
Science & Technology Development Journal 2024, 27(3):3496-3506

Open Access Full Text Article Research Article

Ho Chi Minh City University of Foreign
Languages and Information Technology,
Ho Chi Minh City, Viet Nam

Correspondence

Tran Khai Thien, Ho Chi Minh City
University of Foreign Languages and
Information Technology, Ho Chi Minh
City, Viet Nam

Email: thientk@huflit.edu.vn

History
• Received: Jul 05, 2024
• Revised: Sept 06, 2024
• Accepted: Sept 14, 2024
• Published Online: Sept 30, 2024

DOI :

https://doi.org/10.32508/stdj.v27i3.4419

Copyright

© VNUHCM Press. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution 4.0 International license.

A System For Storing And Processing Big Data Based On The
Apache Spark Platform

Nguyen Anh Tuan, Vo Hong Phuong, Cao Tien Thanh, Tran Khai Thien*

ABSTRACT
The primary objective of this paper is to investigate and implement the Apache Spark big data pro-
cessing platformon a stock dataset, followedby the application of amachine learning technique for
prediction andmodeling. Specifically, PySpark, a Python API for Apache Spark, is utilized to facilitate
the interaction. The Spark MLlib library is employed for data transformation, whereas the GraphX
library is used for data modeling. Multiple executions of the experimental program demonstrated
significant performance improvements, with notably shorter runtimes on the Spark cluster than on
a single machine. These results highlight the advantages of distributed and parallel processing in
large-scale data analysis.
Key words: Apache Spark, machine learning, big data, prediction model, Spark Mlib, GraphX,
PySpark

INTRODUCTION
In recent years, terms such as artificial intelligence
(AI), machine learning (ML), and big data have be-
come increasingly prominent. Among these, big data
has quickly become a key field that underpins various
industries and is currently facing a significant short-
age of skilled personnel. Forbes reported that between
2016 and 2018, 90% of the world’s total data were pro-
duced. These datasets are so large that they exceed
the capacity of traditional tools and software for visu-
alization, management, and processing, thereby lead-
ing to the formal definition of ”big data.” Managing
big data effectively requires advanced approaches and
specially designed technologies, as existing tools often
lack the capacity to handle suchmassive data volumes
efficiently.
The COVID-19 pandemic from late 2019 through
2021 underscored the need for robust big data so-
lutions, as work environments shifted rapidly to re-
mote, online models that depended on large volumes
of data, virtual interactions, and collaborative plat-
forms. This period saw an unprecedented surge in
data generation. In this context, the application of big
data processing platforms has become crucial for sup-
porting data analysis, providing business forecasting
solutions, evaluating remote work efficiency, and ad-
dressing medical challenges.
As data generation continues to increase, there is an
urgent need for storage and processing platforms ca-
pable of delivering rapid query responses. With the

current scale of big data, speed has become a com-
petitive advantage. Commonly used tools such as
Microsoft Excel are inadequate for large-scale data
management; for instance, Excel’s column limitations
and its reliance on a single-machine’s memory re-
strict its capacity with large datasets. Instead, plat-
forms capable of horizontal scaling, such as those uti-
lizing clusters of computers to distribute tasks, present
a more viable solution for processing and analyzing
large datasets. Apache Spark, with its architecture that
supports the division and concurrent processing of
data across numerous nodes, effectively meets these
requirements. Unlike traditional tools, Spark’s archi-
tecture allows real-time data handling, significantly
outperforming even Hadoop-based systems, which
often experience delays in processing speed.
Various studies have examined big data applications,
such as COVID-19 data analysis, weather forecasting,
and stock price prediction1. However, many of these
studies remain at an introductory level or rely on the
Hadoop framework. Our study stands out by employ-
ing Apache Spark for predictive analytics on financial
data, highlighting Spark’s substantial benefits in speed
and scalability.
The main contributions of this paper include the fol-
lowing:

• Outlining a structured approach for big data
processing through Apache Spark, focusing on
efficient data gathering, visualization, prepro-
cessing, and application of machine learning to
stock data via PySpark.

Cite this article : Tuan N A, Phuong V H, Thanh C T, Thien T K. A System For Storing And Processing Big
Data Based On The Apache Spark Platform. Sci. Tech. Dev. J. 2024; 27(3):3496-3506.

3496

https://crossmark.crossref.org/dialog/?doi=10.32508/stdj.v27i3.4419&domain=pdf&date_stamp=2024-9-30

Science & Technology Development Journal 2024, 27(3):3496-3506

• Using distributed workers in the processing and
execution stages significantly shortens the com-
putation time, enablingmore experimental runs
and enhancing model selection through evalua-
tion metrics.

