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ABSTRACT
Introduction: Mental health issues are a growing concern among university students and signif-
icantly affect their academic performance and quality of life. Recognizing stress in students under
academic pressure is crucial for improving their well-being. This study aims to identify stress pat-
terns through heart activity, which is closely correlated with mental health issues. Methods: An
experiment was designed involving 49 participants during examination time and used low-cost
portable devices based on ECG sensors. The high quality of the recorded data was confirmed by
good average QRS complex correlation metrics. To enhance the dataset and address the problem
of imbalanced data, a generative adversarial network (GAN) was employed to generate synthetic
ECG data in two scenarios: GAN 1, which synthesized the minority class only, and GAN 2, which
synthesized both classes. A comprehensive set of heart rate variability (HRV) indices from the time,
frequency, and nonlinear domains was extracted for analysis. Finally, two ensemble learning mod-
els were utilized to perform stress recognition based on the HRV feature set. Results: Through
cross-validation and random-split validation, our findings demonstrated significant improvements
in model performance with the addition of synthetic data. Specifically, the use of the GAN 1 data
improved the recall, effectively capturing more stress instances, whereas the use of the GAN 2 data
enhanced the precision, ensuring accurate stress identification. The random forest model showed
exceptional capability in managing class imbalance, further validating the effectiveness of our ap-
proach. Additionally, the use of a natural stressor, such as exam time, confirmed the practical appli-
cability of our models. Conclusion: These results underscore the potential of dataset enrichment
in machine learning, particularly in health-related applications, and provide a robust foundation for
future research and real-world validation of the benefits of synthetic data in stress recognition tasks.
Key words: Stress detection, electrocardiogram, heart rate variability, data synthesis, machine
learning

INTRODUCTION
Mental health and well-being are critical issues today,
especially for university students, who face consider-
able pressures and need career development for so-
cioeconomic advancement. Mental health and well-
being directly affect the ability to think, learn, han-
dle stress, make decisions, and adapt to the sur-
rounding environment. Research conducted by Viet-
nam National University, Ho Chi Minh City (VNU-
HCM), on the impact of the COVID-19 pandemic
on students’ mental health provides clear evidence of
this. Among the more than 37,150 students surveyed,
56.8% reported experiencing a lack of concentration
or interest. These findings indicate that the pandemic
has profoundly affected not only the physical health
but also the psychological and mental well-being of
students1. Recognizing stress early is crucial, as stress
and anxiety significantly impact individuals, which is
the primary focus of this research.

An ECG (electrocardiogram) measures and records
the voltage changes produced by the electrical activity
of the heart during contraction and rest. HRV (heart
rate variability) analysis based on ECG data measures
the variation in time intervals between consecutive
heartbeats2. This is an important indicator of au-
tonomic nervous system (ANS) function and overall
cardiovascular health. HRV is a prominent charac-
teristic of interdependent regulatory systems, which
operate on different timescales to help us adapt to en-
vironmental and psychological challenges. HRV re-
flects the balanced regulation of the autonomic ner-
vous system, blood pressure, gas exchange, gut, heart,
and vascular tone, referring to the diameter of blood
vessels that regulate blood pressure and potentially
facial muscles3. High HRV generally signifies good
autonomic flexibility and efficient recovery, whereas
low HRV may indicate stress, fatigue, or potential
health concerns. However, the HRV varies signifi-
cantly across individuals and can also be influenced
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by factors such as age, fitness level, and circadian
rhythm. HRV analysis is performed through calcu-
lations in time-domain, frequency-domain, and non-
linear methods, depending on the duration of the
measurement: typically from 12–24 hours, short-
term (5minutes), and ultrashort-term (<5minutes)4.
Short-term and ultrashort-term analyses play crucial
roles in quick daily check-ups, although they face
challenges because of the limited data capture time.
This study optimizes the characteristics of these do-
mains for short-term HRV analysis applications.
The advancement of data-driven tools, including ma-
chine learning and deep learning, has revolutionized
biometric data analysis for stress recognition by en-
abling powerful feature extraction and deep insights
through time- and frequency-domain analyses that
capture waveform variance and heart activity pat-
terns. For example, Sara et al.5 achieved accuracies of
100%, 97.6%, and 96.2% in classifying stress levels via
support vector machine (SVM) models by leveraging
features extracted from both the time and frequency
domains. On the other hand, deep learning, although
lacking an initial hand-crafted feature extraction pro-
cess, also yields significant performance in stress clas-
sification. Through the robust computational capa-
bilities of hidden convolutional layers, deep learning
models have been optimized and tailored for ECG
data analysis. For example, Deep ECGNet6 opti-
mized the convolution filter length and pooling length
specifically to the ECG waveform, achieving an accu-
racy of 87.39%. However, deep learning models are
often considered black boxes, as they do not provide
explicit insights into the correlation between specific
heart activities and stress.
Capitalizing on informative HRV features, numer-
ous studies have employed machine learning mod-
els as data-driven techniques to achieve notable per-
formance in stress recognition tasks. For exam-
ple, Munla et al.7 utilized a support vector machine
(SVM) model with a radial basis function trained
on features from the time, frequency, and nonlin-
ear domains. When deployed during driving op-
erations, this model achieved an accuracy of 83%.
In another study, ultrashort-term HRV analysis was
performed during a stress recognition test involv-
ing mathematical tasks and horror movies as stres-
sors, yielding an accuracy of approximately 90.5% 8.
Consequently, HRV has emerged as a powerful tech-
nique for ECG data analysis, particularly in the con-
text of stress recognition. Isibor et al. utilized mini-
mum redundancy and maximum relevance (mRMR)
to select the most relevant features from a large set

