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A novel numerical approach for fracture
analysis 1n orthotropic media

Nguyen Ngoc Minh, Nguyen Thanh Nha, Bui Quoc Tinh, Truong Tich Thien

Abstract — This paper presents a novel approach
for fracture analysis in two-dimensional orthotropic

domain. The proposed method is based on
consecutive-interpolation procedure (CIP) and
enrichment functions. The CIP were recently

introduced as an improvement for standard Finite
Element method, such that higher-accurate and
higher-continuous solution can be obtained without
smoothing operation and without increasing the
number of degrees of freedom. To avoid re-meshing,
the enrichment functions are employed to
mathematically describe the jump in displacement
fields and the singularity of stress near crack tip.

The accuracy of the method for analysis of cracked
body made of orthotropic materials is studied. For
that purpose, various examples with different
geometries and boundary conditions are considered.
The results of stress intensity factors, a key quantity
in fracture analysis, are validated by comparing with
analytical solutions and numerical solutions available
in literatures.

Index Terms consecutive-interpolation
procedure, crack analysis, enrichment functions,
orthotropic materials, stress intensity factor

1 INTRODUCTION

T hanks to its specific high strength and
stiffness per unit weight, orthotropic
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composite materials have been widely used in
many modern engineering applications such as
automobile industries, shipbuilding and aerospace
components. Due to the demand to improve the
durability of those structures, studies on fracture
behavior of orthotropic media has arisen as an
important and indispensible task.

Analytical investigation on fracture mechanics
of orthotropic materials have been presented for
some particular problems with relatively simple
geometries and boundary conditions [1, 2, 3]. For
more complicated problems, as usually encountered
in engineering structures, numerical approach is
more suitable.

Currently, the finite element method is the most
popular which is widely used in both academic and
industrial communities due to its simplicity and
efficiency. To avoid the cumbersome task of re-
meshing in modelling cracks, the extended finite
element method (XFEM) was proposed [4]. In
XFEM, cracks are not directly modelled as
geometric discontinuities. Instead, additional terms,
namely enriched terms, are introduced into the
approximated  displacement  formulation  to
mathematically describe the discontinuities.
Usually, the enriched functions are proposed based
on knowledge of closed form asymptotic fields at
crack tip, see [4] for isotropic material and [5] for
orthotropic materials. Although the enriched
functions proposed by [5] for orthotropic materials
have been later employed by many authors [6, 7, 8,
9], they are not sufficient in the special case of
isotropic materials. In the last few years, a new type
of enriched functions, namely ramp functions, was
proposed [10], which is not based on analytical
solution. However, the ramp-type function is
currently not suitable for orthotropic media as there
is no information on material orientation
incorporated.

Despite of popularity, XFEM still contains the
inherent drawbacks of FEM. For example, the
gradient fields calculated by FEM (as well as
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XFEM), e.g. strain and stress, are non-physically
discontinuous  across nodes. Recently, the
consecutive-interpolation procedure (CIP) has been
introduced as an improvement for FEM [11, 12,
13], such that the conventional FEM formulatin is
enhanced by averaged nodal gradient. Desirable
properties of CIP include the smooth stress fields
and the higher accuracy of field variables due to
refined interpolation.

In this paper, the CIP is combined with the
enriched functions to model behavior of two-
dimensional cracked solids. A slight modification is
proposed for the enriched functions originally
developed by [5], as an attempt to clear the gap
between orthotropic materials and isotropic
materials.

The outline of the paper is as follows. A brief on
CIP formulation on a particular case of 4-node
quadrilateral element is reported in Section 2.
Section 3 presents the application of CIP in linear
elastic fracture mechanics with the aid of enriched
functions. Several numerical examples are
investigated in Section 4, in order to demonstrate
the accuracy of the proposed approach.
Conclusions and remarks are given in Section 5.