The remainder of the paper is organized as follows:
Section II presents the theoretical background. Sec-
tion III introduces the problem and the proposed so-
lution. The experimental results are presented in Sec-
tion IV. Finally, the conclusion is provided in Section
V.

BACKGROUND
A. MapReducemodel
First, MapReduce is a well-known distributed com-
puting model developed by Google and introduced
in 20042. This model works by dividing a task into
smaller subtasks, which are executed in parallel, and
then combining the results to produce the final out-
put. The MapReduce process can be summarized as
follows: reading the input data, processing the input
via the map function, sorting and merging the results
from distributed systems, aggregating the intermedi-
ate results via the reduce function, and generating the
final result (see Figure 1).

B. Apache Hadoop
Hadoop is an open-source platform, developed in
Java, designed for the storage and processing of big
data and implementing Google’s MapReducemodel3.
The core structure of Hadoop comprises four key
components: Hadoop Common, a necessary library
for the other modules; Hadoop YARN, a framework
responsible for managing cluster processes and re-
sources; Hadoop Distributed File System (HDFS), a
distributed file system that automatically splits files
into smaller blocks, replicates them, and stores them
across multiple servers to ensure fault tolerance and
high availability; and HadoopMapReduce, which op-
erates on YARN to facilitate the parallel processing of
large datasets.

C. Apache Spark
Apache Spark4 is an open-source cluster computing
platform designed for real-time data processing, with
a key feature being its in-memory cluster computing,
which significantly increases the application process-
ing speed. Spark offers an interface for parallel data
processing while enhancing fault tolerance. It is ca-
pable of handling various workloads, including batch
processing, iterative algorithms, interactive queries,
and streaming.

1) The key features of Apache Spark include the fol-
lowing:
· Speed: Spark processes data up to 100 times faster
than does Hadoop MapReduce.
· In-Memory Caching: This method accelerates com-
putations through in-memory caching.
· Scalability: Spark scales efficiently via Cluster Man-
ager, YARN, or Hadoop.
· Real-Time Processing: This method supports low-
latency, real-time data processing.
· Multilanguage Support: Spark APIs are compatible
with Java, Scala, Python, and R, with Scala as the de-
fault language.
2) The Spark architecture is based on two essential
components: resilient distributed datasets (RDDs)
and directed cyclic graphs (DAGs). It features a lay-
ered architecture and integrates various libraries and
extensions.
3) Operating mechanism:
· Distributed Computing: Spark partitions and dis-
tributes data tasks across multiple machines in a clus-
ter, enabling the processing of large datasets.
· In-Memory Computing: Unlike traditional systems
that store data on hard drives, Spark stores data di-
rectly in the RAM, significantly increasing processing
speed.
· Support for Various Data Processing Types: Spark
handles batch processing, real-time data (streaming),
interactive analytics, and other data forms.
·Multi-Language APIs: This provides APIs for widely
used programming languages, including Scala, Java,
Python, and R, making it developer friendly.
· Graph Processing and Machine Learning: Spark in-
cludes tools such as GraphX for graph processing and
MLlib for machine learning, extending its analytical
capabilities.
Architecture and Data Processing Methods
In the architecture of Apache Spark (Figure 2), the
driver program plays a crucial role in managing and
controlling the entire data processingworkflow across
a cluster of computers. The driver program initiates
SparkContext, which contains the necessary func-
tions for performing data processing tasks.
The Spark Driver, an essential part of the Driver Pro-
gram, operates on a computer within the cluster and
oversees the data processing activities across the clus-
ter. It works in tandem with the cluster manager, a
resource manager that allocates and monitors tasks
among the computers (nodes) in the cluster to ensure
efficient task execution.
One of the key components in Spark’s architecture
is the RDD, a specialized data structure that is cre-
ated within SparkContext. Once created, the RDD is

3497

Science & Technology Development Journal 2024, 27(3):3496-3506

Figure 1: MapReduce model

distributed and stored across multiple worker nodes
in the cluster. These worker nodes execute tasks as-
signed by the Cluster Manager and subsequently re-
turn the processed results to SparkContext.
Additionally, executors run on various computers
within the cluster, which are managed by the Spark
Driver. Executors are responsible for performing spe-
cific data processing tasks, and each executor can han-
dle multiple tasks concurrently, contributing to the
overall parallel processing capability of Spark.

