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ABSTRACT
Introduction: 2D reduced graphene oxide (rGO) has become a key material in optoelectronic
devices because of its outstanding electrical properties and stability. However, the application po-
tential of rGO in such devices is still limited because of its low light absorption ability (especially in
the visible region). Hence, this study aims to overcome this problemby synthesizing a Ag/CuO/rGO
hybrid structure. Methods: In this study, while rGO was formed via hydrazine vapor reduction, Ag
and CuO were synthesized through simple, low-cost chemical techniques. Results: Compared
with the bare rGO and CuO/rGO samples, the Ag/CuO/rGO hybrid has remarkably greater absorp-
tion in the visible region. In addition, the fabricated Ag/CuO/rGO also demonstrated sensitivity
toward blue light excitation, with good performance and stability. Conclusion: We hope that our
study can further enable research on the application of rGO in the optoelectronic sector.
Key words: reduced graphene oxide, copper oxide, silver nanoparticles, surface plasmon reso-
nance

INTRODUCTION
Since its first discovery in 2004, graphene (Gr) and its
derivatives, especially reduced graphene oxide (rGO),
have become key materials in both industry and sci-
entific research1. Owing to its outstanding electri-
cal properties, this material is widely employed in
high carrier mobility applications such as electronic
devices and transparent electrodes2–4. Currently,
rGO, a Gr derivative, is also a potential candidate
in the optoelectronic field, especially photodetectors
(PDs), because of its wide response to light excita-
tion5. For example, the integration of rGO with con-
ventional Si was proven to be a novel strategy for
high-performance broadband photodiodes with fast
response6. In addition, Pawan et al. reported a pho-
todetector based on rGO, which could operate in the
visible region with a relatively fast response/recovery
time and reasonable performance7. However, rGO
still has some disadvantages that can hinder further
innovation in optoelectronic applications. Specifi-
cally, rGO is prone to other environmental elements
(e.g., gaseous substances, humidity, etc.), leading to a
decrease in device selectivity 8. Moreover, the perfor-
mance of rGO-based devices is also detrimental be-
cause of the considerably low light absorption ability
of rGO (especially in the visible region) and the high
charge carrier recombination rate (due to high mo-
bility)9–11. Therefore, modifying rGO to enhance the

performance of PDs and other optoelectronic devices
is still a research interest.
For years, various modification methods to increase
the performance of rGO-based devices have been
widely studied, and creating hybrid structures be-
tween rGO and other materials, i.e., metal oxides
(MOs), has been considered an efficient way to ob-
tain greater properties for the next generation of op-
toelectronic applications12,13. Among the utilized
MOs, such as zinc oxide (ZnO)14 and titanium diox-
ide (TiO2)15, copper oxide (CuO) is among the most
prevalent because of its abundance, high stability, and
facile synthesis16,17. For example, our group intro-
duced a broadbandphotodetector based on the hybrid
structure between rGO and CuO18. This rGO/CuO
device structure not only revealed enhanced absorp-
tion compared with that of bare rGO but also ex-
hibited acceptable performance over a wide range of
wavelengths (from 395 nm to 945 nm). CuO was also
demonstrated as one of the key components of a high-
performance rGO-based MoS2/rGO/CuO/ITO dual-
band photodetector, with a responsivity and detectiv-
ity of up to 646.8AW−1 and 7.28×1014 Jones, respec-
tively19. Notably, scientists recently realized that no-
ble metal nanostructures (i.e., Ag and Au nanostruc-
tures) with strong surface plasmon resonance (SPR)
effects can significantly increase the absorption abil-
ity of rGO, especially in the visible region20,21. Nurul
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and colleagues demonstrated that the hybrid struc-
tures between rGO and Ag/Au nanoparticles could
provide an 8-to-20-fold enhanced detector perfor-
mance comparedwith that of bare rGO 22. From these
views, combining rGO with metal oxides or noble
metals is an effective route to overcome the disadvan-
tages associatedwith the absorption ability or lowper-
formance of rGO.
On the basis of the aforementioned platforms, we
aim to further improve the absorption ability of rGO-
based hybrid structures by simultaneously combin-
ing rGO with two-dimensional (2D) CuO and Ag
nanoparticles (Ag/CuO/rGO). In our structure, while
rGO was reduced from GO via hydrazine vapor, 2D
CuO and AgNPs were synthesized via simple chem-
ical methods. These results indicate that we suc-
cessfully synthesized a Ag/CuO/rGOhybrid structure
with enhanced absorption ability, noticeably in the
visible region, compared with that of bare rGO and
CuO/rGO, which may be due to the strong surface
plasmon resonance (SPR) effect of the Ag nanoparti-
cles. In addition, the fabricated Ag/CuO/rGO pho-
todetector exhibited reasonable sensitivity to visible
light illumination (464 nm), and cyclic testing un-
der continuous turning on and off of light revealed
the good stability of the device. We believe that this
study can enable further study of rGO-based hybrid
structures, which can be applied in advanced opto-
electronic technologies in the future.