of HRV indices across time, frequency, and non-
linear domains9. Their results showed remarkable
performance when sets of 10 and 15 features were
used for stress recognition applications. Furthermore,
Mariam et al. reported high performance in stress
recognition via time-domain features10. However,
the limited amount of data remains a significant chal-
lenge for model development. Additionally, the con-
text of stressors in the field differs significantly from
those typically used in laboratory settings. In this
study, we designed an experiment to collect and an-
alyze real-world data.
Limited data are a critical challenge for data analy-
sis, particularly in field data. Several studies have
employed data augmentation techniques to enhance
data insights. For example, ECG data can be aug-
mented through basic transformations in the time do-
main. Garett et al.11 proposed time inversion, result-
ing in a 5% improvement in model accuracy. Naoki
et al.12 introduced RandECG, augmenting ECG data
by adding random noise, which improved accuracy
by up to 3.51%. Advanced techniques, such as the
use of generative adversarial networks (GANs), have
shown promising performance in producing diverse
and realistic synthetic ECG data13. Han Sun et al.14

proposed a GAN-based ECG abnormal signal gen-
erator, achieving an 11% improvement in accuracy
with high-quality synthetic data. Building on these
approaches, we propose a data augmentation pipeline
and aGANarchitecture to improve the limited dataset
collected from the field.
In this study, our objectives are as follows:

• Field ECG data collection was implemented to
facilitate stress recognition. The experiment fo-
cuses on university students experiencing the
natural stressor of final exams at the end of the
semester.

• Extracting a wide range of HRV indices from
time, frequency, and nonlinear domains facili-
tates comprehensive and detailed analysis.

• ECG data generation is performed via a gener-
ative adversarial network to enrich the current
limited-amount dataset.

• Using ensemble learning models to perform
stress recognition tasks on the basis of a set of
HRV indices, the efficacy of these models in
identifying stress patterns accurately can be as-
sessed.
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MATERIALS &METHODS
ECG Data Gathering

