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Effect of temperature and porosities on dynamic
response of functionally graded beams carrying
a moving load

Bui Van Tuyen

Abstract - The effect of temperature and porosities
on the dynamic response of functionally graded
beams carrying a moving load is investigated.
Uniform and nonlinear temperature distributions in
the beam thickness are considered. The material
properties are assumed to be temperature dependent
and they are graded in the thickness direction by a
power-law distribution. A modified rule of mixture,
taking the porosities into consideration, is adopted to
evaluate the effective material properties. Based on
Euler-Bernoulli beam theory, equations of motion are
derived and they are solved by a finite element
formulation in combination with the Newmark
method. Numerical results show that the dynamic
amplification factor increases by the increase of the
temperature rise and the porosity volume fraction.
The increase of the dynamic amplification factor by
the temperature rise is more significant by the
uniform temperature rise and for the beam associated
with a higher grading index.

Index Terms-Functionally graded material,
porosities, temperature-dependent properties,
dynamic response, moving load, Euler-Bernoulli
beam.

1 INTRODUCTION

Analyses of structures made of functionally
graded materials (FGMs) have been
extensively carried out since the materials were
created by Japanese scientist in mid-1980s. The
smooth variation of the effective material
properties enables these materials to overcome the
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drawbacks of the conventional composite materials.
Many investigations on the behaviour of FGM
structures subjected to thermal and mechanical
loadings are available in the literature,
contributions that are most relevant to the present
work are briefly discussed below.

Chakraborty et al. [1] employed the exact
solution of homogeneous governing equations of a
FGM Timoshenko beam segment to develop a
beam element for vibration analysis of FGM
beams. The third-order shear deformation theory
was used in formulation of a finite beam element
for studying the static behaviour of FGM beams
[2]. Li [3] presented a unified approach for
investigating the static and dynamic behaviour of
FGM beams. The finite element method was used
to study the free vibration and stability of beams
made of transversely or axially FGM [4],[5].
Nonlinear beam elements were derived for the large
displacement analysis of tapered FGM beams
subjected to end forces [6], [7], [8]. Meradjah et al
[9] proposed a new higher order shear and normal
deformation theory for bending and vibration
analysis of FGM beams. Sallai et al [10] presented
an analytical solution for bending analysis of a
FGM beam. A new refined hyperbolic shear and
normal deformation beam theory was proposed for
studying the free vibration and buckling of FGM
sandwich beams [11]. Vibration analysis of FGM
beams under moving loads, the topic of this paper,
has been considered by several authors recently. In
this line of work, Simgek va Kocatiirk [12] used
polynomials to approximate the displacements in
derivation of discretized equations for a FGM
Euler-Bernoulli beam under a moving harmonic
load. Lagrange multiplier method was then
employed in combination with Newmark method to
compute the vibration characteristics of the beams.
The method was then employed to study the
vibration of FGM beams under a moving mass and
a nonlinear FGM Timoshenko beam subjected to a
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moving harmonic load [13], [14]. Khalili et al [15]
used the mix Rizt-differential quadrature method to
compute the dynamic response of FGM Euler-
Bernoulli beams carrying moving loads. The
Runge-Kutta method was employed to investigate
the dynamic behavior of a FGM Euler-Bernoulli
beam under a moving oscillator [16]. Nguyen et al
[17], Gan et al [18] employed the finite element
method to study the dynamic behaviour of FGM
beams traversed by moving forces.

FGMs were employed for the development of
structural components under severe thermal
loadings. Investigation on the behaviour of FGM
structures in thermal environment is an important
topic, and it has drawn much attention from
researchers. Kim [19] employed Rayleigh-Ritz
method to study the free vibration of a third-order
shear deformable FGM plate in thermal
environment. Pradhan and Murmu [20] used the
modified differential quadrature method to solve
equations of motion of the free vibration of FGM
sandwich beams resting on variable foundations.
Based on the higher-order shear deformation
theory, Mahi et al [21] derived an analytical
solution for free vibration of FGM beams with
temperature-dependent material properties. The
improved third-order shear deformation theory was
used to study the thermal buckling and free
vibration of FGM beams [22]. The authors
concluded that the fundamental frequency
approaches to zero when the temperature rises
towards the critical temperature. The effect of
porosities which can be occurred inside FGMs
during the process of sintering on the behaviour of
FGM beams has been considered in recent years.
Wattanasakulpong and Chaikittiratana [23] took the
effect of porosities into account by using a
modified rule of mixture to evaluate the effective
material properties in the free vibration of FGM
beams. Atmane et al [24] proposed a computational
shear displacement model for free vibrational
analysis of FGM porous beams. The Ritz method
was used to obtain expressions of the critical load
and bending deflection of Timoshenko beams
composed of porous FGM [25]. Ebrahimi et al [26]
used the differential quadrature method to study the
free vibration of FGM porous beams in thermal
environment. It has been shown by the authors that
the fundamental frequency of the beams is
significantly influenced by both the temperature
and porosities.

