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ABSTRACT

As the demand for self-driving cars grows, the reliability of traffic sign recognition is essential for
commuter safety. Researchers have explored several machine-learning and deep-learning ap-
proaches to traffic sign identification, but Vietnam's unique traffic environments, ranging from com-
plex urban intersections to highways with vertically stacked signs, present unigue challenges. While
conventional object detection techniques can handle typical urban traffic signs, they struggle with
the groups of stacked signs that are commonly found on Vietnamese highways. This study ad-
dressed this problem by treating each detected sign as a node in a graph and modeling its spatial
and semantic relationships with edges using Graph Neural Networks, which can learn to identify
patterns and groupings. This approach not only allows for the accurate detection of each sign but
also captures the collective intent of grouped signs in both urban and highway contexts, thereby
providing commuters with more reliable and contextually aware guidance when navigating Viet-
nam's complex traffic sign system.
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INTRODUCTION

The development of the autonomous car is expected
to reshape society as profoundly as the invention of
the motor vehicle. Consequently, the development of
Advanced Driver Assistance Systems (ADAS) aims to
improve driving comfort, safety, and the production
of self-driving vehicles!. A key practical challenge for
ADAS is the reliable detection of traffic signs, which
are essential for safe and successful navigation; im-
proving the identification of traffic signs is thus a cru-
cial field in autonomous vehicle development.
Researchers have explored various methods, includ-
ing machine learning and deep learning, to address
this challenge?~8. However, detecting stacked signs
that convey guiding instructions for multiple lanes
remains problematic despite notable advances in re-
cent years. This issue is especially pronounced on
Vietnamese highways, where multiple signs—which
can include information such as speed limits, lane-
usage restrictions, and directional cues—are often
stacked together.Correctly identifying and grouping
these stacked signs provides ADAS with complete
context about permissible actions in a lane for specific
vehicle types.For example, combining a speed-limit
sign with a motorbike restriction sign provides a com-
plete picture of what actions are allowed in that lane,
preventing potential misinterpretation if the signs are
read in isolation.

Grouping signs requires an understanding of the spa-
tial relationships of each sign as well as how they re-
late to each other. If this process is not handled care-
fully, this can increase complexity, reduce the speed of
processing, and put additional strain on detection sys-
tems. Graph Neural Networks (GNNs) provide a po-
tential solution for this issue since they excel at mod-
eling interactions among components®. Specifically,
GNNss can help the system identify the spatial and se-
mantic relationships between neighboring signs, al-
lowing for a more precise grouping and interpretation
of their combined meaning. In a GNN framework,
each sign is a node, while edges represent functional
links or spatial distances.Furthermore, GNNs are ca-
pable of scaling efficiently, allowing them to handle
scenarios with many stacked signs with minimal com-
putational cost.

This study makes the following three contributions to
the literature: first, the application of GNNs, specif-
ically Attention Graph Neural Networks (AGNNs),
for modeling spatial and semantic relationships be-
tween traffic signs, thus improving the grouping and
interpretation of stacked signs. Second, the pro-
posal of a method that addresses the challenges of ac-
curately identifying Vietnamese traffic signals, par-
ticularly on expressways. This method utilizes a
three-step pipeline involving YOLO for object de-
tection, graph construction for representing relation-
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ships, and learning spatial and semantic relationships
between signs using AGNNs. Third, this approach
is validated on a dataset of Vietnamese traffic signs,
achieving high accuracy in both detecting individual
signs as well as correctly grouping stacked signs, thus
highlighting the feasibility of this current approach.
The remainder of this paper is organized into the fol-
lowing sections: Related work, Methodology, Experi-
mental results, Discussion, and Conclusion.

RELATED WORKS

Research on traffic sign detection can be grouped into
two broad categories: traditional methods and deep-
learning approaches.

