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ABSTRACT
Introduction: Mental health issues are a growing concern among university students and signifi-
cantly affect their academic performance and quality of life. Recognizing stress in students under
academic pressure is crucial for improving their well-being. This study aims to identify stress pat-
terns through heart activity, which is closely correlated with mental health issues.
Methods: An experiment was designed involving 49 participants during examination time and
used low-cost portable devices based on ECG sensors. The high quality of the recorded data was
confirmed by good average QRS complex correlationmetrics. To enhance the dataset and address
the problemof imbalanceddata, a generative adversarial network (GAN)was employed togenerate
synthetic ECG data in two scenarios: GAN 1, which synthesized the minority class only, and GAN 2,
which synthesized both classes. A comprehensive set of heart rate variability (HRV) indices from the
time, frequency, and nonlinear domains was extracted for analysis. Finally, two ensemble learning
models were utilized to perform stress recognition based on the HRV feature set.
Results: Through cross-validation and random-split validation, our findings demonstrated signif-
icant improvements in model performance with the addition of synthetic data. Specifically, the
use of the GAN 1 data improved the recall, effectively capturing more stress instances, whereas the
use of the GAN 2 data enhanced the precision, ensuring accurate stress identification. The ran-
dom forest model showed exceptional capability in managing class imbalance, further validating
the effectiveness of our approach. Additionally, the use of a natural stressor, such as exam time,
confirmed the practical applicability of our models.
Conclusion: These results underscore the potential of dataset enrichment in machine learning,
particularly in health-related applications, and provide a robust foundation for future research and
real-world validation of the benefits of synthetic data in stress recognition tasks.
Key words: Stress detection, electrocardiogram, heart rate variability, data synthesis, machine
learning

INTRODUCTION1

Mental health and well-being are critical issues today,2

especially for university students, who face consider-3

able pressures and need career development for so-4

cioeconomic advancement. Mental health and well-5

being directly affect the ability to think, learn, han-6

dle stress, make decisions, and adapt to the sur-7

rounding environment. Research conducted by Viet-8

nam National University, Ho Chi Minh City (VNU-9

HCM), on the impact of the COVID-19 pandemic10

on students’ mental health provides clear evidence of11

this. Among the more than 37,150 students surveyed,12

56.8% reported experiencing a lack of concentration13

or interest. These findings indicate that the pandemic14

has profoundly affected not only the physical health15

but also the psychological and mental well-being of16

students1. Recognizing stress early is crucial, as stress17

and anxiety significantly impact individuals, which is18

the primary focus of this research.19

An ECG (electrocardiogram) measures and records 20

the voltage changes produced by the electrical activity 21

of the heart during contraction and rest. HRV (heart 22

rate variability) analysis based on ECG data measures 23

the variation in time intervals between consecutive 24

heartbeats2. This is an important indicator of au- 25

tonomic nervous system (ANS) function and overall 26

cardiovascular health. HRV is a prominent charac- 27

teristic of interdependent regulatory systems, which 28

operate on different timescales to help us adapt to en- 29

vironmental and psychological challenges. HRV re- 30

flects the balanced regulation of the autonomic ner- 31

vous system, blood pressure, gas exchange, gut, heart, 32

and vascular tone, referring to the diameter of blood 33

vessels that regulate blood pressure and potentially 34

facial muscles3. High HRV generally signifies good 35

autonomic flexibility and efficient recovery, whereas 36

low HRV may indicate stress, fatigue, or potential 37

health concerns. However, the HRV varies signifi- 38
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cantly across individuals and can also be influenced39