Participants
For the purposes of this investigation, data collection
was undertaken at the Ho Chi Minh City University
of Technology, involving a cohort of 49 students (Fig-
ure 1). These participants presented with an average
age of 21.31 years (SD = 1.108). The sex distribution
within this group included 32 males (65.31%) and 17
females (34.69%), as detailed in Table 1. Before their
involvement in the study, all volunteers completed
a health survey, which solicited information on any
cardiac conditions or heart-related issues. According
to the survey findings, all individuals demonstrated
normal cognitive functionality and were thoroughly
briefed on the study’s aims, methodologies, and over-
all importance. Following a comprehensive under-
standing of the experiment’s scope, the participants
provided informed consent to participate in the nec-
essary status assessment tests.
This study aims to examine the stress levels experi-
enced by students during critical periods of the aca-
demic semester. Specifically, the research focuses on
the latter half of the semester, a time characterized by
heightened stress due to impending exams and aca-
demic evaluations. In other words, this investigation
identifies the natural stressors associated with the ap-
proach of testing periods as a significant factor con-
tributing to the overall stress experienced by students
during these times.
To evaluate the mental health status of the par-
ticipants, the Vietnamese adaptation of the Patient
Health Questionnaire-9 (PHQ-9) was administered,
facilitating the assessment of depression levels15. The
specifics of the questionnaire, including the PHQ-9
items for the two administered surveys (detailed in
Appendix 1). This survey outlines the scoring cate-
gories used to interpret the PHQ-9 results: nonmin-
imal, mild, moderate, moderately severe, and severe.
For the purpose of this research, scores categorized as
nonminimal and mild are interpreted as indicative of
a nondepressive state, whereas scores falling within
the moderate, moderately severe, and severe ranges
are considered reflective of a depressive state.

ECG data recording procedure
In this study, we aim to utilize low-cost portable ECG
systems for data gathering and analysis. The ECG de-
vice was developed using an electrocardiogram sen-
sor (DFRobot SEN0213) and an STM32F103C6 mi-
crocontroller, with data transfer facilitated by a WiFi

module (ESP8266) and powered by a lithium battery
with an integrated charging module. The device uses
electrodes that adhere to the patient’s skin to acquire
ECG signals. All the components are integrated into
a cohesive unit for ECG signal acquisition (see Fig-
ure 2). Upon initiation, the device begins a 15-minute
countdown, corresponding to the duration of each
volunteer’s activity for the measurements.
The integrity of the recorded data was evaluated post-
collection via the average QRS technique16. This ap-
proach assesses the consistency of ECG data record-
ings by analyzing the congruence between each QRS
complex and the average QRS complex present within
the dataset, effectively quantifying the average corre-
lation coefficient of the QRS complexes. This metric
was employed to ascertain the quality of the data col-
lected by the newly developed portable ECG device.
As described, each participant underwent a 15-
minute data recording procedure. Initially, volun-
teers completed a PHQ-9 survey to assess theirmental
health status. The volunteers subsequently engaged in
a focused test session lasting 15 minutes, which was
conducted under white light illumination (Figure 3).
A lead-1 ECG with 3 electrodes was implemented in
the experiment. To standardize participant activity, a
simple concentration test was administered through-
out the experiment, aimed at generalizing recording
conditions and minimizing variations among partic-
ipants. The test primarily involved tasks related to
counting and pattern identification (see sample inAp-
pendix 2). The entire testing process, including in-
structions and predata gathering surveys, was com-
pleted within a 20-minute timeframe. The data were
recorded via a measuring device at a sampling rate of
100 Hz.

Data Preprocessing and Rpeak Detection
In this study, preprocessing steps were performed to
alleviate baseline wandering and noise in the ECG
signal. This involved employing a high-pass Butter-
worth filter with a cutoff frequency of 0.5 Hz and a
fifth order. The application of this filter effectively
reduces the presence of noisy low-frequency compo-
nents, thereby enhancing the clarity of the underly-
ing cardiac activity in the ECG waveform. Conse-
quently, this facilitates the QRS detection process and
enhances the subsequent analysis and interpretation.
Additionally, to combat noise stemming from electri-
cal sources, powerline filtering at a frequency of 50Hz
was also implemented.
Before HRV features were extracted, the RR interval
signal was obtained through the QRS complex and
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Table 1: Demographic information of the participants

Variables Groups Quantities

Total number of students participating in the experiment: 49
Age range: 18 - 24

Gender Male 32 (65.31%)

Female 17 (34.69%)

Year First-year students 1 (2.04%)

Second-year students 9 (18.37%)

Third-year students 18 (36.73%)

Fourth-year students over 21 (42.86%)

Figure 1: Participants by gender (A) and year of study (B)

Figure 2: Developed ECG device.
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Figure 3: Volunteers perform tests during the data gathering experiment

R-peak detection methods. Initially, QRS complexes
were identified on the basis of the steepness of the ab-
solute gradient of the ECG signal 17. Subsequently, R-
peaks were identified as the local maxima within each
QRS complex. The accurate detection of R peaks is
crucial, as they represent ventricular depolarization,
indicating the transition of the ventricles from the an-
ode state to the cathode state. Precise R-peak detec-
tion is fundamental for ensuring the reliability of sub-
sequent analysis procedures.