D. PySpark
PySpark6 is an API for Apache Spark that enables
the use of Spark’s functionalities through the Python
programming language. It serves as a powerful tool
for handling big data or real-time data processing
tasks. A key distinction of PySpark is its provision of
the PySpark shell, which allows users to directly in-
teract with and analyze data within a shell environ-
ment. This feature enhances PySpark’s ability for fast,
robust data processing and analysis, maximizing its
potential for various data-intensive tasks. By com-
bining Python’s flexibility with Apache Spark’s dis-
tributed computing power, PySpark is capable of ef-
ficiently processing and analyzing datasets of varying
sizes, catering to a wide range of user needs.
Additionally, PySpark offers several notable features
and benefits:

• Multisource data processing: PySpark supports
data from diverse sources, including HDFS,
Apache HBase, Apache Cassandra, JSON, CSV,
Parquet, Avro, and other formats, facilitating the
handling of multisource data.

• High performance: This method is designed for
high-speed performance, leveraging optimiza-
tions and distributed computing, with an in-
memory data processing model that minimizes
the I/O time and enhances the processing speed.

• Integration: PySpark seamlessly integrates with
other Big Data tools, such as Apache Hadoop,
ApacheHive, ApacheHBase, andApacheKafka,
allowing flexible incorporation into existing sys-
tems.

• Automatic resource management: Through
Apache YARN or Apache Mesos, PySpark can
manage resources automatically, adjusting the
number of tasks on the basis of application de-
mands to optimize resource utilization and en-
sure efficient performance.

• Machine learning support: PySpark includes a
variety of machine learning algorithms via the
MLlib library, enabling easy and effective de-
velopment and deployment of machine learning
models on large datasets.

E. Some related work
Extensive research has leveraged big data platforms,
particularly Apache Spark, for prediction and recom-
mendation systems because of their scalability and ef-
ficiency in handling large datasets. In an early study,
[7 employed big data tools such as Apache Spark
for photovoltaic forecasting, applying algorithms such
as linear support vector machines. This approach
demonstrated significant improvements in both pro-
cessing efficiency and prediction accuracy, laying the
groundwork for subsequent research.8 advanced this
research by utilizing Apache Spark and MLlib for
stock classification and volatility prediction. They
compared several algorithms, including naïve Bayes,
random forest, decision tree, and logistic regression.
Their experiments indicated that the random for-
est and decision tree methods consistently provided
superior accuracy, with higher AUC and PR val-
ues, confirming their scalability. Subsequent stud-
ies, such as9, who introduced more advanced tech-
niques, including long short-term memory (LSTM)

3498

Science & Technology Development Journal 2024, 27(3):3496-3506

Figure 2: Architecture and Data Processing Methods 5

neural networks, demonstrated that LSTM models
outperform traditional approaches.10 explored real-
time stock trend prediction via Apache Spark stream-
ing. By employing machine learning algorithms such
as SVM, their system achieved notable improvements
in prediction speed and accuracy, making it particu-
larly suitable for high-frequency trading scenarios.
Moreover, beyond the financial sector, Apache Spark
has also been applied to recommendation systems.
Ha and Nguyen11 utilized Spark and its MLlib li-
brary to implement matrix factorization techniques
for movie rating predictions and recommendation
systems, respectively. This study employed the alter-
nating least squares (ALS) algorithm for collabora-
tive filtering, which achieves high accuracy by opti-
mizing the ALS parameters for large datasets. Recent
work has applied Apache Spark to real-time data fore-
casting in IoT networks, demonstrating its effective-
ness in time series analysis for streaming data 12. An-
other study combined a deep LSTM model with the
Jaya anti-coronavirus optimization (JACO) algorithm
on Spark, which yielded improved accuracy in stock
market prediction13.
This paper builds upon previous studies by utilizing
Apache Spark to process two distinct datasets: one
consisting of stock transaction data from 15 technol-
ogy corporations and another from Sparkify, a virtual
music streaming service. By integrating linear regres-
sion with PySpark, this study not only effectively pre-
dicts financial data but also highlights Apache Spark’s
ability to handle large, diverse datasets with signifi-
cant differences in size and structure. The use of dis-
tributed workers further highlights Spark’s scalability
and efficiency for large-scale data analysis.

PROBLEMANALYSIS
A. Requirements
Predictive modeling presents a significant challenge
across various fields, including finance, healthcare,
weather forecasting, and environmental studies. Ma-
chine learningmodels have emerged as a popular tool
for tackling these challenges, particularly in the do-
main of stock price prediction, which involves lever-
aging historical data and analytical methods.
Linear regression is one of the most widely used ma-
chine learningmodels for stock price prediction. This
model operates on the assumption of a linear rela-
tionship between input variables and stock prices. By
incorporating input features such as financial indica-
tors, economic factors, andmarket data, linear regres-
sion enables the prediction of stock prices on the basis
of the linear correlation between these variables and
stock movements.
When machine learning models are combined with
techniques from both technical and fundamental
analyses, they offer investors and financial analysts a
more holistic and accurate perspective on stock mar-
ket trends and the outlook for individual stocks.