by factors such as age, fitness level, and circadian40

rhythm. HRV analysis is performed through calcu-41

lations in time-domain, frequency-domain, and non-42

linear methods, depending on the duration of the43

measurement: typically from 12–24 hours, short-44

term (5minutes), and ultrashort-term (<5minutes)4.45

Short-term and ultrashort-term analyses play crucial46

roles in quick daily check-ups, although they face47

challenges because of the limited data capture time.48

This study optimizes the characteristics of these do-49

mains for short-term HRV analysis applications.50

The advancement of data-driven tools, including ma-51

chine learning and deep learning, has revolutionized52

biometric data analysis for stress recognition by en-53

abling powerful feature extraction and deep insights54

through time- and frequency-domain analyses that55

capture waveform variance and heart activity pat-56

terns. For example, Sara et al.5 achieved accuracies of57

100%, 97.6%, and 96.2% in classifying stress levels via58

support vector machine (SVM) models by leveraging59

features extracted from both the time and frequency60

domains. On the other hand, deep learning, although61

lacking an initial hand-crafted feature extraction pro-62

cess, also yields significant performance in stress clas-63

sification. Through the robust computational capa-64

bilities of hidden convolutional layers, deep learning65

models have been optimized and tailored for ECG66

data analysis. For example, Deep ECGNet6 opti-67

mized the convolution filter length and pooling length68

specifically to the ECG waveform, achieving an accu-69

racy of 87.39%. However, deep learning models are70

often considered black boxes, as they do not provide71

explicit insights into the correlation between specific72

heart activities and stress.73

Capitalizing on informative HRV features, numer-74

ous studies have employed machine learning mod-75

els as data-driven techniques to achieve notable per-76

formance in stress recognition tasks. For exam-77

ple, Munla et al.7 utilized a support vector machine78

(SVM) model with a radial basis function trained79

on features from the time, frequency, and nonlin-80

ear domains. When deployed during driving op-81

erations, this model achieved an accuracy of 83%.82

In another study, ultrashort-term HRV analysis was83

performed during a stress recognition test involv-84

ing mathematical tasks and horror movies as stres-85

sors, yielding an accuracy of approximately 90.5% 8.86

Consequently, HRV has emerged as a powerful tech-87

nique for ECG data analysis, particularly in the con-88

text of stress recognition. Isibor et al. utilized mini-89

mum redundancy and maximum relevance (mRMR)90

to select the most relevant features from a large set91

of HRV indices across time, frequency, and non- 92

linear domains9. Their results showed remarkable 93

performance when sets of 10 and 15 features were 94

used for stress recognition applications. Furthermore, 95

Mariam et al. reported high performance in stress 96

recognition via time-domain features10. However, 97

the limited amount of data remains a significant chal- 98

lenge for model development. Additionally, the con- 99

text of stressors in the field differs significantly from 100

those typically used in laboratory settings. In this 101

study, we designed an experiment to collect and an- 102

alyze real-world data. 103

Limited data are a critical challenge for data analy- 104

sis, particularly in field data. Several studies have 105

employed data augmentation techniques to enhance 106

data insights. For example, ECG data can be aug- 107

mented through basic transformations in the time do- 108

main. Garett et al.11 proposed time inversion, result- 109

ing in a 5% improvement in model accuracy. Naoki 110

et al.12 introduced RandECG, augmenting ECG data 111

by adding random noise, which improved accuracy 112

by up to 3.51%. Advanced techniques, such as the 113

use of generative adversarial networks (GANs), have 114

shown promising performance in producing diverse 115

and realistic synthetic ECG data13. Han Sun et al.14 116

proposed a GAN-based ECG abnormal signal gen- 117

erator, achieving an 11% improvement in accuracy 118

with high-quality synthetic data. Building on these 119

approaches, we propose a data augmentation pipeline 120

and aGANarchitecture to improve the limited dataset 121

collected from the field. 122

In this study, our objectives are as follows: 123

• Field ECG data collection was implemented to 124

facilitate stress recognition. The experiment fo- 125

cuses on university students experiencing the 126

natural stressor of final exams at the end of the 127

semester. 128

• Extracting a wide range of HRV indices from 129

time, frequency, and nonlinear domains facili- 130

tates comprehensive and detailed analysis. 131

• ECG data generation is performed via a gener- 132

ative adversarial network to enrich the current 133

limited-amount dataset. 134

• Using ensemble learning models to perform 135

stress recognition tasks on the basis of a set of 136

HRV indices, the efficacy of these models in 137

identifying stress patterns accurately can be as- 138

sessed. 139
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MATERIALS &METHODS140