To the authors’ best knowledge, the effect of
temperature and porosities on the dynamic response
of FGM beams has not been reported in the
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literature and it will be investigated in the present
work. The material properties of the beams are
considered to be temperature — dependent and they
are graded in the thickness direction by a power-
law distribution. Two type of temperature
distribution, namely uniform and nonlinear
temperature rises obtained as solution of the heat
transfer Fourier equation are considered. A
modified rule of mixture is adopted to evaluate the
effective material properties. Equations of motion
based on Euler - Bernoulli beam theory are derived
from Hamilton’s principle and they are solved by a
finite element formulation in combination with the
Newmark method. A parametric study is carried
out to highlight the effect of the temperature rise
the the porosity volume fraction of the dynamic
response of the beam.

2 FUNCTIONALLY GRADED BEAM

A simply supported FGM beam carrying a load
P, moving along the x-axis as depicted in Fig.1 is
considered. In the figure, the Cartesian co-ordinate
system (X, z) is chosen as that the x-axis is on the
mid-plane, and the z-axis is perpendicular to the
mid-plane. Denoting L, h and b as the length,
height and width of the beam, respectively. The
present study is carried out based on the following
assumptions: (i) The load P is always in contact
with the beam and its moving speed is constant; (ii)
the inertial effect of the moving load is negligible;
(iii) the beam is initially at rest, that means the
initial conditions are zero.

The beam is assumed to be composed of metal
and ceramic whose volume fraction varies in the z
direction as

z 1

V.=—+=1|,V.+V, =1
(i3

where V. and Vp, are respectively the volume
fractions of ceramic and metal, and n is the
nonnegative grading index, which dictates the
variation of the constituent materials. As seen from
Egs.1, the bottom surface corresponding to z = -h/2
contains only metal, and the top surface
corresponding to z = h/2 is pure ceramic.

(1)
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Figure 1. A simply supported FGM porous beam carrying a
moving load

The beam is considered to be in thermal
environment, and its material properties are
assumed to be temperature - dependent. A typical
material property (P) is a function of environment
temperature (T) as [27]

P=P(P,T"'+1+PT+PT*+PRT") )

where T = Ty+AT, with Ty = 300K is reference
temperature and AT is the temperature rise, is the
current environment temperature; P 1, Po, P, P2, P3
are the coefficients of temperature 7(K), and they
are unique to the constituent materials [26].
In order to take the effect of porosities into
consideration, the modified rule of mixture [23] is
adopted herewith

p=p|v.-Lv |+p[r, Ly, 3)
2 2

where P, and P, are respectively the properties
of metal and ceramic, and Ve (<<1) is the porosity
volume fraction. From (1) and (3), the effective
Young’s modulus (E), the thermal expansion
coefficient (o) and the mass density (p) of the FGM
porous beam are given by

E(z,T)=[E.(T)-E, (T)][%Jr%]

+E, (1) -2 [E.(1)+ E,(D)

a(z,T) =[a,(T)-a, (T)][% %]

+a, (1) -, () +a, (7]

z 1Y v
p(z)=(p. —%)[;7] + 0, —7"(/3(. +0,)
4)

where the mass density is considered to be
temperature-independent.

Temperature variation is considered to occur in
the thickness direction only, and it is assumed that

the temperature is imposed to prescribed values on
the top and bottom surface, 7= T. at z=h/2, and T
= Tm at z = h/2. In this case, the temperature
distribution can be obtained by solving the
following steady - state heat transfer Fourier
equation [19].