B. Technology Selection
Selecting the appropriate technology for building a
stock price prediction model is crucial for optimiz-
ing performance and flexibility. In evaluating dif-
ferent development environments, Jupyter Notebook
has emerged as a suitable option because of its strong
alignment with data science workflows and compat-
ibility with big data tools, particularly Apache Spark.
This advantage is less prominent in other tools, such

3499

Science & Technology Development Journal 2024, 27(3):3496-3506

as RStudio or PyCharm. Jupyter Notebook is a suit-
able choice for developing a foundational platform.
Its user-friendly interface supports gradual project ex-
ploration and allows for easy expansion in the future.
However, for extremely large datasets, Jupyter may
encounter performance limits, making it more suited
to exploratory analysis rather than high-volume pro-
cessing tasks.
The notebook format, which integrates code with nar-
rative text, offers clear benefits for both coding and
documentation. Jupyter Notebook’s environment en-
courages iterative coding, where immediate feedback
can guide adjustments and streamline the debugging
process. Additionally, errors are isolated within the
notebook itself, enabling quick navigation back to
prior steps without affecting the main server. Its
structure also facilitates collaborative work and doc-
umentation, making it an accessible choice for team-
based data science projects.

C. Machine Learning Algorithms
Machine learning significantly advances data science
and artificial intelligence by creating systems capable
of autonomous learning and adaptation without de-
tailed programming. These systems generate predic-
tive models via input data and accumulated experi-
ence. Key approaches include supervised learning,
which predicts outputs on the basis of labeled data;
unsupervised learning, which handles tasks such as
clustering without labels; semisupervised learning, a
combination of both; reinforcement learning, where
the system learns from outcomes without explicit in-
structions; and deep learning, which mimics human
brain functions via neural networks. Effective ma-
chine learningmodels rely on proper data preprocess-
ing and model selection.
This research uses the linear regression model14,
which assumes a linear relationship between variables
to predict outcomes on the basis of input data. Lin-
ear regression is widely used in various domains be-
cause of its simplicity and interpretability, helping
businesses transform data into insights, and scientists
analyze trends. It also serves as a foundational tool in
more complex machine learning tasks.

EXPERIMENTAL RESULTS
A. Datasets
Theexperimental project uses two datasets to evaluate
Apache Spark’s performance:

• The first dataset consists of daily stock trans-
action data from 1972–2024, covering 15 ma-
jor technology companies. It was obtained via

the YFinance Python library, which collects fi-
nancial data from Yahoo Finance. Despite its
size of 12.2 MB, the dataset contains more than
100,000 records, which fulfills the volume crite-
ria typically associated with big data. Addition-
ally, the continuous flow of stock market data
reflects the velocity component, where timely
processing is crucial for decision-making. Al-
though relatively small in storage size, the com-
plexity and structure of the data—alongwith the
need for quick processing—make it appropri-
ate for Big Data analysis in this context. The
dataset also displays variety, incorporating dif-
ferent data types such as timestamps, prices,
and company information, necessitating sophis-
ticated data handling techniques.

• The second dataset comes from Sparkify, a vir-
tual music streaming platform. It includes over
26 million user interaction records, resulting
in a dataset of 12 GB. This large volume alone
makes it a clear example of Big Data. Further-
more, the platform records user actions in real
time, such as songplay and navigation through
the service, which aligns with the velocity as-
pect of big data. The dataset is also diverse, con-
taining both structured information such as ses-
sion IDs and song titles, as well as more com-
plex semistructured logs of user behavior. Given
these characteristics, Apache Spark is leveraged
to efficiently process and analyze these data in a
distributed manner.

B. Configuration setup and measurement
method

• Parameter settings: Spark is configured to use 4
cores (CPU) and 4 GB of RAM per executor.

• Total workers: The setup includes 4 workers,
each with 4 cores (CPU) and 4 GB of RAM.

• Resource allocation: In total, Spark will utilize
up to 16 cores (CPU) and 16 GB of RAM across
all executors, which are distributed among the 4
workers (4 cores and 4 GB per worker).

• Measurement formula: The execution time for
each cell in Jupyter Notebook is measured via
the ”time” module in Python. The command
”%%time” is placed at the beginning of each cell
to display the runtime once the query is com-
pleted.

• Measurement method: Two measurement sce-
narios are used for comparison:

+ Execution using 1 worker.
+ Execution using 4 workers.

3500

 Science & Technology Development Journal 2024, 27(3):3496-3506

C. Experiments

a) Experiment on theYFinance stockdataset:

The total number of stock trading samples, 103,285, is
summarized in Table 1 and Table 2.

