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ABSTRACT
Colistin (polymyxin E) is the last-resort antibiotic used to treat multidrug-resistant Gram-negative
bacterial infections, including those caused by Pseudomonas aeruginosa. The global emergence
of colistin-resistant Pseudomonas aeruginosa is a significant concern for healthcare professionals.
Therefore, identifying key contributors to the development of colistin resistance is crucial for ad-
dressing this issue. In this study, P. aeruginosa ATCC 9027 was serially exposed to subminimal in-
hibitory concentrations (MICs) of colistin for 14 consecutive days to obtain the Col-E1 strain. The
Col-E1 strain was then cultured for 10 days in antibiotic-free medium to acquire the Col-E2 strain.
Thewhole-genome sequences of three strains, namely, P. aeruginosa ATCC 9027 (the original strain,
PA-1), Col-E1 and Col-E2, were assembled, annotated and analyzed. The bioinformatics pipeline in-
cluded FASTQC (v0.11.9) for quality control; Unicycler (v.0.5.0) for de novo assembly; Bowtie2 (v2.4.5)
and Picard Tools (v.2.27.4) for alignment; SAMtools (v1.11) and BCFtools (v.1.15) for variant calling;
and SnpEff (v5.1) for variant annotation. As a result, we obtained a draft genome of P. aeruginosa
ATCC 9027 consisting of 6,314,207 bp with 146-fold coverage. After aligning Col-E1 and Col-E2
against the draft genome, the number of insertion-deletions (INDELs) and single nucleotide poly-
morphisms (SNPs) were found, with 486 INDELs and 162 SNPs for Col-E1 and 474 INDELs and 163
SNPs for Col-E2. A high overlap rate of variants, including 448 INDELs and 153 SNPs, was observed
between Col-E1 and Col-E2, indicating that the number of variants was constant. The analysis re-
vealed notable mutations in genes encoding ribosomal components (rpsL, rpsG, and rpsJ), genes
involved in efflux transmembrane transporter activity (czcC_1), andgenes encoding anoutermem-
brane porin (oprD). The variants were found in upstream (36.5%), downstream (25.7%) or intergenic
(19.1%) regions. These mutations may be involved in gene expression regulation, leading to the
development of a colistin-resistant phenotype. In conclusion, this study provided a preliminary
overview of how P. aeruginosa responds to colistin antibiotic stress at the genomic level. These
mutations could be used as markers for colistin resistance and further investigated to clarify their
role in the colistin resistance of Pseudomonas aeruginosa.

Genomic alterations of P. aeruginosa ATCC 9027 under colistin exposure.
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INTRODUCTION1