—i|:K(Z)d—T} =0 (5)

where « is the thermal conductivity, assumed to
be independent to the temperature. The solution of
(5) is as follows

r L dz

7h/2K(Z)
%h 1
- k(2)

T=T,+(T.-T,) (6)

dz

If 7. = T, (6) gives a uniform temperature rise
(UTR), otherwise it leads to a nonlinear
temperature rise (NLTR). The temperature
distribution in the thickness direction for the NLTR
with a temperature rise AT = 300K is depicted in
Fig. 2 for various values of the index ».
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Figure 2. Temperature distribution in thickness direction for
NLTR.

Based on the temperature distribution in (6), the
temperature-dependent material properties are
evaluated by using (4). Fig. 3 illustrates the
variation of the Young’s modulus in the beam
thickness for the two cases of temperature rises and
for different indexes n and Vo = 0.1. As seen from
the figure, the effective Young’s modulus decreases
more significantly by the UTR than it does by the
NLTR. Noting that Figs. 2 and 3 have been plotted
for a FGM beam formed from Alumina and Steel.
The material data of Alumina and Steel are given in
Ref. [26].
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Figure 3. Variation of Young’s modulus in thickness direction
for a temperature rise AT = 300K and a porosity volume fraction
V.=0.1

3 GOVERNING EQUATION

Based on the Euler-Bernoulli beam theory, the
displacements u and w of an arbitrary point in the x
and z directions, respectively are given by.

u(x,z,t) =uy(x,t) —zw,

(7

w(x,z,t) = wy(x,t)
where uo(x, f) and wo(x, f) are respectively the
axial and transverse displacements of a point on the
x-axis; t is the time, and (...),x denotes the
derivative with respect to x. Based on linearly
elastic behaviour, the normal strain (&) and normal

stress (o) are as follows

€=Uy — Wy 1> 0(2,T) = E(z,T)(uo’x —ZW, ) 8

The strain energy for the beam (Up) resulted
from the mechanical loads reads

Up =1TJ.UgdAdx
20 ©)

L
1 , )
= EJ.(AI 14, = 2A1U0  Wo o + A2p W )dx
0

where A1, A2 and A are respectively the
extensional, extensional-bending coupling and
bending rigidities, defined as

(A Ao A) = [ E(z,T)(1,2,2°)dA (10)
with A is the cross-sectional area. With the
effective Young’s modulus and temperature given
by (4) and (6), the above rigidities can be easily
evaluated.
The strain energy from initial stress due to the
temperature rise (Ur ) is given by [21].
1 L
Uy == [ Nyw; dx (11)
29 ’
where Nris the axial force resultant caused by
elevated temperature, defined as
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Ny

(12)

with AT, as mentioned above, is the temperature

- L E(z,T)a(z,T)ATdA

rise. The kinetic energy of the beam (T ) resulted

from Eq. (7) is

T= lj p(2)(W* +WH)dV
2y (13)

1 L
= EI[II | (”g + Wé )— 2112L20W0,x + IzzW§,x Jdx
0
where an overdot denotes the differentiation

with respect to time, and /i1, Ii2, I are the mass
moments defined as

(1> 1y, 1) = J.Ap(z)(l,z,zz)dA

with p(z) is temperature. Finally, the potential
of the moving forces (7) has a simply form as

(14)

V= —ZN: Pw,(x,t)0(x —vt)

i=1

(15)

with & (.) is the delta Dirac function; x is the
current position of load P with respect to the left
end of the beam.

Applying Hamilton’s principle to (9), (11), (13)
and (15), we obtain the following equations of
motion for the beam

Lty = 1), W, — An”o,xx + AlZWO,m =0

Lyw, — IlZiiO,x + Izzwo,xx - Azzwo,mx

=—Po(x—vr)
(16)

The natural boundary conditions for the beam
are as follows

Ay — AW = Natx=0 and x=L
or u,(0,£)=0
—Apu, .+ AW, =0 atx=0 and x=L(17)
or w,(0,8) = w,(L,t)=0
Ay, — Apwy . = M atx=0 and x=1L

N,Q and M respectively  the

prescribed axial, shear forces and moments at the
beam ends.