ECG Data Gathering141

Participants142

For the purposes of this investigation, data collection143

was undertaken at the Ho Chi Minh City University144

of Technology, involving a cohort of 49 students (Fig-145

ure 1). These participants presented with an average146

age of 21.31 years (SD = 1.108). The sex distribution147

within this group included 32 males (65.31%) and 17148

females (34.69%), as detailed in Table 1. Before their149

involvement in the study, all volunteers completed150

a health survey, which solicited information on any151

cardiac conditions or heart-related issues. According152

to the survey findings, all individuals demonstrated153

normal cognitive functionality and were thoroughly154

briefed on the study’s aims, methodologies, and over-155

all importance. Following a comprehensive under-156

standing of the experiment’s scope, the participants157

provided informed consent to participate in the nec-158

essary status assessment tests.159

This study aims to examine the stress levels experi-160

enced by students during critical periods of the aca-161

demic semester. Specifically, the research focuses on162

the latter half of the semester, a time characterized by163

heightened stress due to impending exams and aca-164

demic evaluations. In other words, this investigation165

identifies the natural stressors associated with the ap-166

proach of testing periods as a significant factor con-167

tributing to the overall stress experienced by students168

during these times.169

To evaluate the mental health status of the par-170

ticipants, the Vietnamese adaptation of the Patient171

Health Questionnaire-9 (PHQ-9) was administered,172

facilitating the assessment of depression levels15. The173

specifics of the questionnaire, including the PHQ-9174

items for the two administered surveys (detailed in175

Appendix 1). This survey outlines the scoring cate-176

gories used to interpret the PHQ-9 results: nonmin-177

imal, mild, moderate, moderately severe, and severe.178

For the purpose of this research, scores categorized as179

nonminimal and mild are interpreted as indicative of180

a nondepressive state, whereas scores falling within181

the moderate, moderately severe, and severe ranges182

are considered reflective of a depressive state.183

ECG data recording procedure184

In this study, we aim to utilize low-cost portable ECG185

systems for data gathering and analysis. The ECG de-186

vice was developed using an electrocardiogram sen-187

sor (DFRobot SEN0213) and an STM32F103C6 mi-188

crocontroller, with data transfer facilitated by a WiFi189

module (ESP8266) and powered by a lithium battery 190

with an integrated charging module. The device uses 191

electrodes that adhere to the patient’s skin to acquire 192

ECG signals. All the components are integrated into 193

a cohesive unit for ECG signal acquisition (see Fig- 194

ure 2). Upon initiation, the device begins a 15-minute 195

countdown, corresponding to the duration of each 196

volunteer’s activity for the measurements. 197

The integrity of the recorded data was evaluated post- 198

collection via the average QRS technique16. This ap- 199

proach assesses the consistency of ECG data record- 200

ings by analyzing the congruence between each QRS 201

complex and the average QRS complex present within 202

the dataset, effectively quantifying the average corre- 203

lation coefficient of the QRS complexes. This metric 204

was employed to ascertain the quality of the data col- 205

lected by the newly developed portable ECG device. 206

As described, each participant underwent a 15- 207

minute data recording procedure. Initially, volun- 208

teers completed a PHQ-9 survey to assess theirmental 209

health status. The volunteers subsequently engaged in 210

a focused test session lasting 15 minutes, which was 211

conducted under white light illumination (Figure 3). 212

A lead-1 ECG with 3 electrodes was implemented in 213

the experiment. To standardize participant activity, a 214

simple concentration test was administered through- 215

out the experiment, aimed at generalizing recording 216

conditions and minimizing variations among partic- 217

ipants. The test primarily involved tasks related to 218

counting and pattern identification (see sample inAp- 219

pendix 2). The entire testing process, including in- 220

