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ABSTRACT
Introduction: The astrophysically crucial 14N (p,γ)15O reaction governs the carbon-nitrogen-
oxygen (CNO) cycle rate. Reliable theoretical predictions of this reaction require careful consid-
eration of nuclear interactions. This study examines the influence of potential nonlocal effects on
the calculated astrophysical S-factor for this reaction at low energies.
Methods: The calculable R-matrix method was applied within the potential model framework to
calculate the S-factor of the 14N (p,γ)15O reaction. Results obtained with a local Woods-Saxon
(WS) potential were compared with those from a nonlocal Perey-Buck (PB) potential.
Results: Although both models reproduced the experimental data reasonably well, the nonlocal
potential required a ~12.5% smaller spectroscopic factor for normalization. Importantly, when ex-
trapolated to zero energy, the S-factor in the nonlocal potential case was around 14% higher than
in the local potential case.
Conclusion: The significant difference in the zero-energy S-factor observed in this study indicates
that potential nonlocality effects are non-negligible and must be considered for accurate calcula-
tions of the 14N (p,γ)15O reaction rate in stellar environments.
Key words: CNO cycle in stars, radiative proton capture reaction (p, γ ), calculable R-matrix, local
potential, nonlocal potential.

INTRODUCTION
Radiative proton capture (p,γ) reactions are funda-
mental processes in stellar environments, providing
the outward pressure that counteracts gravitational
collapse and playing an essential role in nucleosyn-
thesis1. In particular, these reactions serve as critical
links within carbon–nitrogen–oxygen (CNO) cycles,
which are the primarymechanism bywhich hydrogen
burns into helium in stars more massive than the Sun.
Figure 1 provides a schematic overview of the three
principal CNO cycles operating within stars.
Due to their astrophysical significance, (p,γ) reac-
tion rates have been a major focus of research into
nuclear astrophysics. Extensive experimental efforts
have aimed tomeasure these rateswith high precision,
providing crucial data for understanding stellar evo-
lution and determining the cosmic abundances of the
elements2–4.
Proton capture reactions generally proceed through
two primary mechanisms: capture via resonant
states or direct capture (DC) into bound states.
In particular, the DC process often dominates in
reactions involving light nuclei at astrophysical
energies. Describing the DC mechanism, especially
in the low-energy regime relevant to stellar burning,

Figure 1: The first, second and third CNO cycles in
stars.

requires reliable theoretical models. Current theo-
retical models for these reactions generally fall into
two main categories: phenomenological R-matrix
approaches5–7 and microscopic calculations8,9. The
R-matrix method provides an effective parameter-
ization of reaction data using resonance properties
and asymptotic normalization coefficients (ANCs),
while microscopic models, including ab initio and
cluster models, aim to describe the reaction dynamics
from fundamental nucleon degrees of freedom. Both
methodologies offer distinct advantages and remain
widely employed.
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Bridging these two extremes is the potential
model3,4,8, a widely used framework in nuclear
astrophysics. In this approach, the DC cross section
is determined by the interaction potential between
the incident proton and the target nucleus. The
potential model offers flexibility while maintaining
a connection to microscopic physics through its
consideration of nuclear potential.
A key aspect of the nuclear potential is its inherent
nonlocality. In principle, the interaction depends
not only on the relative coordinates of the colliding
particles but also on their internal coordinates; it
also exhibits energy dependence. This nonlocality
arises primarily from the Pauli exclusion principle
(antisymmetrization) as well as couplings between
different reaction channels10–14. Although this had
been recognized even in the early days of nuclear
physics10,11, the implications of nonlocality have
received renewed attention in recent years. Nu-
merous studies have investigated nonlocal effects
in a wide variety of reactions, including neutron
transfer (d, p)12,14,15, elastic scattering16–21, and
radiative nucleon capture10,22,23. This study builds
upon previous research to investigate the influence
of potential nonlocality on a key astrophysical
process: the 14N (p,γ)15O proton capture reaction
at low energies, analyzed within the potential model
framework.
The 14N (p,γ)15O reaction is particularly important
as it is the slowest reaction in the primary CNO
cycle; consequently, it controls the overall energy
generation rate and nucleosynthesis flow through
this cycle. The first comprehensive experimental
study of this reaction was performed in 1987 by
Schroeder et al.24, who measured cross sections
down to Ep = 200 KeV and identified the crucial
ER = 260 keV resonance that dominates the reaction
rate under many stellar conditions. More recent
experiments have extended measurements to even
lower energies, reaching Ep ≈ 70 keV 25.
Despite this progress, theoretical calculations re-
main crucial, especially for extrapolating the cross
section down to the Gamow peak energies that
are relevant for stellar hydrogen burning (typically
below 70 keV). Previous potential model calculations
for14N (p,γ)15O have mainly used local approxima-
tions for the nuclear potential4,26. Consequently,
extending these calculations to incorporate nonlocal
potentials while also systematically evaluating the
impact of nonlocality on the predicted cross section
is both relevant and timely. This study addresses
this gap and provides a detailed analysis of the
14N (p,γ)15O reaction using both local and nonlocal
potentials within the calculable R-matrix framework.