The finite element method is employed
herewith to solve the system of (16). To this end,
the beam is assumed to be divided into a number of
two-node elements with length of /. The vector of
nodal displacements (d) for an element has six
components as

d={u W}T

+ Aty o = NpWy

where  are

(18)
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where u = {u; w} and w = {w; 01 wy 0} are
respectively the vectors of nodal axial and bending
degrees of freedom at note 1 and node 2. In (18)
and hereafter the superscript ‘7" is used to denote a
transpose of a vector or a matrix. The order of
nodal degrees of freedom is not necessary as in
(18), but it is convenient to separate the axial and
bending degrees of freedom.

The axial displacement u( and the transverse
displacement wy are interpolated from the nodal
displacements according to

u,=H,u, w,=H w (19)

where H,= {H.1 H.o}, Hy = {H. Ho1 Hyo Ho}
are the matrices of shape functions. The following
linear and cubic polynomials are used as the shape
functions

Hy =", = (20)
/ /
and
2
H,=1-3"42> g —x-25 42
T I
2 3 2 3 (21)
H,=3> 2% g =-2 4%

E L A A
Using the above shape functions, one can write
the strain energy Up in the form

1 ne
U,= EZdei d, (22)
i=1

where ne is the total number of elements, and k
is the eclement stiffness matrix, which can be
written in form of sub-matrices as

k = |:kaa kab j|
- T
k, ky
in which Ka, ki and ky, are respectively the
stiffness matrices resulted from the extensional,

extensional - bending coupling and bending with
the following forms

k:ﬂ1—1k:_i010—1
S A I S T 110 -1 0 1

12 6/ -12 6l
_A,| 6 4 -6l 2P
P -12 -6l 12 -6l

6/ 20* —61 4’

(23)
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The strain energy resulted from the temperature
rise can be written as

U, :%zd?kTidi (25)
i1

where the element stiffness matrix Ky has the
form

36 31 -36 3l
3l 4 31 -
M 2o
30/|-36 -3 36 -3
31 7 3147

Zero entries corresponding the axial degrees of
freedom should be added to kr to form a matrix
with the same size as (6x6) element stiffness
matrix.

Similarly, the kinetic energy can be written as
14 . .
T, =52 d/mgd, 27)
i=1

where m is the element consistent mass matrix,
which can be written in sub-matrices as

muu leW
mz{ r } (28)
muw mw9
in which
/ 2 1
muu 11 H
6 1 2
1 6 -l -6 |
muw:_IIZ
12 6 [ -6 -l
156 22/ 54 13/
! 221 41 131 3¢
m,,=—-I,
420 54 13/ 156 -22]
_ a2 2
13/ -3/ 221 4] 29)
12 6/ -12 6!/
L,| 6 4 -6 28
30/|-12 -6/ 12 -6l
6l 20 -6l 4

Having the element stiffness and mass matrices
derived, the finite element equation for dynamic
analysis of the beam ignoring the damping effect
can be written in the form

MD + KD =F,_ (30)
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where D, M, K are the structural nodal
displacement vector, mass and stiffness matrices,
respectively; Fex is the structural nodal load vector

with the following form
T

F, ={0..0..0 0PN | ..0... ..0

loading element

(€2))

The above nodal load vector contains all zero
coefficients, except for the element currently under

loading. The notation Ny|. in (31) means that the

shape functions N,, are evaluated at the abscissa xe,
the current position of the load P with respect to the
element left node.

The system of equations (30) can be solved by
the direct integration Newmark method. The
average acceleration method described by [28],
ensuring the unconditional convergence is adopted
herein. In the free vibration analysis, the right hand
side of (30) is set to zeros, and a harmonic response
is assumed, so that (30) deduces to an eigenvalue
problem, which can be obtained by the standard
method.

4 NUMERICAL RESULTS AND DISCUSSION

The effect of temperature rise and volume
fraction of porosities on the dynamic response of a
simply supported FGM beam carrying a moving
load is numerically investigated in this Section. The
beam material is assumed to be composed of
Alumina and Steel with the properties of
constituent materials are given in Ref. [26]. The
following dimensionless parameters are introduced

w20 o w20
w, ’ w,

st. st.

t*= w*

t

]-;0’.
(32)
where T is total time necessary for one load to
cross the beam, and wy = PL3/48Egeil is the
maximum static load of a full steel beam under a
load P. The parameter DAF in (32) is defined in the
same way as the dynamic amplification factor of an
isotropic beam under a moving load and it is also
called the dynamic amplification factor herein. An
aspect ratio L/h = 20 and 500 steps for the
Newmark method are employed in all the

computations reported below.
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TABLE 1
COMPARISON OF FREQUENCY PARAMETER OF FGM POROUS
BEAM IN THERMAL ENVIRONMENT