ECG Data Synthesis
Theproposed pipeline, which uses a generative adver-
sarial model to enrich the real dataset, is illustrated in
Figure 4. Synthetic data were generated by the GAN
model and combined with real data in three differ-
ent scenarios (Section 2.2b). After the HRV indices
were extracted, two ensemble learning models were
employed to perform stress classification (Sections 2.3
and 2.4).

Generative adversarial networkmodel
A dedicated synthesis model was developed on the
basis of the recording duration (see Figure 5). This
model is a one-dimensional convolutional neural net-

work inspired by previous work18. The generative
model aims to generate a 15-minute ECG record from
random noise. The initial noise from the input layer is
flattened and reshaped. Subsequently, three deconvo-
lutional layers, alongwith leakyReLUactivation func-
tions and batch normalization, are utilized to upsam-
ple the signal gradually. Finally, a 15-minute ECG
recording is obtained.
To improve the quality of the synthesized data, a dis-
criminative model with a strong ability to distinguish
between real and fake data is needed. The inception
model was employed to extract features from the ECG
sequence effectively. The feature map was then con-
catenated and fed to a global average pooling layer,
which calculates the feature map average, unlike the
traditional flattening method. Finally, a dense layer
combines the information and provides the results.

Data Generation
To generate the dataset from various states, the cate-
gorized stress and nonstress data were generated sep-
arately. The amount of synthesized data was deter-
mined in three scenarios:

• Without theGAN, only real datawere used, with
39 nonstress and 10 stress subjects.
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Figure 4: The proposed pipeline

Figure 5: Generator (A) and discriminator (B) developed in this work.
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Figure 6: Waveforms of synthesis data (A) and original data (B)

• GAN 1: Data are generated for the minority
class (stress) only to ensure that the number of
minority classes is equal to that of the majority
class. A total of 29 ECG recordings categorized
as stress were generated.

• GAN 2: The amount of synthesized data was
equal for both stress states, and the total amount
of synthesis data was equal to the real data (25
stress and 24 nonstress individuals).

HRV feature extraction
For short-term heart rate variability (HRV) analysis,
a 5-minute window length was used to segment the
recorded data. A comprehensive set of HRV fea-
tures was subsequently extracted via the Neurokit
DE2 module tool19. A total of 90 features were de-
rived from three domains, namely, the time domain,
frequency domain, and nonlinear analysis, facilitating
thorough analysis (refer to Appendix 3).

ClassificationModel

Machine LearningModel
In this study, two ensemble learningmodels were em-
ployed for an

• The first model utilized was random forest (RF),
a bagging model constructed from multiple de-
cision trees for classification tasks. Each de-
cision tree in the ensemble operates indepen-
dently, employing different sets of features to re-
duce the correlation among them. Ultimately,
the ensemble makes decisions through voting,
with the class receiving themost votes becoming
the final prediction of the random forest model.

• The second model employed was XGB (eX-
treme Gradient Boosting), a boosting ensem-
ble learning algorithm comprising several learn-
ers. In this method, each new learner is trained

to rectify the errors made by its predecessors,
thereby progressively improving the overall per-
formance. To prevent overfitting, regularization
terms such as Lasso and Ridge are incorporated
into the learning process. This ensures that the
model generalizes well to unseen data beyond
the training set.

Finally, the grid-search algorithm was implemented
to optimize the parameters of each model.

Evaluation
To assess the stress recognition ability of the HRV-
based models and the impact of an enriched dataset,
cross-validation and random split validation were
performed. Specifically, 4-fold cross-validation was
conducted to evaluate the classification performance
and generalizability across the three scenarios. For
random-split validation, 30% of the real data were
used as test data, whereas the remaining 70% served
as the training set. This approach was used to con-
firm whether the synthetic data improve the classifi-
cation accuracy and stimulate real-world application.
To quantitatively assess the performance of the clas-
sification models, metrics such as accuracy and the
weighted average F1 score were utilized. These mea-
sures provide insights into the overall effectiveness of
the models in classifying mental health issues.