structions and predata gathering surveys, was com- 221

pleted within a 20-minute timeframe. The data were 222

recorded via a measuring device at a sampling rate of 223

100 Hz. 224

Data Preprocessing and Rpeak Detection 225

In this study, preprocessing steps were performed to 226

alleviate baseline wandering and noise in the ECG 227

signal. This involved employing a high-pass Butter- 228

worth filter with a cutoff frequency of 0.5 Hz and a 229

fifth order. The application of this filter effectively 230

reduces the presence of noisy low-frequency compo- 231

nents, thereby enhancing the clarity of the underly- 232

ing cardiac activity in the ECG waveform. Conse- 233

quently, this facilitates the QRS detection process and 234

enhances the subsequent analysis and interpretation. 235

Additionally, to combat noise stemming from electri- 236

cal sources, powerline filtering at a frequency of 50Hz 237

was also implemented. 238

Before HRV features were extracted, the RR interval 239

signal was obtained through the QRS complex and 240
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Table 1: Demographic information of the participants

Variables Groups Quantities

Total number of students participating in the experiment: 49
Age range: 18 - 24

Gender Male 32 (65.31%)

Female 17 (34.69%)

Year First-year students 1 (2.04%)

Second-year students 9 (18.37%)

Third-year students 18 (36.73%)

Fourth-year students over 21 (42.86%)

Figure 1: Participants by gender (A) and year of study (B)

Figure 2: Developed ECG device.
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Figure 3: Volunteers perform tests during the data gathering experiment

R-peak detection methods. Initially, QRS complexes241

were identified on the basis of the steepness of the ab-242

solute gradient of the ECG signal 17. Subsequently, R-243

peaks were identified as the local maxima within each244

QRS complex. The accurate detection of R peaks is245

crucial, as they represent ventricular depolarization,246

indicating the transition of the ventricles from the an-247

ode state to the cathode state. Precise R-peak detec-248

tion is fundamental for ensuring the reliability of sub-249

sequent analysis procedures.250

ECG Data Synthesis251

Theproposed pipeline, which uses a generative adver-252

sarial model to enrich the real dataset, is illustrated in253

Figure 4. Synthetic data were generated by the GAN254

model and combined with real data in three differ-255

ent scenarios (Section 2.2b). After the HRV indices256

were extracted, two ensemble learning models were257

employed to perform stress classification (Sections 2.3258

and 2.4).259

Generative adversarial networkmodel260

A dedicated synthesis model was developed on the261

basis of the recording duration (see Figure 5). This262

model is a one-dimensional convolutional neural net-263

work inspired by previous work18. The generative 264

model aims to generate a 15-minute ECG record from 265

random noise. The initial noise from the input layer is 266

flattened and reshaped. Subsequently, three deconvo- 267

lutional layers, alongwith leakyReLUactivation func- 268

tions and batch normalization, are utilized to upsam- 269

ple the signal gradually. Finally, a 15-minute ECG 270

recording is obtained. 271

To improve the quality of the synthesized data, a dis- 272

criminative model with a strong ability to distinguish 273

between real and fake data is needed. The inception 274

model was employed to extract features from the ECG 275

sequence effectively. The feature map was then con- 276

catenated and fed to a global average pooling layer, 277

which calculates the feature map average, unlike the 278

traditional flattening method. Finally, a dense layer 279

combines the information and provides the results. 280

Data Generation 281

To generate the dataset from various states, the cate- 282

gorized stress and nonstress data were generated sep- 283

arately. The amount of synthesized data was deter- 284

mined in three scenarios: 285

• Without theGAN, only real datawere used, with 286

39 nonstress and 10 stress subjects. 287
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Figure 4: The proposed pipeline

Figure 5: Generator (A) and discriminator (B) developed in this work.
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Figure 6: Waveforms of synthesis data (A) and original data (B)

