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ABSTRACT
As the demand for self-driving cars grows, the reliability of traffic sign recognition is essential for
commuter safety. Researchers have explored several machine-learning and deep-learning ap-
proaches to traffic sign identification, but Vietnam's unique traffic environments, ranging fromcom-
plex urban intersections to highwayswith vertically stacked signs, present unique challenges. While
conventional object detection techniques can handle typical urban traffic signs, they struggle with
the groups of stacked signs that are commonly found on Vietnamese highways. This study ad-
dressed this problem by treating each detected sign as a node in a graph and modeling its spatial
and semantic relationships with edges using Graph Neural Networks, which can learn to identify
patterns and groupings. This approach not only allows for the accurate detection of each sign but
also captures the collective intent of grouped signs in both urban and highway contexts, thereby
providing commuters with more reliable and contextually aware guidance when navigating Viet-
nam's complex traffic sign system.
Keywords: Traffic-sign recognition, Graph Neural Network, Spatial relationships, Lane constraints,
Sign grouping

INTRODUCTION
The development of the autonomous car is expected
to reshape society as profoundly as the invention of
the motor vehicle. Consequently, the development of
Advanced Driver Assistance Systems (ADAS) aims to
improve driving comfort, safety, and the production
of self-driving vehicles1. A key practical challenge for
ADAS is the reliable detection of traffic signs, which
are essential for safe and successful navigation; im-
proving the identification of traffic signs is thus a cru-
cial field in autonomous vehicle development.
Researchers have explored various methods, includ-
ing machine learning and deep learning, to address
this challenge2–8. However, detecting stacked signs
that convey guiding instructions for multiple lanes
remains problematic despite notable advances in re-
cent years. This issue is especially pronounced on
Vietnamese highways, where multiple signs—which
can include information such as speed limits, lane-
usage restrictions, and directional cues—are often
stacked together.Correctly identifying and grouping
these stacked signs provides ADAS with complete
context about permissible actions in a lane for specific
vehicle types.For example, combining a speed-limit
signwith amotorbike restriction sign provides a com-
plete picture of what actions are allowed in that lane,
preventing potential misinterpretation if the signs are
read in isolation.

Grouping signs requires an understanding of the spa-
tial relationships of each sign as well as how they re-
late to each other. If this process is not handled care-
fully, this can increase complexity, reduce the speed of
processing, and put additional strain on detection sys-
tems. Graph Neural Networks (GNNs) provide a po-
tential solution for this issue since they excel at mod-
eling interactions among components9. Specifically,
GNNs can help the system identify the spatial and se-
mantic relationships between neighboring signs, al-
lowing for amore precise grouping and interpretation
of their combined meaning. In a GNN framework,
each sign is a node, while edges represent functional
links or spatial distances.Furthermore, GNNs are ca-
pable of scaling efficiently, allowing them to handle
scenarios withmany stacked signswithminimal com-
putational cost.
This study makes the following three contributions to
the literature: first, the application of GNNs, specif-
ically Attention Graph Neural Networks (AGNNs),
for modeling spatial and semantic relationships be-
tween traffic signs, thus improving the grouping and
interpretation of stacked signs. Second, the pro-
posal of a method that addresses the challenges of ac-
curately identifying Vietnamese traffic signals, par-
ticularly on expressways. This method utilizes a
three-step pipeline involving YOLO for object de-
tection, graph construction for representing relation-
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especially whenworkingwith datasets withmany sign
types.
An FPN is a top-down architecture that integrates
high-level semantic features across all scales to pro-
duce a multi-scale feature extractor12. It can iden-
tify both large overhead signs and small road signs
within the same frame, making it well-suited to traffic
sign recognition. Furthermore, combining FPN with
detectors such as YOLO or Faster R-CNN can im-
prove detection and localization across scales. How-
ever, FPN requires more computational resources be-
cause it extracts features at multiple resolutions; this
makes it less appropriate for real-time applications on
resource-constrained or low-power devices.
YOLO variants are frequently used for traffic sign de-
tection because they can operate in real time, which
is essential for applications such as autonomous driv-
ing13. YOLO models perform detection in a sin-
gle forward pass by dividing the input image into a
grid and predicting bounding boxes and class proba-
bilities for each cell.This grid-based approach allows
YOLO to detect objects at multiple scales as well as
capture spatial relationships. However, YOLO treats
each traffic sign independently; it does not recognize
when signs forma cohesive group or serve a combined
purpose. Furthermore, while this method incorpo-
rates some spatial context, it does not explicitly model
semantic relations or hierarchical structures between
detected objects.
Given the dense arrangement of traffic signs on Viet-
namese highways and the current state of existing re-
search, this study aimed to develop an approach to or-
ganize these signs into coherent instructions that en-
able drivers to quickly grasp their meaning andmain-
tain safe vehicle control.The following section intro-
duces a graph-based framework for modeling com-
plex traffic sign arrangements in Vietnam.