Vo ATK Temper- source n=01 n=02 n=05 n=1
ature
UTR  Present 4.7969 44913 3.9395 3.5202
Ref. [26] 4.8339 45215 3.9598 3.5347
20 NLTR Present 4.8458 45432 3.9950 3.5769
ol Ref. [26] 4.8766 4.5627 3.9914 3.5545
UTR  Present 4.6106 42997 3.7389 3.3140
Ref. [26] 4.6575 4.3385 3.7658 3.3336
40 NLTR Present 4.7582 4.4553  3.9058 3.4855
Ref. [26] 4.7889 4.4694 3.8814 3.4280
UTR  Present 5.0289  4.6601 4.0119 3.5332
Ref. [26] 5.0693 4.6925 4.0328 3.5472
20 NLTR Present 5.0723  4.7063 4.0617 3.5836
02 Ref. [26] 5.1064 4.7282 4.0574 3.5558
UTR  Present 4.8670 4.4930 3.8362 3.3521
Ref. [26] 4.9182 45346 3.8640 3.3715
40 NLTR Present 4.9964 4.6302 3.9840 3.5037
Ref. [26] 5.0308 4.6471 3.9580 3.4354
TABLE 2

COMPARISON OF MAXIMUM DAF AND CORRESPONDING
MOVING LOAD SPEED OF FGM BEAM WITHOUT TEMPERATURE
AND POROSITY EFFECT

Present work [12]

n max(DAF) v max(DAF) v (m/s)
(m/s)

0.2 1.0347 222 1.0344 222

0.5 1.1445 197 1.1444 198

1 1.2504 179 1.2503 179

2 1.3377 164 1.3376 164
SUS304 1.7326 132 1.7324 132
AlI203 0.9329 252 0.9328 252

The derived formulation is firstly validated by
comparing the numerical results obtained in the
present paper with the available data. In Table 1,

the frequency parameter @ = wl’ / hyp,/E, of

FGM porous beam in thermal environment the
present work is compared to that of Ebrahimi et al.
(2015), obtained by using the differential transform
method. The comparison of the maximum
amplification factor and the corresponding moving
speed is given Table 2. The numerical result in
Table 2 has been obtained by using the geometric
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and material data given in the paper by Simsek, and
Kocatiirk (2009) and by steadily raising the moving
speed with an increment of 1 m/s, as suggested in
the paper. As seen from the Tables, the frequency
parameter and the dynamic response obtained in the
present work are in good agreement with that of
Ebrahimi et al [26] and Simsek, and Kocatiirk [12],
respectively. It should be noted that the frequency
and dynamic amplification factor given in Tables 1
and 2 were converged by using sixteen elements,
and this number of elements is used in the below
computations.

Table 3 lists the DAF of the beam with various
values of the temperature rise and the grading index
n for a porosity volume fraction V,= 0.1. It can be
observable from the Table that the effect of the
grading index n on the DAF of the FGM porous
beam in thermal environment is similar to that of
the FGM without the temperature and porosity
effect. At a given value of the temperature rise and
of the moving speed, the DAF is increased by the
increase of the index n. The effect of temperature
rise on the DAF of the beam is clearly seen from
the Table. The DAF steadily increases by the
increase of the temperature rise, regardless of the
index n and the type of temperature distribution. By
examining Table 3 in more detail, one can see that
the DAF of the beam associated with a higher index
n is much more sensitive to the temperature change,
irrespective of the moving speed. For example, an
increase of 82.49% in the DAF when raising 7T
from 20K to 80K for the beam carrying a load with
v =20 m/s in UTR is seen for n = 10, while this
value is just 34.66% and 55.47% for n = 0.2 and n
= 1, respectively. The reason of this is that the
beam with a higher index n contains more metal,
and comparing to ceramic, Young’s modulus of
metal decreases more significantly by the
temperature rise. Table 4 also shows that the
increase of the DAF by the NLTR is less
pronounced than by the UTR, regardless of the
index n.