Traditional techniques rely on hand-crafted feature
extraction combined with machine-learning classi-
fiers such as support vector machines (SVM), k-
nearest neighbors (k-NN), or decision trees. These
methods train a model on a labeled dataset and then
use the trained model to predict labels for new, un-
seen instances. These algorithms are attractive be-
cause of their simplicity and fast training, but they
depend heavily on carefully designed features '°. For
example, a decision tree may struggle with variations
in illumination, rotation, or perspective unless exten-
sive preprocessing and feature manipulation are ap-
plied. Furthermore, traffic sign detection is a multi-
class problem; consequently, these classifiers must be
capable of handling such problems. For example, the
core architecture of SVMs is inherently binary: ex-
tending this to multi-class problems would increase
complexity and lower performance. Similarly, deep-
ening a decision tree model to capture subtle varia-
tions in the input data may lead to larger models that
overfit the data, thus compromising classification ac-
curacy.

The Multi-scale Deconvolutional Network is a deep-
learning approach that improves traffic sign detection
and localization by integrating a Multi-scale Convo-
lutional Neural Network with a deconvolution sub-
network !, The architecture comprises three stages:
a Convolutional Residual Network, a modified Fea-
ture Pyramid Network (FPN), and a multiscale classi-
fier and detector. This design can adapt to different
datasets, including the Chinese Traffic Sign Dataset
or the German Traffic Sign Recognition Benchmark,
highlighting its versatility across a range of traffic
sign systems.However, adding multiscale and decon-
volution layers increases model complexity, leading
to higher computational costs and slower inference
times, which are an issue for real-time applications.
The complex architecture also increases training time,
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especially when working with datasets with many sign
types.

An FPN is a top-down architecture that integrates
high-level semantic features across all scales to pro-

duce a multi-scale feature extractor!2.

It can iden-
tify both large overhead signs and small road signs
within the same frame, making it well-suited to traffic
sign recognition. Furthermore, combining FPN with
detectors such as YOLO or Faster R-CNN can im-
prove detection and localization across scales. How-
ever, FPN requires more computational resources be-
cause it extracts features at multiple resolutions; this
makes it less appropriate for real-time applications on
resource-constrained or low-power devices.

YOLO variants are frequently used for traffic sign de-
tection because they can operate in real time, which
is essential for applications such as autonomous driv-
ing!3.  YOLO models perform detection in a sin-
gle forward pass by dividing the input image into a
grid and predicting bounding boxes and class proba-
bilities for each cell. This grid-based approach allows
YOLO to detect objects at multiple scales as well as
capture spatial relationships. However, YOLO treats
each traffic sign independently; it does not recognize
when signs form a cohesive group or serve a combined
purpose. Furthermore, while this method incorpo-
rates some spatial context, it does not explicitly model
semantic relations or hierarchical structures between
detected objects.

Given the dense arrangement of traffic signs on Viet-
namese highways and the current state of existing re-
search, this study aimed to develop an approach to or-
ganize these signs into coherent instructions that en-
able drivers to quickly grasp their meaning and main-
tain safe vehicle control. The following section intro-
duces a graph-based framework for modeling com-

plex traffic sign arrangements in Vietnam.

METHODOLOGY

This section introduces a GNN approach to handling
complex traffic sign arrangements involving stacked
signs. The system comprises three stages, shown in
Figure 1.

(Trattc signs’
images

Figure 1: The proposed system.
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Starting from user-supplied photos, a YOLO object
detection model identifies traffic signs and assigns la-
bels. Each detected sign becomes a graph node, with
edges linking nodes that are vertically stacked. The
node features of each sign include the bounding-box
coordinates (x, y, width, height) and the sign label.
Edge features contain a groupld indicating whether
the connected nodes belong to the same vertical stack.
In order to determine vertical alignment, the center
of each box is calculated from its coordinates; this is
then used to calculate the absolute difference between
the x-centers of two boxes. If this horizontal distance
exceeds a certain threshold, the boxes are not consid-
ered vertically aligned, as they would be too far apart
horizontally, thus preventing misclassification of sep-
arate signs as a group.

Once the graph is constructed with appropriate node
and edge features, an AGNN learns spatial relation-
ships among nodes to identify stacked sign groups.