• GAN 1: Data are generated for the minority288

class (stress) only to ensure that the number of289

minority classes is equal to that of the majority290

class. A total of 29 ECG recordings categorized291

as stress were generated.292

• GAN 2: The amount of synthesized data was293

equal for both stress states, and the total amount294

of synthesis data was equal to the real data (25295

stress and 24 nonstress individuals).296

HRV feature extraction297

For short-term heart rate variability (HRV) analysis,298

a 5-minute window length was used to segment the299

recorded data. A comprehensive set of HRV fea-300

tures was subsequently extracted via the Neurokit301

DE2 module tool19. A total of 90 features were de-302

rived from three domains, namely, the time domain,303

frequency domain, and nonlinear analysis, facilitating304

thorough analysis (refer to Appendix 3).305

ClassificationModel306

Machine LearningModel307

In this study, two ensemble learningmodels were em-308

ployed for an309

• The first model utilized was random forest (RF),310

a bagging model constructed from multiple de-311

cision trees for classification tasks. Each de-312

cision tree in the ensemble operates indepen-313

dently, employing different sets of features to re-314

duce the correlation among them. Ultimately,315

the ensemble makes decisions through voting,316

with the class receiving themost votes becoming317

the final prediction of the random forest model.318

• The second model employed was XGB (eX-319

treme Gradient Boosting), a boosting ensem-320

ble learning algorithm comprising several learn-321

ers. In this method, each new learner is trained322

to rectify the errors made by its predecessors, 323

thereby progressively improving the overall per- 324

formance. To prevent overfitting, regularization 325

terms such as Lasso and Ridge are incorporated 326

into the learning process. This ensures that the 327

model generalizes well to unseen data beyond 328

the training set. 329

Finally, the grid-search algorithm was implemented 330

to optimize the parameters of each model. 331

Evaluation 332

To assess the stress recognition ability of the HRV- 333

based models and the impact of an enriched dataset, 334

cross-validation and random split validation were 335

performed. Specifically, 4-fold cross-validation was 336

conducted to evaluate the classification performance 337

and generalizability across the three scenarios. For 338

random-split validation, 30% of the real data were 339

used as test data, whereas the remaining 70% served 340

as the training set. This approach was used to con- 341

firm whether the synthetic data improve the classifi- 342

cation accuracy and stimulate real-world application. 343

To quantitatively assess the performance of the clas- 344

sification models, metrics such as accuracy and the 345

weighted average F1 score were utilized. These mea- 346

sures provide insights into the overall effectiveness of 347

the models in classifying mental health issues. 348

RESULTS 349

Data Quality Assessment 350

The quality of the recorded ECG data is notably high, 351

which is attributed to a robust quality index. The 352

average QRS correlation is 0.92 (SD=0.09), which 353

is comparable to findings in prior studies on ECG 354

data quality assessment. For example, in the work 355

of Daluwatte20, a similar average QRS correlation 356

of approximately 0.93 was observed. Moreover, the 357

cleaned data showed a greater correlation across the 358
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Figure 7: Raw (A) and cleaned (B) ECG data