METHODOLOGY
This section introduces a GNN approach to handling
complex traffic sign arrangements involving stacked
signs. The system comprises three stages, shown in
Figure 1 .

Figure  1:  The  proposed  system.

ships,  and  learning  spatial  and  semantic  relationships
between  signs  using  AGNNs.  Third,  this  approach
is  validated  on  a  dataset  of  Vietnamese  traffic  signs,
achieving  high  accuracy  in  both  detecting  individual
signs  as  well  as  correctly  grouping  stacked  signs,  thus
highlighting  the  feasibility  of  this  current  approach. 
The  remainder  of  this  paper  is  organized  into  the  fol-
lowing  sections:  Related  work,  Methodology,  Experi-
mental  results,  Discussion,  and  Conclusion.

RELATED  WORKS
Research  on  traffic  sign  detection  can  be  grouped  into
two  broad  categories:  traditional  methods  and  deep-
learning  approaches.
Traditional  techniques  rely  on  hand-crafted  feature
extraction  combined  with  machine-learning  classi-
fiers  such  as  support  vector  machines  (SVM),  k-
nearest  neighbors  (k-NN),  or  decision  trees.  These
methods  train  a  model  on  a  labeled  dataset  and  then
use  the  trained  model  to  predict  labels  for  new,  un-
seen  instances.  These  algorithms  are  attractive  be-
cause  of  their  simplicity  and  fast  training,  but  they
depend  heavily  on  carefully  designed  features10.  For
example,  a  decision  tree  may  struggle  with  variations
in  illumination,  rotation,  or  perspective  unless  exten-
sive  preprocessing  and  feature  manipulation  are  ap-
plied.  Furthermore,  traffic  sign  detection  is  a  multi-
class  problem;  consequently,  these  classifiers  must  be
capable  of  handling  such  problems.  For  example,  the
core  architecture  of  SVMs  is  inherently  binary:  ex-
tending  this  to  multi-class  problems  would  increase
complexity  and  lower  performance.  Similarly,  deep-
ening  a  decision  tree  model  to  capture  subtle  varia-
tions  in  the  input  data  may  lead  to  larger  models  that
overfit  the  data,  thus  compromising  classification  ac-
curacy.
The  Multi-scale  Deconvolutional  Network  is  a  deep-
learning  approach  that  improves  traffic  sign  detection
and  localization  by  integrating  a  Multi-scale  Convo-
lutional  Neural  Network  with  a  deconvolution  sub-
network11.  The  architecture  comprises  three  stages:
a  Convolutional  Residual  Network,  a  modified  Fea-
ture  Pyramid  Network  (FPN),  and  a  multiscale  classi-
fier  and  detector.  This  design  can  adapt  to  different
datasets,  including  the  Chinese  Traffic  Sign  Dataset
or  the  German  Traffic  Sign  Recognition  Benchmark,
highlighting  its  versatility  across  a  range  of  traffic
sign  systems.However,  adding  multiscale  and  decon-
volution  layers  increases  model  complexity,  leading
to  higher  computational  costs  and  slower  inference
times,  which  are  an  issue  for  real-time  applications.
The  complex  architecture  also  increases  training  time,
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Starting from user-supplied photos, a YOLO object
detection model identifies traffic signs and assigns la-
bels. Each detected sign becomes a graph node, with
edges linking nodes that are vertically stacked. The
node features of each sign include the bounding-box
coordinates (x, y, width, height) and the sign label.
Edge features contain a groupId indicating whether
the connected nodes belong to the same vertical stack.
In order to determine vertical alignment, the center
of each box is calculated from its coordinates; this is
then used to calculate the absolute difference between
the x-centers of two boxes. If this horizontal distance
exceeds a certain threshold, the boxes are not consid-
ered vertically aligned, as they would be too far apart
horizontally, thus preventing misclassification of sep-
arate signs as a group.
Once the graph is constructed with appropriate node
and edge features, an AGNN learns spatial relation-
ships among nodes to identify stacked sign groups.