COMPUTATIONALMETHODS
Potential model
This section briefly outlines the formalismused to cal-
culate the direct radiative capture cross section for the
A(p,γ)B reaction. The cross section is obtained by
summing the partial cross sections over all relevant
transitions from the initial scattering states |JiMi⟩ to
the final bound states |J f M f ⟩ [4,10,22,23,26]
σ (E) = ∑λ ,Ji, j f

σλ , ji→ j f
(E) (1)

σλ , ji→ j f
(E)= 4π(λ+1)(2λ+1)

λ [(2λ+1)!!]2
µc2

(hc)2 C2
λ
(2 ji+1)(2 j f +1)

(2S+1) SF

×∑
∣∣ili

li ji

(−1) j f +l f ĴiĴ f l̂ f

{
ji Ji S

J f j f λ

}{
li ji 1

2
j f l f λ

}
⟨
li0, λ0

∣∣l f 0
⟩

I (k)
∣∣∣2

(2)

where µ = mAmp/
(
mA +mp

)
is the reduced mass

of the proton–target system, and mA and mp are the
masses of the nucleus A and the proton, respectively.
In addition,Cλ = e

[
mλ

A +ZA
(
−mp

)λ
]
/mλ

B is the ef-
fective charge, ZA is the target proton number, S is
the spin of the target nucleus, and SF is the spectro-
scopic factor of the bound state. |Ji = li ±1/2| and
|Ji = li ±1/2| are the total angular momentum of the
proton in its initial and final states, respectively, li
and l f are the orbital angular momentum of the pro-
ton in its initial and final states, respectively, where
ĵ =

√
2 j+1.k =

√
2µE/h represents the wave num-

bers for the incident proton energyEand kγ represents
the wave numbers for the emitted photon energy Eγ .
According to the potential model, I (k) is the ra-
dial overlap integral of the scattering wave func-
tion χli ji (k,r) and the bound-state wave function
ϕn f l f j f (r) (where n f is the number of nodes). It is
given by the following equation:
I (k) =

∫ ∞
0 ϕn f l f j f (r)χli ji (k,r)rλ dr (3)

Thereaction cross section determined byEquation (1)
decreases very rapidly as energy decreases due to the
tunneling effect. It is thus therefore it is convenient to
use the astrophysical S-factor instead: this quantity is
related to the relates to the reaction cross section as
follows:
S (E) = Eexp(2πη)σ (E) (4)
where η is the Sommerfeld parameter.
In the potential model, the reaction cross section
σ (E) is determined throughout the scattering wave
functions of the system in the initial state and the
bound-state wave functions of the system in the final
state. Both the bound-state and scattering wave func-
tions in Equation (3) are solutions of the Schrödinger
equation with the proton–nucleus interaction poten-
tial, which can be represented in either local or nonlo-
cal form. Within the framework of the local potential,
the Schrödinger equation has the form 4,26:
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− h2