Message passing mechanism in Graph Neu-
ral Network

The selection of an AGNN over a conventional GNN
stems from limitations inherent in the message-
passing mechanism of standard GNNs. Before the de-
velopment of attention blocks, the message-passing
layer in GNNs—specifically in Graph Convolution
Neural Networks (GCNs) 14 - utilized the process de-
scribed in Figure 2.

(2)
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Figure 2: Diagram of a graph used to calculate
message-passing.

In Figure 2, each node is weighted by the number of
nodes to which it is connected. The formula used to
calculate message-passing rules is presented in Equa-
tion (1).
hy = \/ %ZueN(v) \ ihu (1)
As an example, applying this message-passing rule to
the red node yields Equation (2):

i (e o b o he Ry
o1+ % b )

This weighting approach has a clear drawback for

complex graphs such as social networks.Specifically,

the red node is connected to several highly connected
nodes; these nodes dominate the message flow be-
cause their large numbers of connections will be heav-
ily weighted, even though they may not be relevant
to the local neighborhood of the target node. Conse-
quently, the message-passing values generated by this
formula will be disproportionately influenced by these
highly connected nodes; not much information will
be provided about the neighborhood of the red node.

Attention Graph Neural Network in handle
group of stacked traffic signs

To address the limitations of the previous weighting
approach in GCNs, an attention mechanism is incor-
porated into the message-passing layer !°. Instead of
a fixed average weighted by the number of connec-
tions to a node, the layer computes dynamic attention
weights that quantify each neighbor’s contribution
tothe representation of a target node (Equation (3)).
hy = Luen(v) softmaxy (a(hy, hy)) hy (3)

au,y
The initial attention coefficients are derived by pro-

jecting input features into a higher-dimensional space

so that every node can pay attention to every other

node, temporarily disregarding graph structure. A

softmax is applied to normalize these scores across

each node’s neighbors; the value of @ u,v is calculated

using Equation (4).

_ _eple)
V= Fovexpled)
exp(LeakyReLU (W [Wh;||Wh;])) 4

Toox expliearsel (VIR WA (4
where h; represents the input features of node i,

W is the learnable weight matrix, || is the
concatenation operation, and LeakyReLU is the leaky
rectified linear unit activation function. The final
layer of the AGNNis described in Equation (5).

hy = o (% Z/IC(:] Yoen, aqukXV) (5)

The model collects a target node’s neighbors and its
feature vector before applying a linear transforma-
tion by multiplying the node by the weight matrix.
Two corresponding node states are selected and fed
through a neural network layer, after which the com-
puted attention coefficients are summed to produce
the updated embedding for the target node (attention
coeflicient alpha). This describes a single basic layer;
in practice, the number of main layers may be doubled
by using a multi-head approach. This attention mech-
anism can help the model weigh the importance of
different spatial relationships between signs, allowing
it to naturally capture spatial relationships between
stacked signs by representing each sign as a node and
forming edges according to their relative positions.
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EXPERIMENTAL RESULTS

Dataset

The dataset consists of Vietnam traffic sign images
sourced from Roboflow and Kaggle. Rather than clas-
sifying individual sign types, this study focuses only
on detecting the spatial arrangement of the signs, i.e.,
whether they are stacked or isolated. Figure 3 presents
the preprocessing pipeline used in this study.

A total of 1,439 images containing 16,066 annotated
bounding boxes were collected. The dataset com-
prises 82.3% stacked signs and 17.7% non-stacked
signs, representative of typical urban settings where
space constraints lead to frequent stacking. Further-
more, both sign types are present in 72.8 % of images,
providing ample training examples to help the model
distinguish between isolated and stacked configura-
tions.

img_XXXX. jpg
lename - J Annotation

Convert

Object Detection & Feature Extraction

N
Extract Key [YOLO Object
—— Y «——( Resuts { «—— Detection «—
Result Dataframe Features 1483 images
(YOLO)

Dataset Composition and Statistical Analysis

Figure 3: Overview of the data preparation pipeline
and dataset characteristics. (a) lllustration of the
data preprocessing pipeline. (b) Distribution of
stacked and isolated traffic signs in the dataset.