TABLE 3
DAF FOR VARIOUS VALUES OF TEMPERATURE RISE AND
GRADING INDEX 1 (Voo =0.1)

80  1.2574  1.5253  1.7349 2.2486

NLTR 20 20 0.8428 0.8428  1.0010 1.1236
40 0.8746 09636  1.0505 1.2072

60 09074  1.0130  1.1037 1.3011

80 09420  1.0655 1.1610 1.4081

40 20 0.8566  0.9682  1.0787 1.2191

40  0.8829  1.0207  1.1406 1.2906

60 13377 1.0772  1.2073 1.3696

80 09725 1.1384  1.2795 1.4527

02 0.2

—— AT=20K

—— AT=20K
—— AT=50 K —— AT=50K
2 —— AT=80 K —— AT=80K
0% 02 04 06 08 1 0% "0z 04 06 08 1

t t

(a) UTR (b) NLTR

Figure 4. Time histories for mid-span deflection for various
values of temperature rise (n = 0.5,Va =0.1,v = 30 m/s).
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Figure 5. Relation between DAF and moving speed for various
values of temperature rise (n =0.5,V0.= 0.1).
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Figure 6. The relation between DAF and grading index n for
various values of temperature rise (Va = 0.1, v =30 m/s)
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rature ) K) 14V Ve \
a Y, = Vo0
UTR 20 20 08786 09715 1.0592 12134 Bevy N | e
40 0.9511 1.0852 1.1809 1.4238 T 100 200 300 1o 100 260 300
60 1.0526 1.2188 1.3703 1.6978 v (m/s) v (m/s)
80 11831 13767 1.6467  2.0607 @UTR (BINLTR
40 20 0.8860  1.0299  1.1512 1.2958  Figure 7. Relation between DAF and moving speed for different
40 09858 1.1614  1.3063 1.4651  porosity volume fractions (n =3, 7= 50 K).
60 1.1084 1.3236 1.4979 1.6586
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Figure 8. The relation between DAF and grading index » for
different porosity volume fractions ( 7= 50K, v =30 m/s)

The effect of the temperature rise on the dynamic
response of the beam is further illustrated in Figs.
4-6. The mid-span dynamic deflection, as seen
from Fig. 4, is increased by the increase of the
temperature rise for most the traveling time of the
moving load. In addition, the temperature rise alters
the time at which the deflection attains a maximum
value, but it hardly affects the way the beam
vibrates. The curves of the relation between the
DAF and the moving speed of the FGM porous
beam, depicted in Fig. 5 for various values of the
temperature rise, are similar to that of the FGM
beam without the temperature and porosity effect
[6], [12], and the DAF experiences a period of
repeated increase and decrease by the increase of
the moving speed, it then monotonously increases
to a maximum value. Irrespective of the moving
speed and the type of temperature distribution, the
DAF increases by the increase of the temperature
rise. The increase of the DAF by the temperature
rise is also seen from Fig. 6, where the relation
between the DAF and the index r is displayed for
various values of the temperature rise. It can be
observable again from Figs. 5 and 6 that the DAF
obtained in the NLTR is considerably lower than
that obtained in UTR, regardless of the moving
speed and the grading index #.

Fig. 7 shows the relation between the DAF and
the moving load speed for different porosity
volume fractions V, and for a grading index n =3, a
temperature rise 7 = 50 K. The relation between
the DAF and the grading index » for different
porosity volume fractions and for 7= 50K, v =30
m/s is depicted in Fig. 8. The figures show a
significant influence of the porosity volume
fraction and the temperature rise on the DAF of the
beam. The DAF, as can be seen clearly from Fig. 7,
increases with increasing the porosity volume
fraction, regardless of the temperature type. The
effect of the temperature rise is similar to that of
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the porosity volume fraction, and the DAF is also
increased when increasing the temperature rise,
irrespective of the grading index n. Among the two
types of the temperature considered herein, the
uniform temperature rise has more significant
influence on the DAF than the nonlinear
temperature rise does. At the same increment of the
porosity or temperature rise, the DAF increases
more significantly by the uniform temperature rise
than it does by the nonlinear temperature rise.