2µ

[
d2

dr2 −
l(l+1)

r2

]
ψl j (k,r) +

[Vl (r)+ lσVSO (r)+VC (r)]ψl j (k,r) =

Eψl j (k,r) (5)
where the solution ψl j (k,r) for the case scattering
state system (E > 0) is denoted as χli ji (r), and in a
while the solution for a bound state system (E < 0)
is denoted as ϕn f l f j f (r). VL (r),VSO (r) andVC (r) are
respectively represent the central, spin-orbit, and lo-
cal Coulomb potential components, respectively. The
Coulomb potential component is determined as fol-
lows4,26:

VC (r) =


ZAe2

r , r > RC
ZAe2

2RC

(
3− r2

R2
C

)
, r ≤ RC

(6)

With whereRC = 1.25A1/3( f m) and A is the mass
number of the target. The nuclear and spin-orbit po-
tential components are typically presented using the
phenomenological Woods-Saxon (WS) form as fol-
lows:
Vl (r) =−V0 fc (r) (7)

VSO (r) =
(

h
mπ c

)2
V0S

1
r

d
dr fSO (r) (8)

where fx (r) =
[
1+ exp

(
r−Rx

ax

)]−1
, such that x ≡

c,SO , Rx and ax are the radius and diffuseness of
the WS potential, respectively. V0 and V0S are the
strengths of the central and spin-orbit potentials, re-
spectively. The spin–orbit interaction in Equation (8)
is written in terms of the pion Compton wavelength

with
(

h
mπ c

)2
≈ 2. In the nonlocal potential case, the

central potential is typically presented in the Perey–
Buck (PB) phenomenological form11; in such cases,
the Schrödinger equation is written as:
− h2

2µ

[
d2

dr2 −
l(l+1)

r2

]
ψl j (k,r)+ [lσVSO (r)+VC (r)]

ψl j (k,r)+
∫

νl (r,r′)ψl j (k,r′)dr′ = Eψl j (k,r) (9)
where νl (r,r′) is the PB-type potential:

νl (r,r′) =U
(

r+r′
2

)
1√
πβ exp

[
− (r2+r′2)

β 2

]
2ilz jl (−iz) (10)

where U (x) has the WS form with U (x) = VNL fc (x)
and z = 2rr′/β 2, such that β is the nonlocality range,
jl (x) is the spherical Bessel function, and VNL is the
strengths of the central potentials. In this study, only
the central potential is treated as nonlocal; all other
potential components are retained in the local form
as described above.
For the scattering wave function, the asymptotic form
of the scattering wave at large distances, where the
nuclear potentialV → 0, is given by:
χli ji (k,r → ∞) =[
Fli (kr)cosδli ji

]
exp

[
i
(

δ c
li +δli ji

)]
(11)

where G and F are the regular and irregular Coulomb
functions, respectively27, and δ c

li and δli ji are the
Coulomb and nuclear phase shifts, respectively.

For a system in a bound state, the wave function
asymptotically approaches the form of a Whittaker
functionW−η ,l f +

1
2
(x)28:

ϕn f l f j f (r) = bn f l f j f W−η ,l f +
1
2
(2kr) with r > Rm (12)

where bn f l f j f is the asymptotic amplitude of the
bound-state wave function, known as the single-
particle asymptotic normalization coefficient (ANC),
κ =

√
−2µEB/h is the wave number of the bound

statewithEB < 0 being the separation energy between
the proton and the target nucleus A, and the radiusRm

is chosen to be sufficiently large such that the nuclear
potential for r > Rm is negligible.