QRS complex and fewer noise spikes, as illustrated in359

Figure 4.360

Classification Results361

In the 4-fold cross-validation results, the enriched362

dataset presents a significant improvement in the363

stress recognition task (see Table 2). For real364

data, both the random forest and XGBoost models365

achieved accuracies of 0.78. However, the random366

forest model had a higher weighted F1 score than XG-367

Boost did. In the GAN 1 scenario, the random forest368

model yielded a significant improvement, with an ac-369

curacy of 0.90 and a weighted F1 score of 0.84. XG-370

Boost also improved, with an accuracy of 0.84 and a371

weighted F1 score of 0.79. For the GAN 2 scenario,372

the random forest model had an accuracy of 0.86 and373

a weighted F1 score of 0.84. The accuracy of XGBoost374

remained at 0.78, but its weighted F1 score increased375

to 0.81. These results suggest that the use of GAN-376

generated data (GAN 1 and GAN 2) can enhance the377

performance of classification models, particularly the378

random forest model. The improved weighted F1-379

scores indicate a better balance between precision and380

recall in these scenarios.381

In the random-split validation, the combination of382

real and synthetic data shows considerable classifica-383

tion performance. The models trained on real data384

achieved an accuracy and weighted F1 score of 0.90,385

indicating a high level of overall performance. The386

precision and recall for the stress class were both 0.75,387

demonstrating a balanced ability to correctly iden-388

tify both positive and negative instances of stress.389

This suggests that the model is effective in recog-390

nizing stress when trained on real data, providing a391

strong baseline for comparison. In the first scenario392

of data synthesis (GAN 1), the model’s accuracy and393

weighted F1 score decreased to 0.80, and the preci-394

sion for the stress class decreased to 0.70. However,395

the recall improved to 0.88. This finding indicates that396

while themodel trained on the GAN 1 data is less pre- 397

cise in identifying stress instances, it is better at cap- 398

turing most of the stress cases (higher recall). For the 399

GAN 2 scenario, the model’s accuracy and weighted 400

F1 score returned to 0.90, similar to the real data sce- 401

nario. The precision for the stress class significantly 402

improved to 1.00, indicating perfect precision—every 403

instance identified as stress was truly a stress instance. 404

However, the recall decreased to 0.75, meaning that 405

the model’s ability to identify all stress instances was 406

similar to that of the real data scenario. 407

In summary, the results from both cross-validation 408

and random-split validation indicate that the use 409

of GAN-generated data can enhance model perfor- 410

mance, particularly for the random forest model. The 411

GAN 1 data improve the recall, whereas the GAN 2 412

data significantly increase the precision, demonstrat- 413

ing the potential of synthetic data to address differ- 414

ent aspects of model performance in stress recogni- 415

tion tasks. 416

DISCUSSION 417

This work has demonstrated the robust capability of 418

HRV analysis on ECG data for stress recognition 419

in real-world applications. The high accuracy ob- 420

served in the real data scenario across both the cross- 421

validation and random-split validation pipelines, par- 422

ticularly when testing on real ECG data, under- 423

scores the strong correlation between HRV indices 424

and stress. Furthermore, our study utilized a natu- 425

ral stressor, exam time, which enhances the practi- 426

cal applicability of machine learning models. From 427

a model performance perspective, the random for- 428

est classifier not only provided comparable classifi- 429

cation results but also exhibited superior handling of 430

class imbalance, as evidenced by its higher weighted 431

F1 score. However, further work could be performed 432

at various times in a semester. 433

8
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Table 2: Cross-validation results of 3 scenarios on 2machine learningmodels.

Scenario Model Accuracy Weighted F1-score

Real data Random Forest 0.78 0.44

XGB 0.78 0.34

GAN 1 Random Forest 0.90 0.84

XGB 0.84 0.79

GAN 2 Random Forest 0.86 0.84

XGB 0.78 0.81

Table 3: Random-split validation results of 3 scenarios on the random forest model.

Scenario Accuracy Weighted
F1-score

Precision on
stress class

Recall on
stress class

Real data 0.90 0.90 0.75 0.75

GAN 1 0.80 0.80 0.70 0.88

GAN 2 0.90 0.90 1.00 0.75

Figure 8: Confusion matrix of 3 scenarios: real data (A), GAN1 (B), and GAN2 (C)

