SEM images of α-Fe2O3

nanorods synthesized at different hydrothermal
times (3 h, 4 h, and 5 h). At a hydrothermal duration
of 3 hours, the nanorods are still in the early stages of
development, exhibiting a fragmented distribution.
Conversely, the samples treated for 4 and 5 hours had
nanorods with consistent density and well-defined

structures. However, considering the time and
energy efficiency, the 4-hour hydrothermal sample
was selected as the most suitable sample for further
investigation. Subsequently, SEM analysis at a scale
of 1 µm (Figure 4d) revealed uniform growth of
nanorods across a substantial area. Additionally,
EDX analysis (Figure 4e) detected Fe, O, Si, and
C elements without any presence of any foreign
elements, further confirming the high purity of the
synthesized sample.
Figure 5 shows the Raman spectrum of the α-Fe2O3

nanorods. Apart from the characteristic peak of the
silicon substrate at 521 cm−1, the remaining peaks
are indicative of the hematite structure31,32. Specif-
ically, the peaks at 224 and 475 cm−1 are assigned to
the A1g vibrational mode, while the five peaks at ap-
proximately 244, 291, 408, 609, and 814 cm−1 are at-
tributed to the Eg mode.
Figure 6a and Figure 6b depict the absorption spectra
of the MB solution in the absence and presence of α-
Fe2O3 NRs under visible light, respectively. Through-
out the dark stirring process, the maximum absorp-
tion intensity of the MB solution containing the α-
Fe2O3 NRs gradually decreased, indicating that MB
adsorbed onto the stable material surface. Upon il-
lumination, the intensity of the absorption peak of
the MB solution with the α-Fe2O3 NRs catalyst de-
creased more rapidly over time than that of the solu-
tion without the catalyst. This observation proves that
the α-Fe2O3 NRs material exhibits photocatalytic ac-
tivity in the visible light region. Hence, to further as-
sess the photocatalytic performance, the degradation
efficiency and reaction rate constant of MB by the α-
Fe2O3 NRs were calculated (Figure 7).

DISCUSSION
The VESTA simulation findings for the crystal struc-
ture of α-Fe2O3 (Figure 1) reveal that the hematite
structure is based on the arrangement of O2− anions,
which form a hexagonal close-packed (HCP) lattice
along the [001] direction of the Fe3+ cations. One
iron atom and six oxygen atoms form an octahedral
unit, with each octahedral unit sharing edges with
three neighboring octahedra in the same plane. Con-
sequently, the octahedral units undergo distortion, re-
sulting in two different bond lengths of Fe–O, mea-
sured at 1.98Å and 2.09Å33. In theXRDpattern (Fig-
ure 2), the experimentally synthesized sample exhibits
the presence of 14 characteristic diffraction peaks of
α-Fe2O3 without any additional peaks, indicating the
high purity of the sample obtained through the hy-
drothermal method in this study. This finding con-
tributes to demonstrating the successful attainment of
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Figure 1: Models for the crystal cell structure of α-Fe2O3:a) the rhombohedral primitive cell, b) the conventional
unit cell of α-Fe2O3 and (c) the octahedral structure in the unit cell. Top of Form

Figure 2: XRD pattern ofα-Fe2O3NRs obtained from the experiment (red line) and from the simulation (blue line)
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Figure 3: a) UV-Vis absorption spectrumwas recorded from the wavelength of 350 to 1000 nm and b) The optical
bangapd of the α-Fe2O3 NRs was caculated from Tauc method

Figure 4: SEM images ofα-Fe2O3 NRs at different hydrothermal times: a) 3 h, b) 4 h, and c) 5 h. d) Large-scale SEM
image and e) EDX spectrum of the α-Fe2O3 NRs sample after 4 h of hydrothermal treatment.

the α phase of Fe2O3 with the depicted crystal struc-
ture. Additionally, the fundamental parameters of the
diffraction peaks obtained from the simulation are
clearly depicted in Table 1. In the UV−Vis absorp-
tion spectrum (Figure 3), the α-Fe2O3 NRs exhibit a
wide absorption range, with a peak at a wavelength
of approximately 400 nm. The optical band gap was
calculated at a value of 2.2 eV using Tauc’s method.
This indicates the suitability of α-Fe2O3 NRs for ef-
ficient photocatalytic applications under visible light.
In addition, nanorods subjected to 4 hours of hy-
drothermal treatment exhibited uniform growth with
high density, with an average diameter of 110 nm and

a length of 415 nm (depicted in Figure 4b and Fig-
ure 4d). Additionally, the EDX spectrum (Figure 4e)
only detected the presence of elements that make up
hematite (Fe and O), along with signals from the sili-
con substrate (Si) and carbon tape (C) utilized during
the EDX measurement process. This further under-
scores the high purity of the prepared sample. There-
fore,α-Fe2O3 NRs present distinct advantages for ap-
plications requiring large surface areas or structured
patterns, particularly in the realm of photocatalysis,
due to their exceptional adsorption capacity for de-
composing organic compounds. In the Raman spec-
trum of α-Fe2O3 depicted in Figure 5, the peaks cor-
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Figure 5: Raman spectrum of the α-Fe2O3 NRs under excited laser with the wavelength of 532 nm

Figure 6: (a) The absorption spectra of methylene blue (MB) without and b) with α-Fe2O3 NRs under dark and
light conditions
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Figure7: (a) Degradation curve of theMB solution under dark and visible light conditions. (b) The reaction kinetics
constant of MB with and without α-Fe2O3 NRs.