2 BRIEF ON FORMULATION OF THE
CONSECUTIVE - INTERPOLATION 4-
NODE QUADRILATERAL ELEMENT
(CQ4)

Details on the formulation of the CQ4 element
was previously described by the authors [12]. In
this paper, the consecutive-interpolation procedure
(CIP) is briefly presented for the sake of
completeness. Consider a 2D body in the domain Q
bounded by I', which is discretized into non-
overlapping sub-domains €., namely finite
elements. Any function u(x) defined in Q can then
be approximated using the CIP as

u(x) = (x) = i_ze[(x)a, ~Ri M

where n is the number of nodes u,; is the nodal

value of function u(x) and R; is the consecutive-
interpolation shape function associated with node /
(global index). The vector of shape functions R is
determined by [8]

R=D (g, R, J0) )

I=1

in which N[I ] is the vector of Lagrange shape
functions evaluated at node /; and ﬁ’[;], N[;] are

the averaged derivative of Lagrange shape
functions with respect to x- and y- directions,

respectively. N’[;] is calculated by (and
1]

2y

N =3, - NU), 3)

e€s;

analogously for N

with N[;][e] being the derivative of N[i] computed

in element e, while w, is a weight function defined
by

Ae
w, = ,eedS;. 4)
DS
eeS;
Here, S; is the the set of elements interconnected at
node i, and A . being the area of element e.

It is important to highlight that the auxiliary
functions ¢;, @, ¢, have to be developed for each
type of elements [11, 12], which is actually not a
trivial task. Fortunately, a general formulation to
determine auxiliary functions for a wide range of
finite elements from one to three dimensions has
been recently proposed by [9], resolving the
bottleneck. For the sake of completeness, the
general formulation of auxiliary functions is shown
in the followings.

Given an element e with ne number of nodes, the
auxiliary functions associated with the local i node
(i=1,2,3,.., ne) is calculated by [13]

¢f:Ni+Ni2(21_Nf)_Ni(zz_Niz)a (5)
g= 3 G, —x,-{NfN,- PN, (5 =N, =N, )]
J=Lj#i
(6)

where N is the Lagrange shape functions and X
and 2 are determined by

3 =YN,, (7)

ne

5= N7, ®)
i=1

Replacing x-coordinate by y-coordinate in (8),
the function ¢;y is obtained.

Fig. 1 illustrates the application of CIP approach
into Q4 element described particularly in an
irregular finite element mesh. The point of interest
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x is located inside a 4-node quadrilateral element,
where the four local nodes are subsequently
denoted as i, j, k, m. The four sets S;, S;, Sk, S are
established by collecting the elements share the
node i, j, k, m, respectively. Once the sets S;, Sj, Sk,
Sn» are determined, the consecutive-interpolation
shape functions can be calculated through (2). As
shown in Fig. 1, the set of nodes that support a
point of interest x used in CIP is in any cases larger
than that of the conventional FEM, because it
includes not only the nodes of the element
containing the point x but also the nodes of the
adjacent elements.

[ L . 1
| xA 7 / 4 ;
?\I"! A Foind of interest x L,\\ \’.'
e e Supporling nudes for the point x g v

Figure 1. Schematic sketch of CQ4 element

3 APPLICATION OF CIP IN LINEAR ELASTIC
FRACTURE PROBLEMS

3.1 Governing equations

The governing equation for static equilibrium in
a domain Q bounded by I', assuming small
displacements and small strains, is given by
V-6+b=0, )
where b is the body force and o denotes the
Cauchy stress tensor. The stress-strain relation is
given by Hook’s law:
c=C:g, (10)
in which C is the fourth-order tensor of material
property and the strain tensor € is determined by
1

s:E(Vu+VTu), (11)
The associated boundary conditions are as
follows
u=1u on [ prescribed displacement, (12)
6-n =t on I': prescribed traction, (13)

with ' =Ty + It and Ty N T = {v}. A crack
existing in Q is denoted by I'c, which is assumed to
be traction free.

3.2 Enriched formulations

In order to mathematically describe the
discontinuity, enriched approach [4] is usually

7

employed. Recently, [14] introduced the extended
consecutive-interpolation  4-node  quadrilateral
element (XCQ4), which incorporates the enriched
formulation into CQ4 element, such that the
approximated displacement field in Eq. (1) is
rewritten by

uh(x)= ZRi(x)ﬁi + ZRj(x)(H(x)—H(xj))aj

split

iel® jeJ
4

+ > Rk(x)Z(F“(x)—F“(xk))bk .
keK™ a=1

(14)
In (14), J*it is the set of nodes belong to
elements completely cut by crack and K is the set
of nodes belong to the elements containing the
crack tips. The employment of enriched terms lead
to additional DOFs a; and b;. Function H(x) is the
Heaviside step function, describing the jump in
displacement fied across the crack, while the four
branch functions F* (0=1,...,4) are crack-tip
enrichments, capturing the singularities of
asymptotic stress fields. For 2D linear isotropic
elasticity problems, the four branch functions are
given in the local polar coordinate (7, §) defined at
the crack tip by