MATERIALS AND METHODS
Chemical materials
The chemicals used in this experiment included cop-
per(II) nitrate trihydrate (Cu(NO3)2.3H2O, 99% pu-
rity, Sigma Aldrich), sodium hydroxide (NaOH, 99%
purity, Sigma Aldrich), silver nitrate (AgNO3, 99%
purity, Sigma Aldrich), graphene oxide nanoflakes
(99% purity, Sigma Aldrich), acetone (C3H6O >
99,99% purity, Chemsol), ethanol (C2H5OH, 99,99%
purity, Chemsol), and hydrazine hydrate solution
(NH2NH2, 99,99% purity, Sigma Aldrich).

Experimental procedures
First, the rGO layer was synthesized via a reduction
process. Indeed, GO (0.5 mg mL−1, dispersed in
ethanol) was spray-coated on a precleaned glass sub-
strate. Consequently, the GO-coated substrate was
exposed to hydrazine (NH2NH2) vapor at 60◦C for
18 hours to reduce the oxygen-containing functional
groups of GO, resulting in the formation of an rGO
layer, which was then subjected to heat treatment at
100◦C.

2D CuO was synthesized through a hydrothermal
technique. Initially, 0.24 g of Cu(NO3)2.3H2O was
mixed with 0.4 g of NaOH in 100 mL of distilled wa-
ter. After being stirred for 1 hour, the resulting so-
lution underwent a hydrothermal process at 180◦C
for 4 hours. The hydrothermal product was subse-
quently filtered, washed several times with distilled
water, and dried at 100◦C for 6 hours to obtain 2D
CuO nanosheets. Finally, 0.0025 g of CuO was dis-
persed in 5 mL of C2H5OH to prepare a 0.5 mg mL-1

CuO solution for further experiments.
The Ag/CuO/rGO hybrid structure was synthesized
as follows: after the reduction of GO to rGO on the
glass substrate, the CuO dispersion was spin-coated
at 300 rpm for 30 on the rGO layer, followed by a 1-h
heat treatment at 100◦C. Consequently, the CuO/rGO
film was immersed in a solution containing 0.017 g of
AgNO3 dissolved in 9.5 mL of distilled water and 0.5
mL of C2H5OHunder UV irradiation (λ = 295 nm, P
= 35W), which is suitable for the reduction of Ag+ to
Ag0. In the final step, the resulting sample was placed
on a hot surface at 60◦C until completely dry.

Device fabrication and characterization
After the synthesis of Ag/CuO/rGO on a glass sub-
strate, silver electrodes were patterned via a sputter-
ing technique via a shadow mask. This process re-
sulted in a 1 mm2 Ag/CuO/rGO active channel with
a length and width of 2 mm and 0.5 mm, respectively.
The structural configurations of the synthesized sam-
ples were determined via X-ray diffraction (XRD) via
a D8 Advance-Bruker diffractometer operating at 40
kV and 100 mA with Cu/Ka radiation (λ = 0.154
nm). Additionally, the optical properties of the pho-
todetector were measured via an ultraviolet−visible
(UV−Vis) spectrophotometer (JASCO V730). The
surfacemorphologies of the hybridmaterials were an-
alyzed by scanning electron microscopy (SEM, Hi-
tachi S-4800). The photodetector characteristics, in-
cluding I-V characteristics and I-t relationships, were
investigatedwith aKeithley 2400 system and a 464 nm
light source (model COBW1-480 from TOPAI).