responding to the A1g vibrational mode at 224 and
475 cm−1 indicate symmetric stretching vibrations of
the Fe–Obond, while those assigned to the Eg mode at
244, 291, 408, 609, and 814 cm−1 represent symmet-
ric bending vibrations of the same bond7. Besides,
the characteristic peaks of hematite mentioned above,
the appearance of vibrations at around 662 cm−1 is
related to larger nanoparticles than to the size of the
nanostructured particles8,9. This may explain why
this peak is not always observed in the Raman spectra
of nanostructured hematite10. This result is consis-
tent with the SEM images demonstrating the synthe-
sis of α-Fe2O3 as nanorods. Moreover, the detected
Raman bands signify the propagation of lattice vibra-
tionwaves, known as phonons, arising from repetitive
and systematic oscillations of the crystal lattice within
the hematite structure11. Notably, the characteristic
vibration peaks of hematite synthesized through this
method exhibit high sharpness and clarity. Compar-
ing the Raman spectrum with the XRD pattern (Fig-
ure 2) reaffirms the high crystallization of the syn-
thesized hematite structure. Furthermore, apart from
the silicon substrate peak at 521 cm−1, no anomalous
peaks indicative of parasitic phases, other iron oxides,
or iron oxyhydroxides were detected. Moreover, the
dye degradation efficiency was calculated using the
following equation12:
% dye degradation= [(C0-Ct )/C0]× 100% (1)
The photodegradation of these nanomaterials was
also quantitatively described using the pseudo-first-
order kinetic equation, which is the most common
rate law and was adopted as follows13:
ln(Ct /C0) = -kt (2)
where C0 and Ct are the initial dye concentration and
dye concentration at time ‘t’, respectively.

The results indicate that in the absence of a catalyst,
the self-degradation capacity of MB (2.5 ppm) is only
approximately 10%. With the α-Fe2O3 NRs catalyst
in the MB sample, after adsorption-desorption equi-
librium, the MB concentration decreased to 78% of
the initial concentration. This reduction corresponds
to the removal of approximately 22% of MB due to its
absorption onto the material’s surface. After 8 h of
the photocatalytic reaction, theMB concentration de-
creased further to 45%, indicating an additional 33%
removal through the photocatalytic process. These re-
sults demonstrate that 55% of the α-Fe2O3 NRs were
removedin this study. Furthermore, the reaction rate
constant of the MB solution in the presence of the
α-Fe2O3 NRs catalyst is -0.07008, approximately 7.2
times greater than the rate constant of MB without α-
Fe2O3 NRs, which is -0.00972. Although the photo-
catalytic efficiency of α-Fe2O3 NRs is not yet high,
this material has potential due to the simplicity of the
fabrication process and sample recovery after the cat-
alytic reaction.

CONCLUSIONS
In summary, we have successfully synthesized α-
Fe2O3 nanorods through a simple, rapid, and cost-
effective process, yielding promising results. Specif-
ically, nanorods withaverage lengths and diameters
of 415 nm and 110 nm, respectively, were grown
at a uniform density. Furthermore, the synthesized
nanorods exhibited an Eg of 2.2 eV and demon-
strated a 55%degradation efficiency of MB through-
out the entire process. Additionally, through a com-
bination of experimental and simulation approaches,
it has been confirmed that these α-Fe2O3 nanorods
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Table 1: Basic parameters of the diffraction peaks of α-Fe2O3

h k l 2θ d (Å) h k l 2θ d (Å)

0 1 2 23.942 3.7137 2 1 10 93.019 1.0618

1 0 4 32.976 2.7141 4 0 4 94.388 1.0499

1 1 0 35.223 2.546 1 1 12 94.805 1.0464

0 0 6 39.21 2.2957 1 3 7 95.73 1.0387

1 1 3 40.481 2.2266 3 2 1 99.542 1.0089

2 0 2 43.04 2.0999 1 2 11 100.6 1.0011

0 2 4 49.019 1.8569 2 3 2 100.63 1.0009

1 1 6 53.719 1.7049 3 1 8 101.17 0.9971

2 1 1 55.49 1.6546 2 2 9 103.83 0.9787

1 2 2 56.784 1.62 3 2 4 105.05 0.9706

0 1 8 57.407 1.6039 4 1 0 106.35 0.9623

2 1 4 61.788 1.5002 0 1 14 106.68 0.9603

3 0 0 63.208 1.4699 2 3 5 108.41 0.9497

1 2 5 65.39 1.426 1 4 3 109.75 0.9418

2 0 8 69.17 1.357 4 1 3 109.75 0.9418

1 0 10 71.73 1.3148 0 4 8 112.13 0.9284

1 1 9 71.923 1.3117 1 3 10 114.76 0.9146

2 2 0 74.474 1.273 3 0 12 116.74 0.9047

2 1 7 74.554 1.2718 0 3 12 116.74 0.9047

3 0 6 76.963 1.2379 3 2 7 117.77 0.8997

0 3 6 76.963 1.2379 2 0 14 118.04 0.8985

2 2 3 77.797 1.2267 2 1 13 118.96 0.8942

1 3 1 78.44 1.2182 4 1 6 120.45 0.8875

3 1 2 79.536 1.2042 1 4 6 120.45 0.8875

1 2 8 80.066 1.1975 3 1 11 123.38 0.8749

0 2 10 82.506 1.1682 5 0 2 123.42 0.8748

1 3 4 83.882 1.1525 2 3 8 124.04 0.8722

0 0 12 84.3 1.1479 1 1 15 126.18 0.8638

3 1 5 87.118 1.1178 4 0 10 127.01 0.8607

2 2 6 87.564 1.1133 0 5 4 128.74 0.8544

0 4 2 90.083 1.0886
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possess a rhombohedral crystal structure and belong
to the space group R

_
3c. With this characterization,

we hope to provide valuable insights to facilitate fur-
ther research endeavors based on α-Fe2O3 nanorods,
thereby expanding the potential applications of this
material in the future.
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