TABLE 4
DAF FOR DIFFERENT VALUES OF POROSITY VOLUME FRACTION

AND GRADING INDEX 71 ( T =50K)

Tem
perat 7 Ve, n=0.2 n=0.5 n=1 n=5
ure
UTR 20 0 0.9496  1.0759  1.1813 1.4368
0.1 09959 1.1492  1.2592  1.5518
0.2 1.0727 1.2406 1.3687 1.7076
40 0 1.0028 1.1682  1.3013 1.4408
0.1 1.0446  1.2390 1.3979  1.5605
0.2 1.0937 1.3281 1.5227  1.7141
NLT
R 20 0 0.8195 09090 0.9800  1.1275
0.1 08908 09879 1.0770  1.2529
02 09754 1.0852  1.1999  1.2830
40 0 0.8469 09677 1.0696  1.2026
0.1 0.9015 1.0485 1.1734  1.3296
0.2  0.9951 1.1479  1.1479  1.4921

In Table 4, the DAF of the beam under a
temperature rise 7 = 50K, carrying a moving load
with v = 20 m/s and 40 m/s, is listed for various
values of the porosity volume fraction Vo and the
grading index n. The Table shows an increase in
the DAF by the increase of the porosity volume
fraction Va, regardless of the index n and the
moving speed. The effect of the porosity volume
fraction is also clearly seen from Figs. 7 and 8,
where the relations between the DAF with moving
speed v, and the relation of the DAF with index n
are depicted for different porosity volume fractions
and for 7 = 50K. As seen from the figures, the
DAF increases by the increase of the Va, regardless
of the moving speed and the index n. The increase
of the DAF by the porosity volume fraction may be
resulted from the lower rigidities of the beam with
a higher volume fraction.

5 CONCLUSION

The effect of temperature and porosities on the
dynamic response of FGM beams carrying a
moving load has been investigated in this paper.
The material properties are assumed to be
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temperature dependent and they are graded in the
thickness direction by a power-law distribution. A
modified rule of mixture, taking the effect of
porosities into account, is adopted to evaluate the
effective properties of the beam. Two types of
temperature distribution, namely the uniform and
nonlinear temperature rises obtained from Fourier
equation are considered. Equations of motion based
on Euler-Bernoulli beam theory are derived and
they are solved by a simple finite element
formulation in combination with the Newmark
method. A parametric study has been carried out to
highlight the effect of the temperature rise and the
porosity volume fraction on the dynamic response
of the beam. Numerical results show that the DAF
is increased by the increase of the temperature rise
and the porosity volume fraction. Among the two
types of the temperature distribution considered in
the present work, the uniform temperature rise
affects the dynamic response more strongly. The
result of this paper reveals that the temperature and
the porosities play an important role on the
dynamic behaviour and they must be taken into
consideration in analysis of FGM beams traversed
by moving loads.
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Anh hudng cta nhiét d6 va 16 rong vi mé toi
dap ing dong luc hoc cua dam FMG chiu

luc di dong

Bui Vin Tuyén

Tém tit - Bai bao nghién ciru dnh huéng ciia nhiét
dd va 18 réng vi mé tGi dap ing dong lwe hoc ciia dAm
1am tir vat liéu c6 co tinh bién thién (FGM) chiu lyc di
dong. Truong nhiét dp phan bé déu va phan bd phi
tuyén theo chiéu cao dim dwogc quan tim nghién ctru.
Tinh chét vat liéu dwoc gia dinh phu thudc vao nhiét
dd va thay dbi theo chiéu cao dim theo quy luit ham
s6 mii. Luat phdi trén cii bién co6 tinh t6i 4anh hwéng
ciia 16 réng vi md dwge dung dé danh gia cac tinh chét
hi¢u dung. Phwong trinh chuyén dong duwoc thiét lap
trén co so' Iy thuyét dim Euler-Bernoulli va dworc gidi
bing phwong phap phin tir hitu han két hop véi thuat
toan Newmark. Két qua s6 chi ra ring hé sé dong lue
hoc ting khi nhi¢t dd va ty 1¢ thé tich 1 rdng ting. Sw
ting ciia hé s6 dong luc hoc béi truwong nhiét dp dong
nhit manh hon, dic biét véi dAm c6 tham s vat liéu
cao hon.

Tir khéa - Vit liéu c6 co tinh bién thién, 16 rong vi
m9, tinh chit phu thudc nhiét d9, dap Gng dong lwe
hoc, dAm Euler-Bernoulli.