After collection, only images containing stacked signs
were retained, resulting in a dataset containing 1,493
samples. File names were standardized to the fol-
lowing format: “imgXXXX.jpg” (ie., img0001.jpg
to img1493.jpg) to simplify downstream processing.
Each sign was manually annotated with bounding
boxes. These annotations were then converted into
a YOLO-compatible .yaml file. The resulting dataset
was used to train a customized YOLO model tailored
to Vietnamese traffic signs. For each detected traffic
sign, the following details were filtered and stored for
subsequent analysis.

« The filename was extracted from the results dic-
tionary after YOLO object detection.

« The x1, y; (top-left corner) and x3, y3 (bottom-
right corner) coordinates of the bounding box
as derived from the YOLO results.
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o The Xcenter and yeenser Of the bounding box as
calculated by averaging the x|, x3 coordinates
and y, y3 coordinates, respectively.

o The width and height of the bounding box as de-
rived from the YOLO results.

« The confidence score of the detected bounding
box as obtained from the “conf” value in the
YOLO results.

o The class ID (cls_id) of the detected bounding
box as obtained from the YOLO results. Used
for reference only (i.e., not used in the next
stage).

o The class name (cls_name) of the detected
bounding box as obtained from the YOLO re-
sults. Used for reference only.

o The detection_id, a unique hash value created
from the filename, x;, y;, x3, ¥3, and cls_id to
ensure the traceability and consistency of the
data.

The AGNN setup used in this study comprised 1,442
nodes and 1,911 edges for training and 2,880 nodes
and 5,328 edges for testing. The graphs were sampled
independently to allow for inductive analysis. Each
node is described by ten features, including coordi-
nates, size, confidence, and class, and edges are used to
connect neighboring bounding boxes using a strength
metric based on spatial proximity. The test graph was
denser (an average degree of 3.70 compared to 2.65 for
the training graph), reflecting the natural distribution
of traffic signs in real-world settings. Table 1 summa-
rizes the hyperparameters configured for each layer of
the AGNN, while Table 2 presents the complete statis-
tics of the training and test graphs.

InTable 1, the “Input shape” is the input feature di-
mensions for each layer, the “Output shape” defines
feature dimension after applying the transformation
in the layer. For this model layers, the output size is
calculated as the product of hidden channels and at-
tention heads. The number of attention heads used
in the GATv2Conv layer, allows the network to fo-
cus on different aspects of neighborhood informa-
tion, improving feature representation is shown at the
“Heads” and “Dropout” defines the dropout rate ap-
plied to the GATv2Conv layers, prevents the model
from becoming too dependent on any specific set of
features or nodes.

DISCUSSION

The performance of the AGNN setup in classifying
stacked traffic signs was evaluated using the F1 score
metric and the ROC curve. These metrics are well-
suited to the class imbalance present in this dataset,
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Table 1: Parameters of each layer in the AGNN setup.

Layer Input Shape Output Shape Heads Dropout

Node Encoder (Batchsize, 9) (Batchsize, 96) 0.0

GATv2Conv (Layer 1) (Batchsize, 96) (Batchsize, 384) 4 0.6

Linear 1 (Batchsize, 384) (Batchsize, 256) 0.0

Linear 2 (Batchsize, 256) (Batchsize, 96) 0.0

GATv2Conv (Layer 2) (Batchsize, 96) (Batchsize, 384) 4 0.6

Linear 1 (Batchsize, 384) (Batchsize, 256) 0.0

Linear 2 (Batchsize, 256) (Batchsize, 96) 0.0

Classification layer (Batchsize, 96) (Batchsize, 2) 0.0
Table 2: Comparison of training and test graph datasets.

Metric Training Test Difference

Nodes 1,442 2,880 +100% (2 x larger)

Edges 1,911 5,328 +179% (2.8 x more)

Node features 10 10 Same

Edge features 1 1 Same

Avg degree 2.65 3.70 +40% denser

Label shape [1442,1] [2880,1] Same format

where the number of stacked signs significantly out-
number the number of isolated signs. The ROC plot
and the F1-score chart are presented in Figure 4.The
effectiveness of the AGNN was evaluated against three
representative baselines: GCN (spectral convolution
with uniform neighbor aggregation) !4, GraphSAGE
(inductive spatial aggregation) ', and APPNP (fixed
propagation) !”. These methods cover the main GNN
paradigms, allowing for a comprehensive evaluation
of whether adaptive attention better captures relation-
ships among stacked signs compared to simpler ag-

gregation schemes.