RESULTS
A summary of our Ag/CuO/rGO photodetector fab-
rication process is depicted in Figure 1. Briefly, after
the formation of the rGO charge transport layer on a
precleaned glass substrate, 2D CuOwas coated on the
rGO surface via a spin-coating technique, followed by
the decoration of Ag NPs via a UV reduction reac-
tion. Finally, device fabrication was completed after
the patterning of the silver electrodes.
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Themorphologies of the rGO andAg/CuO/rGO sam-
ples were observed through SEM images in Figure 2,
where Figure 2a reveals the formation of rGO af-
ter reduction. Moreover, while the SEM image of
CuO/rGO at a large scale (Figure 2b) shows the uni-
form distribution of 2D CuO plated on the rGO sur-
face, the smaller-scale SEM images (Figure 2c-d) con-
firm the successful decoration of Ag NPs onto 2D
CuO.
To confirm the formation of Ag NPs on the hybrid
structure, X-ray diffraction patterns of the CuO/rGO
and Ag/CuO/rGO samples are presented in Figure 3a.
For both samples, a typical diffraction peak at 24.2◦,
corresponding to the (002) plane of rGO, was ob-
served23. Noticeably, this peak can be used to ver-
ify the successful formation of rGO after reduction
since it is distinguished from the signature diffraction
peak of GO, which is located at approximately 11◦ 24.
In addition, we also observed other peaks at 35.5◦,
38.5◦, 61.5◦, 68.2◦, and 75.1◦, which represent the
(002), (111), ( 13), and (220) planes of CuO25,26, re-
spectively, and a small peak at 38.2◦ of the (111) plane
revealed the presence of Ag NPs in the Ag/CuO/rGO
hybrid structure27.
The optical properties of the rGO, CuO/rGO, and
Ag/CuO/rGO samples were evaluated viaUV−Vis ab-
sorption spectra, as shown in Figure 3b. For all 3 sam-
ples, the absorption peak at 263 nm is attributed to the
intrinsic band edge absorption of rGO28. Compared
with the typical absorption peak of GO at approxi-
mately 230 nm, this can also confirm our successful
reduction fromGO to rGO 29. Notably, CuO/rGOhas
greater absorption in the visible region than does bare
rGO, which may be due to the incorporation of CuO
nanoplates. Interestingly, the Ag/CuO/rGO sample
revealed a remarkable increase in visible absorption,
which may be the result of the SPR effect of the Ag
NPs.
To examine the potential of our Ag/CuO/rGO hy-
brid structure in photodetectors and optoelectronic
applications, we fabricated a simple photoconduc-
tor and investigated its I−V characteristics as well as
its time-resolved photocurrent (as presented in Fig-
ure 4). Figure 4a shows that the Ag/CuO/rGO pho-
todetector had good metal−semiconductor Ohmic
contact, and the measured current under light condi-
tions was higher than that measured under dark con-
ditions (please see the inset of Figure 4a). In addi-
tion, for the time-resolved photocurrent (Figure 4b),
the changes in the photocurrent value when the light
source is turned on and off also reveal the sensitivity
of our hybrid device to light signals.

Cyclic testing under blue light (Figure 5) demon-
strated that our Ag/CuO/rGO photodetector pos-
sesses relatively good repeatability and stability, indi-
cating the potential of our proposed hybrid structure
for realistic device fabrication.

DISCUSSION
Figure 2a shows that rGO formed thin sheets after
being reduced from GO by hydrazine vapor. In ad-
dition, a large-scale SEM image of CuO/rGO (Fig-
ure 2b) demonstrated that 2D CuO plates with av-
erage widths and lengths of approximately 200–300
nm and 400–600 nm were uniformly distributed on
the rGO surface after the spin coating process. Addi-
tionally, in the smaller-scale SEM images (Figure 2c-
d), many small particles decorated on the 2D CuO
nanoplates were found, which can be attributed to the
presence of Ag NPs after the UV-reduction reaction.
X-ray diffraction patterns of the CuO/rGO and
Ag/CuO/rGO samples (Figure 3a) were obtained to
confirm the formation of Ag NPs on the hybrid struc-
ture. In both samples, along with the observed typi-
cal diffraction peaks of rGO and CuO (as presented
in the results section), the appearance of the (111)
peak ofAgNPs reveals the successful decoration ofAg
NPs onto 2D CuO. Notably, the Ag/CuO/rGO hybrid
structure was successfully fabricated, and our modifi-
cation did not cause any serious damage to the struc-
tural properties of thematerials, as no exotic peak was
detected in the XRD analysis.
According to the UV−Vis results (Figure 3b), the
higher absorption in the visible region of CuO/rGO
andAg/CuO/rGO in comparisonwith that of the bare
rGO sample can be attributed to the incorporation of
CuO nanoplates. This result is similar to that of our
previous study on a CuO/rGO hybrid photodetector
18 . Furthermore, the noticeable increase in the vis-
ible absorption (wavelength range of approximately
400 nm to more than 600 nm) of the Ag/CuO/rGO
sample demonstrates the surface plasmon resonance
(SPR) phenomenon, which is a typical effect of noble
metal nanostructures30, revealing the potential of our
three-component hybrid structure for visible light de-
tection.
In terms of the I−V characteristics (Figure 4a),
the symmetric linear current−voltage relationship
under both forward and reverse applied bias of
the Ag/CuO/rGO photodetector reveals good
metal−semiconductor Ohmic contact 31, and the
increase in current under light conditions compared
with dark conditions confirms the device response
to light excitation. Moreover, from Figure 4b, the
increase and decrease in the photocurrent when the
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Figure 1: Device fabrication process