Pseudomonas aeruginosa (P. aeruginosa) is a gram-2

negative, rod-shaped bacterium that usually causes3

chronic infections. Due to its ability to adapt and sur-4

vive under various environmental and physical con-5

ditions, P. aeruginosa is among the group of six bac-6

teria known as “ESKAPE” pathogens and is consid-7

ered a priority by the World Health Organization due8

to its antibiotic resistance1. In some cases, colistin9

is the only effective treatment for P. aeruginosa re-10

sistant to all tested antibiotics 2. Colistin (polymyxin11

E) is an effective antimicrobial agent against gram-12

negative bacterial infections. However, it is often used13

as a last-resort treatment for P. aeruginosa infections14

caused bymultidrug-resistant (MDR) and extensively15

drug-resistant (XDR) strains3. Colistin primarily acts16

on the outer membrane of gram-negative bacteria. It17

works by binding to the phosphate groups of mem-18

brane lipids and replacing divalent cations (Ca2+ and19

Mg2+). This process disrupts the integrity of the outer20

membrane and increases its permeability, causing the21

release of intracellular contents and ultimately lead-22

ing to cell death4,5. Resistance to colistin occurs with23

lipopolysaccharide (LPS) modification through dif-24

ferent routes. The most common strategies for over-25

coming colistin resistance are modifications of the26

bacterial outer membrane through the alteration of27

LPS and a reduction in its negative charge6,7. The28

other strategy is the overexpression of efflux pump29

systems8. Another mechanism is the overproduction30

of capsule polysaccharides 9. In this study, whole-31

genome analysis using Illumina short-read sequenc-32

ing and bioinformatic tools was carried out to assist33

in the characterization of antibiotic resistance. This34

study was the first in Vietnam to construct a full35

genome assembly of P. aeruginosa ATCC 9027 and36

analyze the geneticmutations caused by colistin expo-37

sure. By aligning the genomic sequences of colistin-38

exposed P. aeruginosa strains to those of the origi-39

nal strain before exposure, potential mutations that40

can be used as markers for colistin resistance could41

be identified, and how P. aeruginosa underwent mi-42

croevolution to survive antibiotic stress could be de-43

termined. With the emergence of colistin-resistant P.44

aeruginosa worldwide, a study on the development of45

colistin resistance in P. aeruginosa could be the key to46

controlling the spread of resistance.47

MATERIALS ANDMETHODS48

Bacterial strains49

P. aeruginosa ATCC 9027 was used as the original50

strain (PA-1). Strains Col-E1 and Col-E2 were ob-51

tained from P. aeruginosa ATCC 9027. In brief, P.52

aeruginosa ATCC 9027 (colistin MIC= 4 µg/ml) was 53

cultured in sub-MICs of colistin for 14 days to obtain 54

Col-E1 (colistin MIC = 16 µg/ml). Col-E2 (colistin 55

MIC = 8 µg/ml) was obtained after culturing Col- 56

E1 in colistin-free medium for 10 days. The duration 57

was selected on day 14 for exposure and 10 for re- 58

version because they are the time points at which the 59

MIC values of the strains became stable. All bacterial 60

strains were stored at −80 ◦C in Tryptic Soya broth 61

(TSB; HiMedia) supplemented with 30 % glycerol 62

(TSB/glycerol 7: 3, v/v). For genomic DNA extrac- 63

tion, the samples were thawed directly from storage 64

and cultured at 37 ◦C overnight at 120 rounds/minute 65

(rpm) in TSB. 66

DNA isolationandwhole-genomesequenc- 67

ing 68

Genomic DNA was extracted using a GeneJET Ge- 69

nomic DNA Purification Kit (Thermo Fisher Scien- 70

tific). Total DNAwas quantified using a BioTek Take3 71

(Agilent Technologies, Santa Clara, CA, USA). The 72

paired-end (PE) libraries were prepared using the 73

NEBNext Ultra II DNA Library Prep Kit for Illumina 74

(New England BioLabs, USA) according to the man- 75

ufacturer’s instructions. Finally, the paired-end li- 76

braries (2 × 150 bp) were sequenced on an Illumina 77

MiniSeq system at KTest Science Co., Ltd. (Vietnam). 78

The raw sequences were deposited in the NCBI Bio- 79

Project under accession number PRJNA1111315. 80

De novo assembly and sequence annota- 81

tion 82

The PA-1 strain was used as a reference strain. The 83

low-quality bases and adapter sequences were re- 84

moved using Cutadapt (version 4.1)10. Sequence 85

quality was evaluated using FastQC (v0.12.1) 11. 86

High-quality reads of PA-1 were then assembled 87

by the hybrid assembly pipeline Unicycler (v.0.5.0), 88

which yields accurate, comprehensive, and cost- 89

effective data 12. After that, the assembly was evalu- 90

ated using QUAST (v5.2.0) 13. Prokka (v1.14.5) was 91

used to annotate the draft genome of PA-114. 92

WGS sequencing analyses, processing, and 93

variant calling and annotation 94

The raw sequence reads of Col-E1 and Col-E2 were 95

also subjected to the QC process as described above. 96

High-quality reads were mapped against the draft 97

genome using Bowtie2 (v2.4.5)15 with parameters 98

specifying for paired-end reads followed by mark du- 99

plication using Picard tools (v.2.27.4). The alignment 100

files were then sorted and indexed using SAMtools 101
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(v1.11)16. Qualimap (v.2.2.1) was used for evaluating102