Calculable R-matrix method
In this study, the calculable R-matrix method27 is
used to solve the local (Equation 5) and nonlocal
(Equation 9) Schrödinger equations. The calculable
R-matrix method aims to divide the wave function
into two regions, an internal region and an external
region, separated at the channel radius r = Rm. The
value of Rm is chosen to be large enough such that the
nuclear interaction potential in the external region is
zero. In such cases, the wave function in the inter-
nal region can be expanded linearly in terms of basis
functions as follows:
ψ int

l j (r) = ∑N
n=1Cnφn (r) (13)

whereφn (r) is a set of basis functions. Thewave func-
tions in the internal and external regionsmust be con-
tinuous at r = Rm, which leads to the definition of the
R-matrix at energy E as:
ψl j (Rm) =Rl j (E)

[
Rmψ ′

l j (Rm)−Bψl j (Rm)
]
(14)

where B is a boundary parameter determined accord-
ing to the specific case. Since theHamilton operator is
not guaranteed to be Hermitian in the internal region
(0, Rm), solving the Schrödinger equation is not triv-
ial. This issue can be addressed by adding the Bloch
operator as follows27,29:
L(B) = h2

2µ δ (r−Rm)
(

d
dr −

B
r

)
(15)

This results in a modified Hamiltonian operator that
satisfies Hermitian properties over (0, Rm)with B be-
ing a real number.
For a system in a scattering state, the R-matrix in
Equation (14) is independent of B. Consequently,
B = 0 can be used to simplify the calculation. The
radial function of Equation (9) can thus be rewritten
as :{
− h2

2µ

[
d2

dr2 −
l(l+1)

r2

]
+VC (r)+ lσVSO (r)−E +L(0)

}
∑N

n=1 Cnφn(r) +
∫

νl(r,r′)∑N
n=1 Cnφn(r′)dr′

= L(0)ψext
l j (r) (16)

Whereψext
l j (r) is the wave function in the external re-

gion with r ≥ Rm. Successively multiplying both sides
of Equation (16) by the functionφi (r) and integrating
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over the variable r, we obtain the following system of
linear equations:
∑N

n=1 Cin (E,0)cn =
h2

2µ φi (Rm)
dψext

l j (Rm)

dr

∣∣∣
r=Rm

(17)

where thematrix elementCin is determined as follows:
Cin (E,0) =

∫
φi (r)

{
− h2

2µ

[
d2

dr2 −
l(l+1)

r2

]
+VC  (r)  +  lσVSO  (r)  −  E  +  L  (0)

}

φn (r)dr+
∫

φi (r)νl (r,r′)φn (r′)drdr′ (18)
Solving the system of equations in (17) allows for the
determination of the coefficients cn, from which the
scattering wave function in the internal region can be
obtained from Equation (13) while the R-matrix can
be obtained from Equation (14) as follows:
Rl j (E) = h2

2µRm
∑N

i,n=1φi (Rm)
(
C−1)

inφn (Rm) (19)
In the external region, the wave function contains the
scatteringmatrix element Si j = e2iδ li ji while the inter-
nal region contains the R-matrix componentRl j (E).
By applying the continuity condition of the wave
function, the relationship between Sl j and Rl j (E)
can be established:
Sl j = e2iϕl 1−L∗

l Rl j(E)
1−LlRl j(E)

(20)
where
Ll =

kRm
Ol(kRm)

dOl(kRm)
dr |r = Rm (21)

and
Ol = argIl (kRm) =−arc tan

[
Fl(kRm)
Gl(kRm)

]
(22)

is the phase shift for scattering off a hard sphere. Once
Sl j has been determined, the scattering wave function
in the external region can also be determined from
Equation (11).
For a bound-state system, the asymptotic form of the
wave function follows Equation (12), and the bound-
ary parameter B (Equation 15) can be chosen as fol-
lows:

B = Sl (EB) = 2κRm

W
′

−η ,l+1/2(2κr)

W−η ,l+1/2(2κr) (23)