Table 1: The collected data

Company name Quantity

Ford 13080

Pfizer 13080

Intel 11114

Apple 10926

Micron Tech 10049

Microsoft 9600

Amazon 6774

NVIDIA 6349

Google 4948

American Airlines 4669

Tesla 3473

Meta 2996

Alibaba 2409

Riot 2025

Snap 1793

Data Preprocessing

Two columns, Dividends and Stock Splits, were re-
moved because they did not contribute to the anal-
ysis. Since both columns contained only zero values,
their removal helped eliminate unnecessary noise in
the data and reduced the risk of overfitting, which in
turn could enhance model performance. Addition-
ally, the date column was excluded to prevent any po-
tential data leakage, ensuring that the model could be
generalized effectively when applied to new, unseen
datasets.
For categorical columns, such as Company Name and
User ID, string data are encoded via one-hot encod-
ing, which converts these categorical variables into
numeric vectors that the model can process. This
method guarantees that no ordinal relationships are
assumed between categories. Numerical data, includ-
ing stock prices and trading volumes, were vector-
ized via VectorAssembler to merge multiple feature
columns into a single feature vector for input into the
model. This approach ensured that both the encoded

categorical data and the numerical features were cor-
rectly formatted for the machine learning algorithms
in Spark.

Model Creation and Training

The dataset is divided into training and test sets via
the randomSplit method with ratios of [0.8, 0.2]. This
method allocates 80% (82,753 samples) for the train-
ing set and 20% (20,532 samples) for the test set. The
parameter seed = 42 ensures consistent random split-
ting across multiple runs if needed.
Feature Vector Preparation and Data Normalization:

• VectorAssembler: Combines feature columns
(’Open’, ’High’, ’Low’, ’Volume’) into a single
vector. This allows the model to analyze all fea-
ture data efficiently in predicting future stock
prices.

• MinMaxScaler: MinMaxScaler normalizes data
to a range (typically 0–1). Given the variabil-
ity in stock prices and volumes, normalization
standardizes features, reduces the influence of
value fluctuations, and improves the conver-
gence speed and accuracy of machine learning
models.

A pipeline is used to streamline the process by auto-
matically combining the feature columns into a vec-
tor and normalizing the data. The pipeline processes
both the training and test datasets, ensuring the con-
sistency of the preprocessing steps for model training
and evaluation.
Hyperparameter Tuning:

• ParamGridBuilder: Constructs a grid of hy-
perparameters for grid search. The addGrid
method is used to experiment with different
model hyperparameters.

• TrainValidationSplit: Trains the model with
each hyperparameter combination from the
grid on the training set and evaluates the per-
formance on the validation set. The best param-
eter set is selected on the basis of the evaluation
results via the regression evaluator.

The ’Close’ column, which represents the closing
stock price, is chosen as the target prediction label for
both models, as it accurately reflects stock trends and
investment performance over time.

3501

Science & Technology Development Journal 2024, 27(3):3496-3506

Table 2: Overview of the data description

Fields Description Data type

Date Trade date Timestamp

Open Open price Double

High Highest price of the day Double

Low Lowest price of the day Double

Close Close price Double

Volume Volume (number of shares traded) Long (int)

Dividends Dividend amount paid to shareholders Double

StockSplits Stock split quantity Double

Company Stock name String

Linear Regression
To identify the optimal set of hyperparameters for the
model, ParamGridBuilder is used to explore the fol-
lowing parameters:

• regParam (Regularization Parameter): This
parameter helps mitigate overfitting in linear
regression by applying regularization to the
model. It balances minimizing the training er-
ror and adding a regularization penalty to the
model. A higher regParam increases the regu-
larization strength. The tested values for this pa-
rameter are [0.001, 0.01, 1.0].

• elasticNetParam (Elastic Net Parameter):
Elastic Net combines the L1 (Lasso) and L2
(ridge) regularization techniques in linear
regression. ElasticNetParam controls the ratio
between these two methods. When elasticNet-
Param = 0, only L2 regularization (ridge) is
applied, and when elasticNetParam = 1, only
L1 regularization (Lasso) is used. Intermediate
values between 0 and 1 represent a mix of both
regularization types. The tested values for this
parameter are [0.0, 0.5, 1.0].

We use two metrics, RMSE (root mean square error)
and R-squared, to evaluate the model.
Root mean square error (RMSE) for the test data: The
RMSE is 0.68, indicating that the average deviation
between the model’s predictions and the actual values
is relatively low.
R-squared (R2) for the test data: The R2 value is 0.99,
indicating that the model explains 99% of the vari-
ance in the dependent variable, which suggests strong
model performance.
Best model parameters:

• regParam: The optimal value for the regulariza-
tion parameter is 0.001, indicating minimal reg-
ularization.