False Positive Rate

Figure 4: ROC curve and F1 score of the proposed
model.

The ROC curve illustrates the trade-off between sen-
sitivity (TPR) and specificity (1 - FPR); curves closer
to the top-left corner are indicative of better model
performance. The area under this curve (AUC) de-
scribes the ability of the model to distinguish between
classes.Our model achieves an AUC of 0.94 on the
training data and 0.90 on the test data, resulting in an
ROC curve that falls near the upper left corner of the
chart, highlighting the excellent performance of this
model at distinguishing classes.

Table 3 compares the proposed AGNN approach with
three baselines. The proposed AGNN achieves an
AUC 0f 0.90 compared to an AUC of 0.72 for the best-
performing baseline, a significant improvement of
25%. This gain underscores the importance of learned
attention when neighbor relevance varies, as is the
case in stacked sign detection. Consistent improve-
ments in both AUC and F1 confirm that adaptive at-
tention effectively addresses this challenging classifi-
cation task. In summary, the proposed AGNN is pro-
ficient in identifying stacked signs.

Traffic sign detection and recognition was then eval-
uated across a wide range of scenes: a mix of stacked
and individual signs, exclusively stacked signs on
highways, and exclusively stacked signs in traffic typ-
ical of urban settings. A majority of images used
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Table 3: Comparison of the performance of different GNN methods for stacked sign detection. Best results are

shown in bold.

Method AUC Score

YOLO + GraphSAGE 0.69 + 0.023
YOLO + APPNP 0.68 £ 0.018
YOLO + GCN 0.72 £ 0.045
YOLO + AttentionGNN 0.09 + 0.005

F1 Score

0.78 4 0.023

0.65 £ 0.047

0.81 £0.038

0.84 + 0.041

for this assessment were taken from highways in Ho
Chi Minh City normal traffic examples were obtained
from the same city (Figure 5).

Figure 5: Results of using the model on multiple im-
ages from different scenarios in Ho Chi Minh City.

In Figure 5, the blue labels correspond to isolated
signs, while the red labels denote stacked signs. The
model successfully clusters stacked signs using spatial
cues, treating them as a single group, while individual
signs are correctly identified and remain separated. Its
output can be further processed to generate distinct
color-coded groups of stacked signs, improving inter-
pretability Figure 6.

Figure 6 demonstrates that the Attention Graph Neu-
ral Network can give the detection process context in-
formation that traditional methods cannot by extract-
ing and analyzing the relationships between each en-
tity in a large network. This adds more useful value to
the way we use the results for downstream task in the
ADAS system in the future.

CONCLUSIONS

This study demonstrates that constructing a graph
that detects traffic signs and applying an AGNN to
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Figure 6: Further processing on the results for bet-
ter interpretation

handle spatial relationships between each node al-
lows for the reliable identification of stacked and iso-
lated signs. This approach ensures accurate detection
while capturing the collective intent of grouped signs,
thereby providing commuters with more dependable
and context-aware guidance.

Despite Vietnam’s complex and often disorganized
traffic environment, the proposed framework reliably
and efliciently organizes traffic signs in a way that can
be further processed to improve interpretability. Fu-
ture work should explore community detection to au-
tomatically cluster a collection of stacked signs with-
out manual labeling. The creation of large language
models that can use these clustered signs to provide
lane-specific guidelines should also be investigated.
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This will enhance ADAS systems and provide com-
muters on Vietnamese highways with more precise
and helpful instructions.

LIST OF ABBREVIATIONS

GNN - Graph Neural Networks.

GCN - Graph Convolution Neural Network.
YOLO - You Only Look Once.

SVM - Support Vector Machine.

AUC - Area under the Curves.
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