F'=r sin[gj ., Fr=+r cos(gj

F3=r sin[g)sm(a), F*=r cos@)sm(a)
(15)

For 2D linear orthotropic materials, the crack-tip
enrichments are introduced as in [5, 11]

F'=vr sin[%jm g
F2=r cos[%j\/m ’
F3=Ar sin(%zj 2,(0),

F* = \/;cos(%j 2,(0). (16)

Functions gq4(6) and 6, (¢ =1,2) are defined as
g4 (0) = \/(cosH +5,, sin (9)2 + (sqy sin 49)2 , (17)

Sqy SIN O
N B
cosf+s,, sinf

0,(0)= arctan[ (18)
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in which sq = sqx 1 isqy are the roots of the following
characteristic equation

Cpis* =2C 587 +(2C), + Cy3)s?

~2C335+Cyy =0 '
where Cj is the components of the tensor of
material property as defined in (10).

When the material is isotropic, i.e. six = s2x = 0
and siy = s2y = 1, the branch functions calculated
using (16,17,18) degenerate into

F'=F3 :«/;sin[gj

(19)

and

F*=F*= \/7 cos(gj, which are clearly not

sufficient as a set of basis functions. Thus, a
modification for functions g; and g» in (17) is
proposed as follows

2,(0)= \/(cos 6+ s, sin 9)2 + (sly sin 0)2

(20)
2,(0)= \/O.S(Sin 0+ s,, cos 9)2 + 0.5(s2y sin 9)2

With equation (20), the enriched functions
degenerates exactly into (15) in the special case of
isotropic material.

3.3 Computation of Stress Intensity Factors

Stress Intensity Factors (SIFs) are important
parameters reflecting the singular fields near the
crack tip in linear elastic fracture mechanics.
Numerically, SIFs can be determined by the

following relation:
1,2 1 2 1 2 1 2
MO =20, KK (KK K PKLD)

1 2
+2d,KPKD,

@n

in which Kj, Ky are the mode I and mode II SIFs,
respectively. Subscript (/) denotes the present state
of the cracked body, while subscript (2) denotes an
auxiliary state, which can be chosen as the
asymptotic fields of pure mode I (i.e., K{® = 1 and
Ku® = 0) or pure mode II (i.e., K® = 0 and K;® =
1), see [4, 6, 7]. Quantities di1, di» and d» are

computed by

C +
dy :—%I“{—Sl SZJ

dyy = —%Iu{LJ + ﬁlm(slsz), (22)
S185 2

M2 is a path-independent integral, namely
interactive integral calculated as follows [6, 7]
1
MO = I;(ﬂ-‘-”g-‘” +oPed jr

ij i ij
r

oulV ou®
[ o B g 2 ar
Toox b0y

r

(23)

Here, I" is an arbitrary contour surround the

crack tip, which encloses no other types of

discontinuities, and »n; is the /™ component of the
outward unit vector normal to /.

4 NUMERICAL EXAMPLES

Four isotropic and orthotropic problems are
examined in this section to assess the accuracy and
performance of the proposed method. All the
numerical examples are listed in the following for
clarity:

o Finite rectangular isotropic plate with an
edge crack

e Finite rectangular orthotropic plate with
an edge crack

o Finite rectangular orthotropic plate with a
central slanted crack

e Aninclined center crack in an orthotropic
disk subjected to point loads

The standard extended 4-node quadrilateral
element is denoted by XQ4 and XCQ4 denotes the
extended consecutive-interpolation 4-node
quadrilateral element. Note that the modified
enriched functions in (20) are used by default,
otherwise, it is stated clearly whether equation (20)
or (17) are used.

4.1 Finite isotropic rectangular plate with an edge
crack

An isotropic plate with an edge crack under
uniform tensile loading g9 = 1 is considered in this
problem, see Fig. 2. The purpose of this example is
to demonstrate that the modified branch functions
using (20) performs better than the ones originally
proposed by Asadpoure and Mohammadi [5] in
case of isotropic material. The plate is determined
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by L = 2W = 16 and a crack length a. Material
parameters are given by: Young’s modulus £ =
1000 and Poisson’s ratio v = 0.3. This problem is
pure mode I, in which the closed form stress
intensity factor K is given by [4]

K, =Coywm , 24)
where
C=1.12-0.231a+10.55a> —21.72a°> +30.79a*,
(25)
a
a=—. 26
7 (26)

e b

Figure 2. Example 4.1 Isotropic rectangular plate with an
edge crack under uniform tensile loading