RESULTS
Data Quality Assessment
The quality of the recorded ECG data is notably high,
which is attributed to a robust quality index. The
average QRS correlation is 0.92 (SD=0.09), which
is comparable to findings in prior studies on ECG
data quality assessment. For example, in the work
of Daluwatte20, a similar average QRS correlation
of approximately 0.93 was observed. Moreover, the
cleaned data showed a greater correlation across the
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Figure 7: Raw (A) and cleaned (B) ECG data

QRS complex and fewer noise spikes, as illustrated in
Figure 4.

Classification Results
In the 4-fold cross-validation results, the enriched
dataset presents a significant improvement in the
stress recognition task (see Table 2). For real
data, both the random forest and XGBoost models
achieved accuracies of 0.78. However, the random
forest model had a higher weighted F1 score than XG-
Boost did. In the GAN 1 scenario, the random forest
model yielded a significant improvement, with an ac-
curacy of 0.90 and a weighted F1 score of 0.84. XG-
Boost also improved, with an accuracy of 0.84 and a
weighted F1 score of 0.79. For the GAN 2 scenario,
the random forest model had an accuracy of 0.86 and
a weighted F1 score of 0.84. The accuracy of XGBoost
remained at 0.78, but its weighted F1 score increased
to 0.81. These results suggest that the use of GAN-
generated data (GAN 1 and GAN 2) can enhance the
performance of classification models, particularly the
random forest model. The improved weighted F1-
scores indicate a better balance between precision and
recall in these scenarios.
In the random-split validation, the combination of
real and synthetic data shows considerable classifica-
tion performance. The models trained on real data
achieved an accuracy and weighted F1 score of 0.90,
indicating a high level of overall performance. The
precision and recall for the stress class were both 0.75,
demonstrating a balanced ability to correctly iden-
tify both positive and negative instances of stress.
This suggests that the model is effective in recog-
nizing stress when trained on real data, providing a
strong baseline for comparison. In the first scenario
of data synthesis (GAN 1), the model’s accuracy and
weighted F1 score decreased to 0.80, and the preci-
sion for the stress class decreased to 0.70. However,
the recall improved to 0.88. This finding indicates that

while themodel trained on the GAN 1 data is less pre-
cise in identifying stress instances, it is better at cap-
turing most of the stress cases (higher recall). For the
GAN 2 scenario, the model’s accuracy and weighted
F1 score returned to 0.90, similar to the real data sce-
nario. The precision for the stress class significantly
improved to 1.00, indicating perfect precision—every
instance identified as stress was truly a stress instance.
However, the recall decreased to 0.75, meaning that
the model’s ability to identify all stress instances was
similar to that of the real data scenario.
In summary, the results from both cross-validation
and random-split validation indicate that the use
of GAN-generated data can enhance model perfor-
mance, particularly for the random forest model. The
GAN 1 data improve the recall, whereas the GAN 2
data significantly increase the precision, demonstrat-
ing the potential of synthetic data to address differ-
ent aspects of model performance in stress recogni-
tion tasks.

DISCUSSION
This work has demonstrated the robust capability of
HRV analysis on ECG data for stress recognition
in real-world applications. The high accuracy ob-
served in the real data scenario across both the cross-
validation and random-split validation pipelines, par-
ticularly when testing on real ECG data, under-
scores the strong correlation between HRV indices
and stress. Furthermore, our study utilized a natu-
ral stressor, exam time, which enhances the practi-
cal applicability of machine learning models. From
a model performance perspective, the random for-
est classifier not only provided comparable classifi-
cation results but also exhibited superior handling of
class imbalance, as evidenced by its higher weighted
F1 score. However, further work could be performed
at various times in a semester.
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Table 2: Cross-validation results of 3 scenarios on 2machine learningmodels.

Scenario Model Accuracy Weighted F1-score

Real data Random Forest 0.78 0.44

XGB 0.78 0.34

GAN 1 Random Forest 0.90 0.84

XGB 0.84 0.79

GAN 2 Random Forest 0.86 0.84

XGB 0.78 0.81

Table 3: Random-split validation results of 3 scenarios on the random forest model.