Enriching the ECG dataset via generative adversar-434

ial networks (GANs) can significantly improve stress435

classification performance, particularly in scenarios436

with limited data. The results demonstrate enhanced437

evaluation metrics for the stress class. For exam-438

ple, in cross-validation, the weighted F1-scores for439

the two GAN scenarios outperformed those obtained440

using only real data. This improvement indicates a441

better balance in recognizing both stress and non-442

stress instances, particularly benefiting the minority443

class (the stress class). Moreover, the developed GAN444

model generated high-quality synthetic data. Adding445

these good synthetic data leads to better generaliza-446

tion and representation, which in turn enhances the447

learning efficiency of machine learning models, espe-448

cially ensemble learning methods. Additionally, the449

class imbalance issue is mitigated, reducing bias in450

the decision-making process. In conclusion, the use451

of GAN-generated data not only improves the perfor-452

mance metrics but also ensures a more balanced and 453

effective classification of stress, demonstrating the po- 454

tential of GANs in enriching datasets for more robust 455

machine learning applications. 456

Our work also provides insights into how synthetic 457

data can enhance conventional datasets. We con- 458

ducted two scenarios with different synthetic data uti- 459

lization strategies: one scenario synthesizing the mi- 460

nority class only (GAN 1) and another synthesizing 461

both classes (GAN 2). In the cross-validation setting, 462

the GAN 1 scenario demonstrated sustainable perfor- 463

mance, outperforming the real data scenario because 464

of improved class balancing. The accuracy of GAN 1 465

was slightly higher than that of GAN 2when the input 466

amount of each class was balanced. In the random- 467

split validation, which involved only real data as the 468

test data, the GAN 2 scenario provided better accu- 469

racy, a weighted F1 score, and precision in the stress 470

class. Conversely, the GAN 1 scenario yielded better 471

9
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recall in the stress class (Figure 8). The results indi-472

cate that while the model trained on the GAN 1 data473

is less precise in identifying stress instances, it is bet-474

ter at capturing most of the stress cases (higher re-475

call). This trade-off suggests that GAN 1 data intro-476

duce variability that helps themodel to generalize bet-477

ter, albeit at the cost of precision (Figure 8). In con-478

trast, the GAN 2 data aid inmaking very precise stress479

identifications but do not improve the model’s sensi-480

tivity to detecting all stress instances. These findings481

highlight the potential of synthetic data to enhance482

conventional datasets. The choice between GAN 1483

and GAN 2 depends on the specific needs of the ap-484

plication. For applications requiring high recall, the485

GAN 1 approach is more suitable. For those requir-486

ing high precision, the GAN 2 approach is preferable.487

Overall, our study illustrates the effectiveness of us-488

ing synthetic data to improve model performance in489

stress recognition tasks.490

CONCLUSION491

This work involved field ECG data collection and492

the design of a framework for stress recognition on493

the basis of HRV analysis of a limited ECG dataset.494

This study highlights the potential of using GAN-495

generated synthetic data to enhanceHRV-based stress496

recognition models. By comparing models trained497

on real data with those augmented by synthetic data498

in two scenarios—GAN 1 (synthesizing the minority499

class only) and GAN 2 (synthesizing both classes)—500

we observed significant performance improvements.501

The GAN 1 data improved the recall to 0.88, whereas502

the GAN 2 data improved the precision to 1.00,503

demonstrating the ability of synthetic data to balance504

class distributions and enhance model generalizabil-505

ity. The use of a natural stressor, such as exam time,506

confirmed the practical applicability of our models.507

The random forest model, in particular, showed su-508

perior performance in handling class imbalance, with509

the highest cross-validation accuracy of 0.90 and a510

weighted F1 score of 0.84. These findings under-511

score the importance of dataset enrichment in ma-512

chine learning, especially in health-related fields. The513

use of synthetic data can improve model robustness514

and accuracy, offering a valuable tool for future re-515

search and applications. This study provides a strong516

foundation for further exploration and real-world val-517

idation of the benefits of synthetic data in stress recog-518

nition tasks.519
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Table 4: Appendix 1. PHQ-9 rating scale

PHQ-9 Score Depression Severity Comment

0 – 4 None-minimal Observation, treatment may not be needed

5 – 9 Mild Watchful waiting; repeat PHQ-9 at follow-up

10 – 14 Moderate Treatment plan, considering counseling, follow-up, and/or
pharmacotherapy

15 – 19 Moderately Severe Active treatment with pharmacotherapy and/or psychotherapy

20 – 27 Severe Immediate initiation of pharmacotherapy and, if severe impair-
ment or poor response to therapy, expedited referral to amental
health specialist for psychotherapy and/or collaborative man-
agement