For numerical calculation, a mesh of 25 x 49
quadrilateral elements (1300 nodes) is used to
discretize the problem domain. The values of K;
evaluated for different ratios a/W are presented in
Table 1, in which a comparison between XQ4-(17),
XQ4-(20), XCQ4-(20). Analytical solution is used
as reference to assess the accuracy of three
approaches. Results indicate that the evaluation of
Ki by XQ4-(20) is closer than XQ4-(17), evidently
showing the appropriateness of the modified
enriched function in (20). The highest accuracy in
Table 1 is achieved by XCQ4-(20), demonstrating
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that XCQ4 eclement, with the enhanced
consecutive-interpolation, outperforms the XQ4
element. Thanks to the consecutive-interpolation
procedure, the stress fields evaluated by XCQ4
elements are smooth across element nodes (except
for the regions containing crack), which is
physically more appropriate than the non-smooth
stress provided by XQ4 elements, as depicted in
Fig. 3 for the normal stress component Gyy. This is
the reason that higher accuracy for SIF values,
which are based on stress components, is obtained
when XCQ4 elements are used.

g1
B

XCQ4 XQ4

Figure 3. Example 4.1 Normal stress fields oy,
obtained by XCQ4 elements (left) and XQ4
elements (right)

TABLE 1. EXAMPLE 4.1: VALUES OF K; CALCULATED WITH
DIFFERENT CRACK LENGTHS

alW Exact XQ4-(15) XQ4-(20) XCQ4 - (20)
0.3 4558 4.441 4461 4.467
0.4 6.669 6.522 6.548 6.563
0.5 10.019 9.651 9.733 9.767

4.2 Finite orthotropic rectangular plate with an
edge crack

A rectangular orthotropic plate with an edge
crack subjected to distributed load, as shown in Fig.
4, is investigated in this problem. The material is
made from graphic-epoxy with the following
properties: E; = 114.8 GPa, E> = 11.7 GPa, G2 =
9.66 GPa, vi» = 0.21. The crack length is
determined by a/W = 0.5. The same mesh of 25 x
49 quadrilateral elements as in Example 4.1 is used
for discretization of the problem domain.

Effects of the material orthotropic angle £ on
mixed-mode stress intensity factors are shown in
Fig. 5. The present approach is in good agreement
with reference results [5, 6, 15]. K; tends to increase
from B = 0° to B = 45° and decreases from = 90°.



10 SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 20, No.K2- 2017

For K, the peak value is reached at about § = 30°.

1

In Fig. 5, the SIFs are normalized by osl
~ K; 08
K; = , 27
1 0_0% ( ) . z»; // N\ \
El[ - Ku (28) é ” \
o /7211 > 3 04f

0.3 \

—&— Asadpour et al. [5] \

A A 'y
: % i f T zj / Ghorashi et al. [6] AN

A Aliabadi & Sollero [15]
Y Y ; —O— Present ; m
qy 10 20 30 40 50 60 70 80
Material orthotropic angle
E;» ,E1 Figure 5. Example 4.2: Normalized mode I and
\, / mode Il SIFs computed according to the material orthotropic
\_AB angle
4.3 Finite orthotropic rectangular plate with a
W =26 mm slanted center crack
' t ' t
= P % | |
£ 'y
I
a ’{ 0 Eza
e 1
-
—F 1
W =20 mm
_— < »
£
&
\ o
<
l 5 ' "
d
0 l v i
Figure 4. Example 4.2: Orthotropic rectangular plate with an
edge crack under uniform tensile loading
_
3.4
33
3.2 \
= ‘ [ [ |
R i Og l 1 |
E 3 A\ \4 A\
® \\\\3
2% / —E5— Asadpour etal 5] Figure 6. Example 4.3: Orthotropic rectangular plate with a
280 ! :2: Ghorashi et al. 6] slanted center crack
Aliabadi & Sollero [15]
) / . —©— Present . )
OB R e thoteneange. 0 In this example, the mixed-mode problem of a

finite rectangular plate with a slanted center crack
is investigated, see Fig. 6. The geometry is given

by L = 2W = 40 and the crack length is 2a =242
The orthotropic material axes are aligned with the
global coordinate x- and y- axes. The orthotropic

material parameters are as follows: E; = 35 GPa, E»
=12 GPa, G]z =3 GPa, 1= 0.07.
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The problem domain is discretized by a mesh of
45 x 91 quadrilateral elements (i.e. 4232 nodes).
Fig. 7 depicts the variation of normalized mode I
and mode IT SIFs with respect to the inclined angle
of crack. As the inclined angle increased from 0° to
90°, mode I SIF, K, , gradually decreases from 1 to
0, while the mode II SIF, X, , increases to the peak
value at 45° and then decreases to 0. Good
agreement with results using meshfree method
(4560 nodes) reported in [6] is observed. Largest
discrepancy in Fig. 7 is recorded between the
curves of K, at slanted angle a = 45°. Thus, further
comparison is conducted and reported in Table 2,

showing the consistency between present approach
(XCQ4 - (20)) and literatures.