Scenario Accuracy Weighted
F1-score

Precision on
stress class

Recall on
stress class

Real data 0.90 0.90 0.75 0.75

GAN 1 0.80 0.80 0.70 0.88

GAN 2 0.90 0.90 1.00 0.75

Figure 8: Confusion matrix of 3 scenarios: real data (A), GAN1 (B), and GAN2 (C)

Enriching the ECG dataset via generative adversar-
ial networks (GANs) can significantly improve stress
classification performance, particularly in scenarios
with limited data. The results demonstrate enhanced
evaluation metrics for the stress class. For exam-
ple, in cross-validation, the weighted F1-scores for
the two GAN scenarios outperformed those obtained
using only real data. This improvement indicates a
better balance in recognizing both stress and non-
stress instances, particularly benefiting the minority
class (the stress class). Moreover, the developed GAN
model generated high-quality synthetic data. Adding
these good synthetic data leads to better generaliza-
tion and representation, which in turn enhances the
learning efficiency of machine learning models, espe-
cially ensemble learning methods. Additionally, the
class imbalance issue is mitigated, reducing bias in
the decision-making process. In conclusion, the use
of GAN-generated data not only improves the perfor-

mance metrics but also ensures a more balanced and
effective classification of stress, demonstrating the po-
tential of GANs in enriching datasets for more robust
machine learning applications.
Our work also provides insights into how synthetic
data can enhance conventional datasets. We con-
ducted two scenarios with different synthetic data uti-
lization strategies: one scenario synthesizing the mi-
nority class only (GAN 1) and another synthesizing
both classes (GAN 2). In the cross-validation setting,
the GAN 1 scenario demonstrated sustainable perfor-
mance, outperforming the real data scenario because
of improved class balancing. The accuracy of GAN 1
was slightly higher than that of GAN 2when the input
amount of each class was balanced. In the random-
split validation, which involved only real data as the
test data, the GAN 2 scenario provided better accu-
racy, a weighted F1 score, and precision in the stress
class. Conversely, the GAN 1 scenario yielded better
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recall in the stress class (Figure 8). The results indi-
cate that while the model trained on the GAN 1 data
is less precise in identifying stress instances, it is bet-
ter at capturing most of the stress cases (higher re-
call). This trade-off suggests that GAN 1 data intro-
duce variability that helps themodel to generalize bet-
ter, albeit at the cost of precision (Figure 8). In con-
trast, the GAN 2 data aid inmaking very precise stress
identifications but do not improve the model’s sensi-
tivity to detecting all stress instances. These findings
highlight the potential of synthetic data to enhance
conventional datasets. The choice between GAN 1
and GAN 2 depends on the specific needs of the ap-
plication. For applications requiring high recall, the
GAN 1 approach is more suitable. For those requir-
ing high precision, the GAN 2 approach is preferable.
Overall, our study illustrates the effectiveness of us-
ing synthetic data to improve model performance in
stress recognition tasks.

CONCLUSION
This work involved field ECG data collection and
the design of a framework for stress recognition on
the basis of HRV analysis of a limited ECG dataset.
This study highlights the potential of using GAN-
generated synthetic data to enhanceHRV-based stress
recognition models. By comparing models trained
on real data with those augmented by synthetic data
in two scenarios—GAN 1 (synthesizing the minority
class only) and GAN 2 (synthesizing both classes)—
we observed significant performance improvements.
The GAN 1 data improved the recall to 0.88, whereas
the GAN 2 data improved the precision to 1.00,
demonstrating the ability of synthetic data to balance
class distributions and enhance model generalizabil-
ity. The use of a natural stressor, such as exam time,
confirmed the practical applicability of our models.
The random forest model, in particular, showed su-
perior performance in handling class imbalance, with
the highest cross-validation accuracy of 0.90 and a
weighted F1 score of 0.84. These findings under-
score the importance of dataset enrichment in ma-
chine learning, especially in health-related fields. The
use of synthetic data can improve model robustness
and accuracy, offering a valuable tool for future re-
search and applications. This study provides a strong
foundation for further exploration and real-world val-
idation of the benefits of synthetic data in stress recog-
nition tasks.
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Table 4: Appendix 1. PHQ-9 rating scale

PHQ-9 Score Depression Severity Comment

0 – 4 None-minimal Observation, treatment may not be needed

5 – 9 Mild Watchful waiting; repeat PHQ-9 at follow-up

10 – 14 Moderate Treatment plan, considering counseling, follow-up, and/or
pharmacotherapy