sequence alignment data17. The SAMtools mpileup103

utility and BCFtools (v1.15) were used to call ge-104

nomic variants. Hard filtering was then applied to105

the raw variant data to extract high-confidence mu-106

tations. High-confidence variants were subjected to107

SNPeff (v5.0e)18 for gene-based and region-based an-108

notation.109

The workflow of the study is summarized in Figure 1.110

RESULTS111

Draft genome sequence of Pseudomonas112

aeruginosa ATCC 9027.113

After removing low-quality reads, 6,317,853 paired-114

end reads were retained, with an average quality per115

read of 36. A 6,314,207-bp assembly with 146-fold116

coverage was constructed consisting of 79 contigs117

ranging from 200 bases to 479,350 total bases in118

length (Figure 2A, B). The assembled N50 value was119

284,316 bp, and the average GC content was 66.66%120

(Figure 2C). After draft genome annotation, 5980121

genes were identified. The sequences ranged from 28122

bp to 13,029 bp, including 5811 coding sequences,123

99 miscellaneous RNAs, 69 tRNAs, and 1 CRISPR124

molecule.125

Genomic variation of colistin-resistant126

Pseudomonas aeruginosa127

The genomic alteration of P. aeruginosa in response128

to colistin was revealed by aligning both Col-E1 and129

Col-E2 against the PA-1 draft genome. High-quality130

mapping reads were obtained with 6,657,709 reads for131

Col-E1 and 7,717,242 reads for Col-E2. The mean132

depth coverages were 155.46-fold greater for Col-E1133

and 181.52-fold greater for Col-E2, with a similar134

mapping rate of 99.38%.135

After hard filtering, 162 and 486 high-confidence136

SNPs and INDELs were identified in Col-E1, while137

163 and 474 high-confidence SNPs and INDELs were138

identified in Col-E2 (Figure 3A). A high overlap rate139

of variants between Col-E1 and Col-E2 was observed,140

including 153 SNPs and 448 INDELs (Figure 3B, C).141

This observation indicated that colistin exposure has142

a permanent effect on genomic alterations. Further143

investigations are necessary to reach a definitive con-144

clusion.145

Functional annotation of genomic variants.146

The functional annotation of the genomic variants147

is summarized in Table 1 and visualized in Fig-148

ure 4 and Figure 5. In Col-E1, genomic alter-149

ations resulted in 2,693 functional effects, including150

45 (1.67%) LOW, 37 (14%) MODERATE, 17 (0.63%) 151

HIGH, and 2,594 (96.32%) MODIFIER. Among the 152

HIGH effect variants, 2 stop_gain variants related to 153

2 SNPs at the ATCC_9027_59700_gene (p.Gln419*) 154

and ATCC_9027_59770_gene (p.Arg65*) loci were 155

identified. Most INDELs caused frameshift muta- 156

tions14, and 4 INDELs were related to start_lost mu- 157

tations (Figure 4, Table 1). These mutations are lo- 158

cated in puuA and aroH,which are not known to cause 159

antibiotic resistance. 160

A high number of alterations were found to have a 161

MODIFIER effect (Table 1). Notable genes included 162

ribosomal components (rpsL, rpsG, and rpsJ), efflux 163

transmembrane transporter activity (czcC_1), and the 164

outer membrane porin oprD. An insertion mutation 165

upstream of oprD,which encodes an outer membrane 166

porin that plays a significant role in the uptake of basic 167

amino acids and carbapenems, was detected. 168

As expected, the variant profile of Col-E2 was similar 169

to that of Col-E1 (Figure 5, Table 1). 170

DISCUSSION 171

This study is the first in Vietnam to provide a whole- 172

genome assembly of P. aeruginosa ATCC 9027 and 173

characterize the genomic changes under colistin an- 174

tibiotic stress. It has been suggested that antibi- 175

otics at low doses tend to increase the mutation rate 176

in pathogens. The hypothesis is that higher muta- 177

tion rates enable faster adaptation to specific environ- 178

ments19,20. Exposure to antibiotics has been shown 179

to increase mutation and recombination frequencies 180

in bacteria through the SOS response, even under 181

sub-MIC conditions, which do not completely in- 182

hibit bacterial growth 20,21. Although the mechanism 183

of polymyxin resistance is relatively well character- 184

ized22, there have not been many reports on genomic 185

changes under sub-MIC antibiotic pressure. Thus, 186

this article provides a preliminary overview of how 187

the P. aeruginosa genome responds to colistin antibi- 188

otic stress. The genomic profiles of Col-E1 and Col- 189

E2 were similar, indicating that consistent genomic 190

changes resulted in a resistance phenotype in both 191

strains. However, the specific genomic variations that 192

lead to the development of colistin resistance are still 193

unclear. 194

As a last resort antibiotic, there are considerably 195

fewer reports of colistin resistance compared to 196

other antibiotics or polymyxins in general. The 197

most common chromosome-encoded mechanisms 198

of polymyxin involve mutations in two-component 199

systems (TCSs), namely, PmrA/PmrB, PhoP/PhoQ, 200

ParR/ParS, ColR/ColS and CprR/CprS, which re- 201

sults in the activation and overexpression of LPS- 202

modifying genes22. Among these, mutations in 203
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Table 1: Functional annotation of Col-E1 and Col-E2.