—&— Ghorashi et al. [6]
—E— Present

o
=

Normalized K,
=4
=

o
=

o
N

o

i i L i
10 20 30 40 50 80 %ﬁ

Inclined crack angle

o

o
@

—&O— Ghorashi et al. 6]

Normalized K
=] o o
©w = o

o
[N

01

H i i i H i i
10 20 30 40 50 60 70 80
Inclined crack angle

Figure 7. Example 4.3: Normalized mode I and mode II SIFs
computed according to the crack inclined angle

TABLE 2. EXAMPLE 4.3: COMPARISON OF NORMALIZED

MODE 1 AND MODE 11 SIFS AT INCLINED CRACK ANGLE 45°
Present [6] [16] [17]
K 0.522 0.512 0.485 0.5
1
K 0.491 0.530 0.498 0.5
)i

5 CONCLUSIONS AND OUTLOOKS

In this paper, the XCQ4 eclement has been
successfully extended for modelling cracks in two-
dimensional orthotropic problems. The accuracy
and performance of the present formulation has
been verified through a series of numerical
examples. Preliminary results indicate that the
present approach is in good agreement with other
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authors. Furthermore, XCQ4 element is observed to
perform better than its XFEM counterpart, the XQ4
element, such that higher accuracy of SIFs is
achieved. As SIFs are key quantities to numerically
determine the propagating direction during crack
advancement, the approach is promising to be
extended to problems involving crack growth.

The higher accuracy of XCQ4 over XQ4 is
possibly due to the enhanced interpolation by CIP,
by which the erroneous non-smooth stress fields in
XQ4 can be overcome by XCQ4. It is important to
emphasize that no extra degrees of freedom is
required for CIP. Although in this work, only the
quadrilateral element is investigated, the approach
is possible for other types of element. With the aid
of general formulation for auxiliary functions, see
[13], CIP can be integrated into a wide range of
existing finite elements without difficulties

The set of crack-tip enriched functions proposed
by [5] is shown to be not well-chosen. Thus, a
modified version of the enriched functions is
presented, which properly degenerates into those
proposed by [4] for the special case of isotropic
material. The new set of enriched functions
outperfoms the set by [5] when material is
isotropic. For orthotropic material, the new set of
enriched functions is consistent with references
available in literatures.
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Mot phuong phap s6 méi cho bai toan
vet nit trong vat li€u truc hudng

Nguyén Ngoc Minh, Nguyén Thanh Nh3, Bui Qudc Tinh, Truong Tich Thién

Tém tit — Bai bao trinh bay mét phwong phap )
méi cho bai toan phén tich vét nit trong mien hai
chleu voi vt liéu tree hwéng. Phuong phap duge as
xuit dua trén ky thuit noi suy lién tlep va ham lam
giau. Ky thuat noi suy lién tlep 1a ky thuit méi, dwgc
giéi thiéu trong vai nim gin day dé cai tién phuong
phap phén tir hitu han. Theo dé, 10i giai thu dwoc ¢6
d9 chinh xac va do lién tuc bac cao hon ma khong lam
tang ) béc tw do. Khi ap dung cho bai toan vét nut,
dé tranh viéc chia lwéi lai, k§ thuit ham lam glau
dwgc ap dung dé mé ta bmrc nhdy trong mlen chuyen
vi va su suy bién ng suét quanh dinh vét nut bang
ham toan hoc.

Do chinh xac cia phuong phap khi phan tich vét
nit trong mién hai chiéu véi vét li¢u truc huéng sé
duwgc khao sat qua cac vi du tinh toan khac nhau. Gia
tri hé sé cwong dd wng suit sé dwoc so sanh kiém
chirng vai cac 10i gidi tham khao.

§ thuét ndi suy lién tiép, phén tich vét
nirt, ham lam giau, vat liéu trowc hwéong, hé so cwong
do ng suat.