Table 5: APPENDIX 2. PHQ-9 survey questionnaire (Vietnamese Version)

Không Trong vài
ngày

Hơn 1
tuần

Hầuhết tất cả các
ngày

1. Tôi ít khi hứng thú với công việc của mình 0 1 2 3

2. Tôi cảm thấy u uất, phiền muộn hoặc vô vọng 0 1 2 3

3. Tôi khó ngủ hoặc thường xuyên tỉnh dậy trong đêm,
hoặc tôi ngủ quá nhiều

0 1 2 3

4. Tôi thấy mệt mỏi hoặc không có năng lượng 0 1 2 3

5. Tôi không thèm ăn hoặc ăn quá nhiều 0 1 2 3

6. Tôi nghĩ rằng tôi là người xấu xí hoặc thất bại, hoặc tôi
cảm thấy vì tôi mà gia đình tôi không vui vẻ gì

0 1 2 3

7. Tôi không thể tập trung đọc báo hoặc xem tivi 0 1 2 3

8. Tôi đi hoặc nói rất chậm đến nổi mà người khác có thể
thấy, hoặc tôi đang lang thang hay đi đi lại lại nhiều vì tôi
cảm thấy lo lắng và bồn chồn

0 1 2 3

9. Tôi nghĩ tôi sẽ tốt hơn khi chết đi hoặc tự ngược đãi
bản thân

0 1 2 3

Điểm …/27
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Table 6: APPENDIX 3. Features extracted from the HRV dataset used in the study.

Parameter Description
HRV time-
domain indices

HTI The integral of the density of the RR interval histogram divided
by its height.

IQRNN The interquartile range of the RR intervals.
MadNN The median absolute deviation of the RR intervals.
MaxNN The maximum of the RR intervals.
MCVNN The median absolute deviation of the RR intervals (MadNN) is

divided by the median of the RR intervals.
MeanNN The mean of the RR intervals.
MedianNN The median of the RR intervals.
MinNN The minimum of the RR intervals.
pNN20 Percentage of successive RR intervals that differ by more than

20 ms.
pNN50 Percentage of successive RR intervals that differ by more than

50 ms.
Prc20NN The 20th percentile of the RR intervals.
Prc80NN The 80th percentile of the RR intervals.
RMSSD Root mean square of successive RR interval differences.
SDANN The standard deviation of the average NN intervals for each 5-

minute segment of a 24-hour HRV recording.
SDNN The standard deviation of NN interval.
SDNNI Mean of the standard deviations of all the NN intervals for each

5 min segment of a 24-hour HRV recording.
SDSD The standard deviation of the successive differences betweenRR

intervals.
TINN Baseline width of the RR interval histogram.

HRV
frequency-
domain indices

ULF The absolute power of the ultralow-frequency band (≤0.003
Hz).

HF Absolute power of the high-frequency band (0.15-0.4 Hz).
HFn Relative power of the high-frequency band (0.15-0.4Hz) in nor-

mal units.
LF Absolute power of the low-frequency band (0.04-0.15 Hz).
LF/HF The ratio of LF-to-HF power.
LFn Relative power of the low-frequency band (0.04-0.15 Hz) in

normal units.
LnHF The log-transformed HF.
VLF The absolute power of the very-low-frequency band (0.0033-

0.04 Hz).
HRV nonlinear
domain indices

Poincaré Plot SD1 The standard deviation of the PP is perpen-
dicular to the line of identity.

SD2 The standard deviation of the PP along to the
line of identity.

SD1SD2 The ratio of SD1 to SD2.
Area of ellipse described by SD1 and SD2
(pi*SD1*SD2).

Entropy ApEn Approximate entropy.
FuzzyEn Fuzzy entropy.
SampEn Sample Entropy.
SE Shannon Entropy.

Continued on next page
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Table 6 continued
Fractal Dimensions DFA Estimation of signal fluctuations using de-

trended fluctuation analysis.
CD Estimation of a minimum number of vari-

ables to define a dynamic model.
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