• ElasticNetParam: The optimal value for elastic-
NetParam is 0.0, meaning that the model exclu-
sively uses L2 regularization (Ridge) without in-
corporating L1 regularization (Lasso).

Themodel’s prediction chart is as follows
The prediction results for the entire test dataset are
presented in Figure 3.
On the basis of the metrics, visualization charts, and
actual prediction values, the linear regression model
delivers outstanding results and performance on the
test set. It demonstrates strong generalization capa-
bilities and effective learning, making it a reliable op-
tion for application to real-world data.

Comparison and explanation using 1worker
and 4workers
On the basis of Figure 4, when performing data pro-
cessing tasks in machine learning, there is a notable
difference in execution time between using 1 worker
and 4 workers. Reading data from a file took 24 sec-
onds with 1 worker, compared with 27.3 seconds with
4 workers. This suggests that for smaller datasets, in-
creasing the number of workers does not necessarily
improve performance. In fact, with the allocated CPU
cores and RAM, the use of multiple workers can lead
to slower processing speeds.
For training a linear regression model, the execution
time was consistently short, ranging from 1 to 2 s in
the experimental trials. Using a Spark cluster with
multiple workers did not significantly reduce the data
processing or execution time. In fact, 4 workers took

3502

Science & Technology Development Journal 2024, 27(3):3496-3506

Table 3: The parameters of linear regression

Root Mean Squared Error (RMSE) on test data = 0.68

R-squared on test data = 0.99

Best model parameters

regParam: 0.001 elasticNetParam: 0.0

Figure 3: Prediction results on the test set of linear regression

Figure 4: Comparison of execution times when using 1 worker and 4 workers

3503

Science & Technology Development Journal 2024, 27(3):3496-3506

approximately 1 second longer than 1 worker. This
indicates that, for models with such short execution
times as linear regression, employing multiple work-
ers might currently lead to reduced efficiency. This
outcome highlights the need for further consideration
when deciding whether to usemultiple workers, espe-
cially for tasks with short execution times.

b)Experimenton theSparkify stockdataset
Sparkify is a simulated music streaming platform,
modeled after real-world companies such as Spotify
and Pandora. Millions of users engagewithmusic ser-
vices daily, either through free, ad-supported plans or
premium subscriptions with additional features and
no ads. Users can upgrade, downgrade, or cancel their
subscriptions at any time, making customer satisfac-
tion a key factor. Each user interaction, such as song
playback, playlist additions, ratings, friend requests,
logins, logouts, and setting changes, generates valu-
able data. These activity logs provide insights into
user satisfaction and engagement with the platform.
The Sparkify dataset contains 26,259,199 rows and 18
feature columns, offering a comprehensive overview
of user behavior and interactions. A detailed descrip-
tion of the dataset is presented in Table 4.
The categorical columns, such as Artist, Auth, Gen-
der, and Page, were transformed via one-hot encod-
ing to convert them into numerical vectors for model
training. Numeric features such as Length and Item
in Session were normalized via MinMaxScaler to en-
sure that all the values fell within the same range. Fi-
nally, VectorAssembler was applied to combine both
encoded categorical features and normalized numeric
features into a single feature vector, preparing the
dataset for machine learning algorithms in Spark.

Comparison and explanation using 1worker
and 4workers
On the basis of Figure 5, when performing data pro-
cessing tasks in machine learning with a relatively
large dataset (approximately 12 GB), the operations—
from reading data from files to handling null data and
running training models—exhibit significant differ-
ences between 1 worker and 4 workers. Therefore,
applying Apache Spark for processing large datasets
is entirely feasible.

• Scale-Out:

The Spark cluster has the ability to scale horizontally,
utilizing multiple nodes to process data concurrently.
This enables faster program completion than running
on a single machine.

• Resource utilization:

Cluster Spark effectively utilizes distributed resources
by dividing tasks and processing data across nodes.
This maximizes the available resources on each node
and minimizes the waiting time due to parallel pro-
cessing.

• Performance Boost:

Using Cluster Spark can enhance the performance of
large data processing tasks, especially when simulta-
neous and parallel processing is essential.
The reduced runtime when Spark is used on a cluster,
compared with a single machine, highlights the ad-
vantages of distributed and parallel data processing.
Given the experimental results, linear regression was
determined to be a suitable model because of its sim-
plicity and efficiency. With an RMSE of 0.68 and
an R2 of 0.99, the model successfully captured 99%
of the variance in stock price data, demonstrating
strong predictive capabilities. Additionally, linear re-
gression is computationally lightweight and straight-
forward to implement on distributed systems such
as Apache Spark, making it an ideal choice for pro-
cessing the current dataset without introducing un-
necessary complexity or overfitting. For the Spark-
ify dataset, which includes over 26 million rows of
user activity, linear regression also demonstrated its
effectiveness. Despite the dataset’s size and complex-
ity, linear regression captures the relationships be-
tween the key features and delivers reliable predic-
tions. Its simplicity, combined with low computa-
tional overhead, makes it particularly appropriate for
large datasets such as Sparkify. Furthermore, linear
regression integration with Apache Spark enables ef-
ficient data processing and model training, making it
a practical solution for this application.