Hence, the matrix element Cin in Equation (17) be-
comes an eigenvalue problem
∑N

n=1 Cin (E,B)cn = 0 (24)
Since the boundary parameter B depends on the en-
ergy E , the solution can be found using an iterative
method startingwithB= 0 and iterating untilEB con-
verges, allowing us to obtain the values of cn from
Equation (24). A normalization factor is introduced
to satisfy the normalization condition of the bound-
state wave function27:
Nl = 1+ γ2

l

[
dSl(EB)

dE

]
E=EB

(25)

where γl is the reduced width determined by:

γl =
(

h2

2µRm

)1/2
∑N

i,n=1cnφn (Rm) (26)
and the internal wave function of the bound state
given by Equation (13) can be rewritten as:
ψ int

l j (r) = N−1/2
l ∑N

n=1cnφn (r) (27)

The standard asymptotic coefficient is defined as:

bnl j =
N−1/2

l ∑N
n=1 cnφn(r)

W
−η ,l+

1
2

(2κRm)
(28)

From this, the bound-state wave function in the exter-
nal region can be determined according to Equation
(12).

RESULTS
The 14N (p,γ)15O reaction proceeds from the capture
of a proton from a scattering state by the parent nu-
cleus 14N, forming the bound state 15O while simul-
taneously emitting a gamma ray. The most compre-
hensive experiment measuring the 14N (p,γ)15O re-
action was performed by Schroeder et al.24 in 1987,
with the incident proton energy measured down to
Ep = 200 keV . In this energy range, there are two
resonance states in the scattering state that affect the
reaction cross section: ER1 ≈ 260 keV

(
Jπ

R1 = 1/2+
)

and ER2 ≈ 987 keV
(
Jπ

R2 = 3/2+
)24. Accurately de-

termining the cross section of the 14N (p,γ)15O re-
action requires the characterization of both of these
resonance states as well as the final bound state.
The R1 resonance state has a spin and parity of 1/2+.
In the simple configuration model, where the 14N
core is coupled with a valence proton, this resonance
state can exist in two configurations:

[
Ic ⊗ s1/2+

]
1/2+

or
[
Ic ⊗d3/2+

]
3/2+

, with core spin Ic = 1+. Mean-

while, the bound state includes possible excited states
and the ground state of 15O.
In this study, we only consider the ground state of
15O, which has the configuration

[
Ic ⊗ p1/2−

]
1/2−

.

Thus, there exist two possibilities for the E1 gamma
transition from the R1 resonance state to the ground
state of 15O:

[
Ic ⊗ s1/2+

]
1/2+

→
[
Ic ⊗ p1/2−

]
1/2−

and
[
Ic ⊗d3/2+

]
1/2+

→
[
Ic ⊗ p1/2−

]
1/2−

. How-

ever, a recent study30 showed that the second
transition

[
Ic ⊗d3/2+

]
1/2+

→
[
Ic ⊗ p1/2−

]
1/2−

contributes

very little to the total cross section. There-
fore, we only consider the E1 transition from[
Ic ⊗ s1/2+

]
1/2+

→
[
Ic ⊗ p1/2−

]
1/2−

Similarly, the R2 state has a spin and parity of 3/2+.
The two possible configurations for this state are[
Ic ⊗ s1/2+

]
3/2+

or
[
Ic ⊗d3/2+

]
3/2+

. In this case,

both configurations contribute significantly to the E1
transition from the resonance state to the ground state[
Ic ⊗ p1/2−

]
1/2−

. Thus, this study investigated the

transitions from both these resonance configurations
to the ground state.
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Table 1: TheWS and PB parameters of the nuclear interaction potential used in the calculation of the
14N (p,γ)15O cross section.