15 – 19 Moderately Severe Active treatment with pharmacotherapy and/or psychotherapy

20 – 27 Severe Immediate initiation of pharmacotherapy and, if severe impair-
ment or poor response to therapy, expedited referral to amental
health specialist for psychotherapy and/or collaborative man-
agement

Table 5: APPENDIX 2. PHQ-9 survey questionnaire (Vietnamese Version)

Không Trong vài
ngày

Hơn 1
tuần

Hầuhết tất cả các
ngày

1. Tôi ít khi hứng thú với công việc của mình 0 1 2 3

2. Tôi cảm thấy u uất, phiền muộn hoặc vô vọng 0 1 2 3

3. Tôi khó ngủ hoặc thường xuyên tỉnh dậy trong đêm,
hoặc tôi ngủ quá nhiều

0 1 2 3

4. Tôi thấy mệt mỏi hoặc không có năng lượng 0 1 2 3

5. Tôi không thèm ăn hoặc ăn quá nhiều 0 1 2 3

6. Tôi nghĩ rằng tôi là người xấu xí hoặc thất bại, hoặc tôi
cảm thấy vì tôi mà gia đình tôi không vui vẻ gì

0 1 2 3

7. Tôi không thể tập trung đọc báo hoặc xem tivi 0 1 2 3

8. Tôi đi hoặc nói rất chậm đến nổi mà người khác có thể
thấy, hoặc tôi đang lang thang hay đi đi lại lại nhiều vì tôi
cảm thấy lo lắng và bồn chồn

0 1 2 3

9. Tôi nghĩ tôi sẽ tốt hơn khi chết đi hoặc tự ngược đãi
bản thân

0 1 2 3

Điểm …/27

11
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Table 6: APPENDIX 3. Features extracted from the HRV dataset used in the study.

Parameter Description
HRV time-
domain indices

HTI The integral of the density of the RR interval histogram divided
by its height.

IQRNN The interquartile range of the RR intervals.
MadNN The median absolute deviation of the RR intervals.
MaxNN The maximum of the RR intervals.
MCVNN The median absolute deviation of the RR intervals (MadNN) is

divided by the median of the RR intervals.
MeanNN The mean of the RR intervals.
MedianNN The median of the RR intervals.
MinNN The minimum of the RR intervals.
pNN20 Percentage of successive RR intervals that differ by more than

20 ms.
pNN50 Percentage of successive RR intervals that differ by more than

50 ms.
Prc20NN The 20th percentile of the RR intervals.
Prc80NN The 80th percentile of the RR intervals.
RMSSD Root mean square of successive RR interval differences.
SDANN The standard deviation of the average NN intervals for each 5-

minute segment of a 24-hour HRV recording.
SDNN The standard deviation of NN interval.
SDNNI Mean of the standard deviations of all the NN intervals for each

5 min segment of a 24-hour HRV recording.
SDSD The standard deviation of the successive differences betweenRR

intervals.
TINN Baseline width of the RR interval histogram.

HRV
frequency-
domain indices

ULF The absolute power of the ultralow-frequency band (≤0.003
Hz).

HF Absolute power of the high-frequency band (0.15-0.4 Hz).
HFn Relative power of the high-frequency band (0.15-0.4Hz) in nor-

mal units.
LF Absolute power of the low-frequency band (0.04-0.15 Hz).
LF/HF The ratio of LF-to-HF power.
LFn Relative power of the low-frequency band (0.04-0.15 Hz) in

normal units.
LnHF The log-transformed HF.
VLF The absolute power of the very-low-frequency band (0.0033-

0.04 Hz).
HRV nonlinear
domain indices

Poincaré Plot SD1 The standard deviation of the PP is perpen-
dicular to the line of identity.

SD2 The standard deviation of the PP along to the
line of identity.

SD1SD2 The ratio of SD1 to SD2.
Area of ellipse described by SD1 and SD2
(pi*SD1*SD2).

Entropy ApEn Approximate entropy.
FuzzyEn Fuzzy entropy.
SampEn Sample Entropy.
SE Shannon Entropy.

Fractal Dimensions DFA Estimation of signal fluctuations using de-
trended fluctuation analysis.

CD Estimation of a minimum number of vari-
ables to define a dynamic model.
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