CONCLUSION
This paper investigates the application of data train-
ing and prediction via the linear regression model,
which is supported by the PySpark MLlib library,
across two distinct datasets: stock transaction data
and user activity data from the Sparkifymusic stream-
ing platform. The linear regression model demon-
strated solid performance in predicting stock prices,
achieving consistent accuracy on the basis of metrics
such as the RMSE and R-squared. When applied to
actual financial data, the model retained its predic-
tion capabilities, showing its effectiveness in analyz-
ing stock trends. For the Sparkify dataset, although

3504

Science & Technology Development Journal 2024, 27(3):3496-3506

Table 4: Overview of data description

Field Description Data type

Artist Name of the singer with a song played during the event String

Auth Description of the user authentication status: login, logout, guest access String

First Name Customer’s name String

Gender Gender String

Item in Session Number of events occurring in a user session Long

Last Name Customer’s last name String

Length Duration of the song Double

Level User hierarchy: paid or free Double

Location User location String

Page Page where events occur, such as package cancellation, upgrade, down-
grade…

String

Registration Number of subscriptions per user Long

Session ID Session identifier Long

Song Song title String

Status HTTP response status code (200, 500, 301, 404…) Long

Timestamp (TS) Time measured in milliseconds Long

User Agent Information about the accessing device String

User ID Identifier associated with each user String

Method HTTP server call method (POST/GET) String

Figure 5: Comparison of the operations: reading, writing, data processing, and training with 1 and 4 workers

3505

Science & Technology Development Journal 2024, 27(3):3496-3506

the model was primarily aimed at stock data, the ex-
periments demonstrated PySpark’s efficiency in pro-
cessing large-scale user interaction data, easily han-
dling millions of records. The deployment of tasks via
multiple executors on a cluster further highlights the
benefits of Apache Spark for task distribution, signif-
icantly reducing the processing time compared with
single-machine execution. This paper covers various
stages of data collection, preprocessing, visualization,
and machine learning applied to both stock and user
behavior datasets via PySpark. The incorporation of
multiple workers during execution reduced the over-
all processing time, facilitating more experimental it-
erations and improving model selection. Future work
will investigate additional machine learning models
within Spark, such as deep learning, to increase the
prediction accuracy and gainmore insights in both fi-
nancial and user behavior datasets.

ABBREVIATIONS
None.

ACKNOWLEDGMENTS
None.

AUTHOR’S CONTRIBUTIONS
All equally contributed to this work, authors read and
approved the final manuscript.

FUNDING
None.

AVAILABILITY OF DATA AND
MATERIALS
Not applicable.

ETHICS APPROVAL AND CONSENT
TO PARTICIPATE
Not applicable.

CONSENT FOR PUBLICATION
Not applicable.

COMPETING INTERESTS
The authors declare that they have no competing in-
terests.

REFERENCES
1. Azeroual O, Fabre R. Processing BigDatawith ApacheHadoop

in the Current Challenging Era of COVID-19. Big Data Cogn
Comput. 2021;5(1):12;Available from: https://doi.org/10.3390/
bdcc5010012.

2. Dean J, Ghemawat S. MapReduce: Simplified data pro-
cessing on large clusters. Commun ACM. 2008;51(1):107-
113;Available from: https://doi.org/10.1145/1327452.1327492.

3. Apache Hadoop;Available from: https://hadoop.apache.org/.
4. Zaharia M, Chowdhury M, Das T, et al. Apache

Spark: a unified engine for big data processing.
Commun ACM. 2016;59(11):56-65;Available from:
https://doi.org/10.1145/2934664.

5. Spark* Tuning Guide on 3rd Generation Intel® Xeon® Scalable
Processor;Available from: https://www.intel.cn/content/www/
cn/zh/developer/articles/guide/spark-tuning-guide-on-xeon-
based-systems.html.

6. PySpark Overview - PySpark 3.5.2 documentation;Available
from: https://spark.apache.org/docs/latest/api/python/index.
html.