ER1 (EB) (MeV) Potential V0 (MeV) Rc (fm) ac (fm) β (fm)

Scattering state s1/2 with
[
Ic ⊗ s1/2+

]
1/2+

and
[
Ic ⊗ s1/2+

]
3/2+

0.260 Local 52.38 3.0828 0.65

Nonlocal 67.35 3.0828 0.65 0.85

0.987 Local 45.38 3.0828 0.65

Nonlocal 57.60 3.0828 0.65 0.85

Scattering state d3/2 with
[
Ic ⊗d3/2+

]
3/2+

0.987 Local 55.38 3.0828 0.65

Nonlocal 77.90 3.0828 0.65 0.85

Bound state p1/2 with
[
Ic ⊗ p1/2−

]
1/2−

7.297 Local 48.83 3.0828 0.65

Nonlocal 57.30 3.0828 0.65 0.85

Figure 2: S-factor corresponding to the R1 reso-
nance of the 14N (p,γ)15O reaction obtained from
the calculable R-matrix method employing phe-
nomenological local WS and nonlocal PB potentials.
The solid line represents the result of the calculation
with the nonlocal PB potential, while the dashed
line represents the result of the calculation with the
local WS potential. Experimental data were taken
from 24 31 .

To describe the resonance states R1, R2 and the
bound state of 15O, the potential radius and diffuse-
ness parameters for the central and spin-orbit poten-
tial components were fixed at R = 1.25A1/3 fm and
α = 0.65 f m. The strength of the spin-orbit poten-
tial was also held constant at Vos = 5 MeV . It is
worth noting that the contribution of the spin-orbit

term is negligible compared to the central component;
consequently, it is sometimes omitted for computa-
tional simplicity4. There was an additional nonlocal-
ity range parameter β = 0.85 f m for the nonlocal po-
tential case.
The strength of the central potential component was
treated as a free parameter that was adjusted to match
the resonance energies of the scattering states ER1 ≈
260 keV , ER2 ≈ 987 keV , and the separation energy
of the valence proton from the 14N core in the 15O
ground state, EB = 7.297 MeV . The resulting param-
eter values for the localWS andnonlocal PBpotentials
are presented in Table 1. From these parameters, the
scattering and bound-state wave functions were de-
termined using the R-matrix method with a channel
radius of Rm = 15 f m.
Based on experimental data for the reaction cross
section, the spectroscopic factor of the 15O bound
state in the ground state was found to be SF =

0.004 for the local potential case and SF = 0.0035
for the nonlocal potential case. The calculated
S-factor results for the R1 resonance peak are
shown in Figure 2. As previously mentioned,
only the E1 transition from the s1/2 wave state

to p1/2

([
Ic ⊗ s1/2+

]
1/2+

→
[
Ic ⊗ p1/2−

]
1/2−

)
was

considered for this case. It was found that the S-
factors corresponding to the nonlocal and local po-
tentials were almost identical at the resonance peak.
However, in the resonance tail, the S-factor corre-
sponding to the nonlocal potential case was found to
be higher than the local potential case by about 14%.
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Figure 3: S-factor corresponding to the R2 reso-
nance of the 14N (p,γ)15O reaction. All other ele-
ments of this graph are identical to Figure 2.

In the case of R2 resonance, there are two
E1 transitions: from the s1/2 wave state to

p1/2

([
Ic ⊗ s1/2+

]
3/2+

→
[
Ic ⊗ p1/2−

]
1/2−

)
and from the d3/2 state to

p1/2

([
Ic ⊗d3/2+

]
3/2+

→
[
Ic ⊗ p1/2−

]
1/2−

)
.

The R2 resonance peak is primarily dominated by the
d3/2 wave state to p1/2 transition. Indeed, the s1/2
state to p1/2 transition mostly plays a background
role, fitting experimental points outside the R2
resonance peak. The calculated S-factor for the R2
resonance case is presented in Figure 3. Like the R1
resonance case, the S-factor corresponding to the R2
resonance peak for the transition from d3/2 to p1/2
was found to be identical in for both the local and
nonlocal potentials. However, in the resonance tail,
the S-factor corresponding to the nonlocal potential
case was larger than the local potential case by about
20%. There were small S-factor differences for the
transition from the s1/2 state to p1/2 in the energy
range Ec.m. between 0.6 and 1.6 MeV. The total
S-factor of these two peaks is presented in Figure 4.