Sample Type Impact Region Annotation Count Percent (%)

Col-E1 SNPs LOW synonymous_variant 45 1.67

MODERATE missense_variant 27 1

HIGH stop_gained 2 0.07

MODIFIER downstream_gene_variant 133 4.94

MODIFIER intergenic_region 88 3.27

MODIFIER upstream_gene_variant 235 8.73

INDELs MODERATE conservative_inframe_deletion 1 0.04

MODERATE conservative_inframe_insertion 3 0.11

MODERATE disruptive_inframe_insertion 6 0.22

HIGH frameshift_variant 14 0.52

HIGH frameshift_variant&start_lost 1 0.04

MODIFIER downstream_gene_variant 572 21.24

MODIFIER feature_elongation 412 15.3

MODIFIER intergenic_region 433 16.08

MODIFIER upstream_gene_variant 721 26.77

Col-E2 LOW synonymous_variant 45 1.66

MODERATE missense_variant 26 0.96

HIGH stop_gained 2 0.07

MODIFIER downstream_gene_variant 161 5.93

MODIFIER intergenic_region 90 3.31

MODIFIER upstream_gene_variant 264 9.72

INDELs MODERATE conservative_inframe_deletion 1 0.04

MODERATE conservative_inframe_insertion 2 0.07

MODERATE disruptive_inframe_deletion 1 0.04

MODERATE disruptive_inframe_insertion 5 0.18

HIGH frameshift_variant 13 0.48

MODIFIER downstream_gene_variant 526 19.36

MODIFIER feature_elongation 402 14.8

MODIFIER intergenic_region 423 15.57

MODIFIER upstream_gene_variant 756 27.82
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Figure 1: Workflow of the study.

pmrA, pmrB and phoQ have been reported in colistin-204

resistant clinical isolates23.205

In this study, no common mutations were detected206

among polymyxin-resistant strains. This suggests that207

the development of colistin resistance involves reg-208

ulatory mechanisms of gene expression. We iden-209

tified insertion mutations occurring downstream of210

rpsL in both Col-E1 and Col-E2. Mutations in211

rpsL are associated with resistance to streptomycin,212

kanamycin, and amikacin. Moreover, rpsL muta-213

tions were detected in many pathogens in the ES-214

KAPE group24. Hence, under antibiotic pressure,215

the alteration of rpsL expression might be the key216

factor that helps pathogens adapt to extreme condi-217

tions. We also reported a mutation in the upstream218

region of oprD, a porin that has been linked to many219

antibiotic-resistant strains, including carbapenem-220

resistant strains. Reduced expression/inactivation221

of OprD is a major carbapenem resistance mecha-222

nism25. Downregulation of oprD was also found223

in in vitro-induced ciprofloxacin-, ceftazidime-, and224

meropenem-resistant strains26,27. The genomic alter-225

ation in oprD found here might be linked to the alter-226

ation in the expression of OprD, which plays a part in227

colistin resistance in these strains. Indeed, the down-228

regulation of OprD can also affect colistin resistance229

in P. aeruginosa28. Further investigation is needed to 230

clarify the function of this oprD mutation in the de- 231

velopment of colistin resistance. In addition to oprD, 232

oprH and oprF are also important genes encoding the 233

outer membrane proteins of P. aeruginosa. These mu- 234

tations were detected, but nomutations were detected 235

for these genes. OprH is thought to play an essential 236

role in polymyxin resistance because it interacts with 237

LPS and prevents polymyxin from binding to LPS 29. 238

Nevertheless, P. aeruginosa with an oprH deletion did 239

not exhibit reduced susceptibility to polymyxin30. In 240

contrast, the absence of OprF promoted biofilm for- 241

mation and was linked to antibiotic resistance31. 242

Efflux pumps contribute significantly tomultidrug re- 243

sistance in P. aeruginosa32. Mutations in the efflux 244

pump regions usually result in increased expression of 245

the pump, which lowers the antibiotic concentrations 246

inside the cell. These mutations are typically found 247

in the promoter region or upstream of genes33,34. 248

Mutations in the efflux pump MexA induce antibi- 249

otic resistance in P. aeruginosa35. The efflux pump 250

MexXY/OprM has been known to contribute to the 251

resistance of P. aeruginosa to colistin36. In one study, 252

the knockout of MexXY-OprM increased the sus- 253

ceptibility of P. aeruginosa to cationic antimicrobial 254

agents, while mutations in mexX and mexY did not 255

5
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Figure 2: General statistics of the P. aeruginosa draft genome. (A) Length in base pairs of assembled contigs. (B)
Cumulative contig length. (C) GC content over contigs.