7. Preda S, Oprea SV, Bâra A, Belciu A. PV Forecasting Using Sup-
port Vector Machine Learning in a Big Data Analytics Context.
Symmetry. 2018;10(12):748;Available from: https://doi.org/10.
3390/sym10120748.

8. Xianya J,MoH,HaifengL. StockClassificationPredictionBased
on Spark. Procedia Comput Sci. 2019;162:243-250;Available
from: https://doi.org/10.1016/j.procs.2019.11.281.

9. Sarma SLVVD, Sekhar DV, Murali G. Stock market analy-
sis with the usage of machine learning and deep learn-
ing algorithms. Bull Electr Eng Informatics. 2023;12(1):552-
560;Available from: https://doi.org/10.11591/eei.v12i1.4305.

10. Kalra S, Gupta S, Prasad JS. Predicting Trends of Stock Market
Using SVM: A Big Data Analytics Approach. In: Communica-
tions in Computer and Information Science, vol. 1229 CCIS.
Singapore: Springer; 2020. p. 38-48;Available from: https://
doi.org/10.1007/978-981-15-5827-6_4.

11. Nga HTT, Thuy ANT. Recommender System with Apache
Spark. In: Lecture Notes in Networks and Systems. Singapore:
Springer; 2024. p. 487-497;Available from: https://doi.org/10.
1007/978-981-99-6547-2_37.

12. Fernández-Gómez AM, Gutiérrez-Avilés D, Troncoso A,
Martínez-Álvarez F. A new Apache Spark-based frame-
work for big data streaming forecasting in IoT networks. J
Supercomput. 2023;79(10):11078-11100;PMID: 36845222.
Available from: https://doi.org/10.1007/s11227-023-05100-x.

13. Kanchanamala P, Karnati R, Bhaskar Reddy PV. Hybrid opti-
mization enabled deep learning and spark architecture us-
ing big data analytics for stock market forecasting. Concurr
Comput. 2023;35(8);Available from: https://doi.org/10.1002/
cpe.7618.

14. Hope TMH. Linear regression. In: Machine Learning: Methods
and Applications to Brain Disorders. Academic Press; 2020.
p. 67-81;PMID: 32212548. Available from: https://doi.org/10.
1016/B978-0-12-815739-8.00004-3.

3506

https://doi.org/10.3390/bdcc5010012
https://doi.org/10.3390/bdcc5010012
https://doi.org/10.1145/1327452.1327492
https://hadoop.apache.org/
https://doi.org/10.1145/2934664
https://www.intel.cn/content/www/cn/zh/developer/articles/guide/spark-tuning-guide-on-xeon-based-systems.html
https://www.intel.cn/content/www/cn/zh/developer/articles/guide/spark-tuning-guide-on-xeon-based-systems.html
https://www.intel.cn/content/www/cn/zh/developer/articles/guide/spark-tuning-guide-on-xeon-based-systems.html
https://spark.apache.org/docs/latest/api/python/index.html
https://spark.apache.org/docs/latest/api/python/index.html
https://doi.org/10.3390/sym10120748
https://doi.org/10.3390/sym10120748
https://doi.org/10.1016/j.procs.2019.11.281
https://doi.org/10.11591/eei.v12i1.4305
https://doi.org/10.1007/978-981-15-5827-6_4
https://doi.org/10.1007/978-981-15-5827-6_4
https://doi.org/10.1007/978-981-99-6547-2_37
https://doi.org/10.1007/978-981-99-6547-2_37
https://www.ncbi.nlm.nih.gov/pubmed/36845222
https://doi.org/10.1007/s11227-023-05100-x
https://doi.org/10.1002/cpe.7618
https://doi.org/10.1002/cpe.7618
https://www.ncbi.nlm.nih.gov/pubmed/32212548
https://doi.org/10.1016/B978-0-12-815739-8.00004-3
https://doi.org/10.1016/B978-0-12-815739-8.00004-3

	A System For Storing And Processing Big Data Based On The Apache Spark Platform
	INTRODUCTION
	BACKGROUND
	A. MapReduce model
	B. Apache Hadoop
	C. Apache Spark
	D. PySpark
	E. Some related work

	 PROBLEM ANALYSIS
	A. Requirements
	B. Technology Selection
	C. Machine Learning Algorithms

	EXPERIMENTAL RESULTS
	A. Datasets
	B. Configuration setup and measurement method
	C. Experiments
	a) Experiment on the YFinance stock dataset:
	Data Preprocessing
	Model Creation and Training
	Linear Regression
	The model's prediction chart is as follows
	Comparison and explanation using 1 worker and 4 workers

	b) Experiment on the Sparkify stock dataset
	Comparison and explanation using 1 worker and 4 workers

	CONCLUSION
	Abbreviations
	Acknowledgments
	Author's contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References