Figure 2: SEM images of (a) rGO at 1-µm scale (b) CuO/rGO at 1-µm scale and (c)-(d) Ag/CuO/rGO at 500-nm and
200-nm scale, respectively.
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Figure 3: (a) XRD pattern of CuO/rGO (black line) and Ag/CuO/rGO (red line) samples and (b) UV−Vis absorption
spectra of rGO (black line), CuO/rGO (blue line), and Ag/CuO/rGO (red line) samples

Figure 4: Photoresponse behavior of Ag/CuO/rGO device. (a) I-V characteristic under dark and 464 nm illumina-
tion conditions and (b) Time-resolved photocurrent under 464 nm light excitation.

blue light was turned on and off during excitation
can be attributed primarily to the SPR effect, which
will be further discussed later. Herein, the response
and recovery times, which are defined as the time
for the photocurrent to reach 90% of its maximum
and the time to return to approximately 10% of the
highest value32, were estimated to be 28 s and 59
s, respectively. Furthermore, we also calculated the
responsivity (R), the critical performance parameter
of a photodetector, which represents the ratio
between the photocurrent and the excitation power
density 33. By using the formula R =

Ilight−Idark
PA , where

Ilight and Idark are the currents measured under light
and dark conditions, respectively, P is the light power

density (53 mW cm−2), A represents the area of
the active channel (1 mm2), and R was calculated
to be 2.8 mA W−1. We believe that the values of
the response/recovery time and responsivity are
acceptable compared with those reported in previous
studies on photodetectors based on similar materials.
Figure 5 shows the good repeatability and stability
of our Ag/CuO/rGO device, where the photocurrent
current increased when light was provided and de-
creased when the light was turned off without any sig-
nificant changes in the recorded signals after several
testing cycles. Notably, the baseline current through
the device slightly increased after some cycles, which
may be due to the existence of defects on the material
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Figure 5: Cyclic time-resolved photocurrent of Ag/CuO/rGO photodetector under 464 nm

Figure 6: Energy band diagram of Ag/CuO/rGO hybrid structure under visible light illumination.
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surface. Indeed, these defects can trap charge carriers,
hindering their recombination34. However, we be-
lieve that these results still indicate that Ag/CuO/rGO
has potential for further research in the optoelectronic
field and for practical device applications.
We clarified the photosensing mechanism of the
Ag/CuO/rGO photodetector. Specifically, in this hy-
brid structure, rGO serves as a charge transport layer,
2D CuO with a large surface area effectively supports
the decoration of Ag NPs and photon collection, and
Ag NPs play a role in charge carrier generation due
to their strong SPR effect. Indeed, under visible light
illumination (Figure 6), the electron clouds on the
surface of Ag NPs oscillate at a specific frequency.
When the light frequency matches the frequency of
the electron clouds, these clouds undergo resonance
oscillation, and the electrons become highly ener-
getic (known as “hot electrons” in the SPR state)35–37.
Since the SPR state is higher than the conduction band
(CB) of 2D CuO, the “hot electrons” can easily trans-
fer from Ag NPs to 2D CuO and then further trans-
port to rGO, increasing the Fermi level of this mate-
rial. Finally, these electrons are driven to silver elec-
trodes, generating a photocurrent through the hybrid
device.

CONCLUSION
In summary, we have successfully synthesized a
Ag/CuO/rGO hybrid structure via simple, low-cost
chemical processes. Compared with those of the
bare rGO and CuO/rGO samples, the Ag/CuO/rGO
sample demonstrated a significantly greater absorp-
tion ability in the visible region. In addition, the
as-fabricatedAg/CuO/rGOphotodetector also exhib-
ited sensitivity to visible light illumination (blue light,
464 nm), and cyclic testing revealed its good stability
when the light source was turned on or off. Addition-
ally, the photoresponse mechanism toward blue light,
which was primarily the result of the SPR effect, was
clarified. We believe that our study can enable fur-
ther research on rGO-based hybrid structures for op-
toelectronic applications in the future.

ABBREVIATIONS
CB: conduction band, GO: graphene oxide, MOs:
metal oxides, PDs: photodetectors, R: responsivity,
rGO: reduced graphene oxide, SEM: scanning elec-
tron microscope, SPR: surface plasmon resonance,
VB: valence band, XRD: X-ray diffraction
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