DISCUSSION
TheWS and PB potential parameters obtained in this
study (Table 1) were relatively similar to the fami-
lies of local and nonlocal potentials previously used
to study (p,γ) reactions for light nuclei10,22,23,26. In
general, the nonlocal potential tends to be deeper than
the local potential for the same nuclear state. In phe-
nomenological models such as Perey–Buck11, explic-
itly including nonlocality requires a deeper central

Figure 4: Total S-factor of the 14N (p,γ)15O reaction
as calculated using the calculable R-matrix method
employing phenomenological local WS and nonlo-
cal PB potentials. The solid line represents the re-
sult of the calculation with the nonlocal PB poten-
tial, while the dashed line represents the result of
the calculation with the local WS potential. Exper-
imental data were taken from 24,31 .

potential to counteract the Perey effect, which sup-
presses the wave function amplitude in the nuclear in-
terior and effectively weakens the interaction. This
adjustment ensures that scattering observables re-
main consistent with the physical role of nonlocality,
while still properly accounting for many-body cor-
relations without overcounting the Pauli-forbidden
states.
Figure 4 shows that local and nonlocal interaction po-
tential models can accurately describe the experimen-
tal data at two key resonance peaks (ER1 ≈ 260 keV
and ER2 ≈ 987 keV ). In order to fit the experimental
data, the spectroscopic factor for the nonlocal poten-
tial case must be smaller than the local potential case
by about 12.5%. A smaller spectroscopic factor im-
plies that the tail of the bound-state wave function in
the nonlocal potential case tends to be larger than in
the local potential case. It is also important to note
that the spectroscopic factor SF obtained from fitting
the resonant (p,γ) reaction is not directly compara-
ble to the spectroscopic factors derived from nuclear
structure models or from experimental knockout and
transfer reactions. For instance, shell-model calcula-
tions yield SF = 1.6 for the p1/2 valence proton state
in the 15Oground state32,33, while the 15O(p,2p)14N
knockout reaction experiment found that SF ≈ 1.22
at energies below 100 MeV/nucleon [33] and that
SF ≈ 1.68 at 310 MeV/nucleon34. These values are
significantly larger than the SFobtained from fitting
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the 14N (p,γ)15O reaction for the R1 and R2 reso-
nances.
The resonance tail near zero energy plays a critical role
in determining the reaction rate of14N (p,γ)15O in
stellar environments. Although the resonance peak
data can be well-described by both local and nonlo-
cal potentials, Figure 4 shows that the S-factor in the
resonance tail is higher in the nonlocal potential case
than in the local potential case. Indeed, the difference
in the astrophysical S-factor at near-zero energy be-
tween the nonlocal and local potentials is 14%. This
is a significant difference, demonstrating that nonlo-
cal effects must be seriously considered during the
calculation of the cross section (or S-factor) for the
14N (p,γ)15O reaction.

CONCLUSIONS
This study investigates the 14N (p,γ)15O reaction
cross section near astrophysically relevant energy re-
gions within the framework of the interaction po-
tential model using the calculable R-matrix method.
Calculations with local and nonlocal potentials show
that, to match the experimentally derived (p,γ) reac-
tion cross section data, the spectroscopic factor of the
local potential case is always larger than for the nonlo-
cal potential case by 12.5%. Furthermore, at near-zero
energies, the astrophysical S-factor obtained from the
nonlocal potential calculation is 14% larger than that
from the local potential. These results demonstrate
that the nonlocal effect cannot be ignored during S-
factor calculation for the 14N (p,γ)15O reaction.
Only the nonlocal effect of the phenomenological PB
potential was considered. An extension of this study,
which involves more microscopic models of nonlocal
potential calculation, is currently underway. These
findings serve as a foundation for further studies on
nonlocal effects in other (p,γ) reactions within the
CNO cycle.
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