change the sensitivity to polymyxin37. Our study re-256

vealed an upstream mutation in czcC_1, which has257

transmembrane efflux transporter activity. This gene258

is known to help P. aeruginosa resist cobalt-zinc-259

cadmium38. Although the connection between these260

heavymetals and colistin has been unclear, it has been261

reported that the combination of colistinwith zinc ox-262

ide has a synergistic effect on P. aeruginosa39. The263

combination of colistin and metals can be further in-264

vestigated, which could help increase the effectiveness265

of this last-resort antibiotic.266

Similarly, themajority of variants appearing in the up-267

stream and downstream regions suggest the role of268

regulatory factors in ensuring survival of the pathogen269

during the adaptation process. Previously, studies of270

pathogen adaptation and evolution have focused pre-271

dominantly on coding regions40,41. However, non-272

coding regions (upstream, downstream, intergenic)273

might contain elements that regulate the expression274

of proteins and consequently determine virulence and275

resistance phenotypes. Khademi et al. investigated276

44 clonal lineages of P. aeruginosa and reported that277

these types ofmutations increase or decrease the tran- 278

scription of genes and are directly responsible for 279

the evolution of important pathogenic phenotypes 42. 280

More importantly, intergenic mutations help essential 281

genes to become targets of evolution. 282

The development of antibiotic resistance is complex 283

and involves changes at the genomic and proteomic 284

levels43. These current characterizations of colistin- 285

resistant genomes further suggest that the develop- 286

ment of colistin resistance is a multifactorial process 287

involving both changes to ensure survival and mu- 288

tations that help individuals adapt to new environ- 289

ments. Further analysis of the resistomes and pro- 290

teomes of colistin-resistant strains might provide a 291

more comprehensive understanding of the develop- 292

ment of colistin resistance. 293

This study provided an understanding of how P. 294

aeruginosa with a fully antibiotic-susceptible profile 295

and thus a basic genetic background respond to col- 296

istin exposure. Limitations of the study include the 297

lack of repeated genomic sequencing of biological 298

replicates to ascertain genetic changes due to colistin 299
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Figure 3: Genomic variant profiles of Col-E1 and Col-E2. (A) Number of variants observed in Col-E1 and Col-E2. (B)
Overlapping SNPs between Col-E1 and Col-E2. (B) Overlapping INDELs between Col-E1 and Col-E2.

exposure and the lack of experimental evidence on the300

effect of each genetic change on phenotypic changes.301

Hence, further studies are required to clarify and im-302

prove our findings. Mutagenesis andmutational stud-303

ies are essential to determine how these variants ac-304

tually affect gene expression in the colistin resistance305

mechanism of P. aeruginosa.306

CONCLUSIONS307

Overall, this study was the first in Vietnam to assem-308

ble the whole genome of P. aeruginosa ATCC 9027309

and characterize the genomic variants in in vitro-310

induced colistin-resistant strains. The analysis identi-311

fied notablemutations that weremostly found in non-312

coding regions, indicating the possible gene expres-313

sion regulation function of these mutations in the de- 314

velopment of the colistin resistance phenotype. These 315

variants could serve as potential colistin resistance 316

markers for quick diagnostic tests. Mutagenesis and 317

mutational studies should be further performed to 318

understand the role of noncoding regions in the adap- 319

tation and evolution of colistin-resistant P. aerugi- 320

nosa. 321

LIST OF ABBREVIATIONS 322
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Organization (WHO), multidrug-resistant (MDR), 324
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Figure 4: Functional annotation of the genomic variants of Col-E1. (A) Functional effects and (B) region-based
annotation of SNPs. (C) Functional effects and (D) region-based annotation of INDELs.

nucleotide polymorphism (SNP), insertion−deletion328

(INDEL)329
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