Message passingmechanism inGraphNeu-
ral Network
The selection of an AGNN over a conventional GNN
stems from limitations inherent in the message-
passingmechanism of standardGNNs. Before the de-
velopment of attention blocks, the message-passing
layer in GNNs—specifically in Graph Convolution
Neural Networks (GCNs)14 - utilized the process de-
scribed in Figure 2.

Figure 2: Diagram of a graph used to calculate
message-passing.

In Figure 2 , each node is weighted by the number of
nodes to which it is connected. The formula used to
calculate message-passing rules is presented in Equa-
tion (1).
hN =
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This weighting approach has a clear drawback for
complex graphs such as social networks.Specifically,

the  red  node  is  connected  to  several  highly  connected
nodes;  these  nodes  dominate  the  message  flow  be-
cause  their  large  numbers  of  connections  will  be  heav-
ily  weighted,  even  though  they  may  not  be  relevant
to  the  local  neighborhood  of  the  target  node.  Conse-
quently,  the  message-passing  values  generated  by  this
formula  will  be  disproportionately  influenced  by  these
highly  connected  nodes;  not  much  information  will
be  provided  about  the  neighborhood  of  the  red  node.

Attention  Graph  Neural  Network  in  handle
group  of  stacked  traffic  signs
To  address  the  limitations  of  the  previous  weighting
approach  in  GCNs,  an  attention  mechanism  is  incor-
porated  into  the  message-passing  layer  15.  Instead  of
a  fixed  average  weighted  by  the  number  of  connec-
tions  to  a  node,  the  layer  computes  dynamic  attention
weights  that  quantify  each  neighbor’s  contribution
tothe  representation  of  a  target  node  (Equation  (3)).
hN = ∑u∈N(v) so f tmaxu (a(hu, hv))︸ ︷︷ ︸

α u,v

hu (3)

The initial attention coefficients are derived by pro-
jecting input features into a higher-dimensional space
so that every node can pay attention to every other
node, temporarily disregarding graph structure. A
softmax is applied to normalize these scores across
each node’s neighbors; the value of α u,v is calculated
using Equation (4).

αu,v =
exp(ei j)

∑k∈N exp(eik)
=

  exp(LeakyReLU(Wα
T  [Whi∥Wh j ]))

∑k∈N  exp(LeakyReLU(Wα
T  [Whi∥Wh j ]))  

(4)
where  hi  represents  the  input  features  of  node  i,  
W is  the  learnable  weight  matrix,  ||  is  the  
concatenation operation,  and  LeakyReLU  is  the  leaky  
rectified  linear unit  activation  function.  The  final  
layer  of  the  AGNNis  described  in  Equation  (5).
h
The  model  collects  a  target  node’s  neighbors  and  its

u  =  σ  
(  

K
1  ∑K

k=1  ∑v∈Nu  
αuvW  kxv

)  
(5)

feature  vector  before  applying  a  linear  transforma-
tion  by  multiplying  the  node  by  the  weight  matrix.
Two  corresponding  node  states  are  selected  and  fed
through  a  neural  network  layer,  after  which  the  com-
puted  attention  coefficients  are  summed  to  produce
the  updated  embedding  for  the  target  node  (attention
coefficient  alpha).  This  describes  a  single  basic  layer;
in  practice,  the  number  of  main  layers  may  be  doubled
by  using  a  multi-head  approach.  This  attention  mech-
anism  can  help  the  model  weigh  the  importance  of
different  spatial  relationships  between  signs,  allowing
it  to  naturally  capture  spatial  relationships  between
stacked  signs  by  representing  each  sign  as  a  node  and
forming  edges  according  to  their  relative  positions.
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EXPERIMENTAL RESULTS
Dataset
The dataset consists of Vietnam traffic sign images
sourced fromRoboflow and Kaggle. Rather than clas-
sifying individual sign types, this study focuses only
on detecting the spatial arrangement of the signs, i.e.,
whether they are stacked or isolated. Figure 3 presents
the preprocessing pipeline used in this study.
A total of 1,439 images containing 16,066 annotated
bounding boxes were collected. The dataset com-
prises 82.3% stacked signs and 17.7% non-stacked
signs, representative of typical urban settings where
space constraints lead to frequent stacking. Further-
more, both sign types are present in 72.8 % of images,
providing ample training examples to help the model
distinguish between isolated and stacked configura-
tions.

Figure 3: Overview of the data preparation pipeline
and dataset characteristics. (a) Illustration of the
data preprocessing pipeline. (b) Distribution of
stacked and isolated traffic signs in the dataset.

After collection, only images containing stacked signs
were retained, resulting in a dataset containing 1,493
samples. File names were standardized to the fol-
lowing format: “imgXXXX.jpg” (i.e., img0001.jpg
to img1493.jpg) to simplify downstream processing.
Each sign was manually annotated with bounding
boxes. These annotations were then converted into
a YOLO-compatible .yaml file. The resulting dataset
was used to train a customized YOLO model tailored
to Vietnamese traffic signs. For each detected traffic
sign, the following details were filtered and stored for
subsequent analysis.

• The filename was extracted from the results dic-
tionary after YOLO object detection.

• The x1, y1 (top-left corner) and x3, y3 (bottom-
right corner) coordinates of the bounding box
as derived from the YOLO results.

• The xcenter and ycenter of the bounding box as
calculated by averaging the x1, x3 coordinates
and y1, y3 coordinates, respectively.

• Thewidth and height of the bounding box as de-
rived from the YOLO results.

• The confidence score of the detected bounding
box as obtained from the “conf” value in the
YOLO results.

• The class ID (cls_id) of the detected bounding
box as obtained from the YOLO results. Used
for reference only (i.e., not used in the next
stage).

• The class name (cls_name) of the detected
bounding box as obtained from the YOLO re-
sults. Used for reference only.

• The detection_id, a unique hash value created
from the filename, x1, y1, x3, y3, and cls_id to
ensure the traceability and consistency of the
data.

The AGNN setup used in this study comprised 1,442
nodes and 1,911 edges for training and 2,880 nodes
and 5,328 edges for testing. The graphs were sampled
independently to allow for inductive analysis. Each
node is described by ten features, including coordi-
nates, size, confidence, and class, and edges are used to
connect neighboring bounding boxes using a strength
metric based on spatial proximity. The test graph was
denser (an average degree of 3.70 compared to 2.65 for
the training graph), reflecting the natural distribution
of traffic signs in real-world settings. Table 1 summa-
rizes the hyperparameters configured for each layer of
the AGNN, while Table 2 presents the complete statis-
tics of the training and test graphs.
InTable 1, the “Input shape” is the input feature di-
mensions for each layer, the “Output shape” defines
feature dimension after applying the transformation
in the layer. For this model layers, the output size is
calculated as the product of hidden channels and at-
tention heads. The number of attention heads used
in the GATv2Conv layer, allows the network to fo-
cus on different aspects of neighborhood informa-
tion, improving feature representation is shown at the
“Heads” and “Dropout” defines the dropout rate ap-
plied to the GATv2Conv layers, prevents the model
from becoming too dependent on any specific set of
features or nodes.

DISCUSSION
The performance of the AGNN setup in classifying
stacked traffic signs was evaluated using the F1 score
metric and the ROC curve. These metrics are well-
suited to the class imbalance present in this dataset,
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Table 1: Parameters of each layer in the AGNN setup.

Layer Input Shape Output Shape Heads Dropout

Node Encoder (Batchsize, 9) (Batchsize, 96) 0.0

GATv2Conv (Layer 1) (Batchsize, 96) (Batchsize, 384) 4 0.6

Linear 1 (Batchsize, 384) (Batchsize, 256) 0.0

Linear 2 (Batchsize, 256) (Batchsize, 96) 0.0

GATv2Conv (Layer 2) (Batchsize, 96) (Batchsize, 384) 4 0.6

Linear 1 (Batchsize, 384) (Batchsize, 256) 0.0

Linear 2 (Batchsize, 256) (Batchsize, 96) 0.0

Classification layer (Batchsize, 96) (Batchsize, 2) 0.0

Table 2: Comparison of training and test graph datasets.

Metric Training Test Difference

Nodes 1,442 2,880 +100% (2 x larger)

Edges 1,911 5,328 +179% (2.8 x more)

Node features 10 10 Same

Edge features 1 1 Same

Avg degree 2.65 3.70 +40% denser

Label shape [1442,1] [2880,1] Same format

where the number of stacked signs significantly out-
number the number of isolated signs. The ROC plot
and the F1-score chart are presented in Figure 4.The
effectiveness of theAGNNwas evaluated against three
representative baselines: GCN (spectral convolution
with uniform neighbor aggregation)14, GraphSAGE
(inductive spatial aggregation)16, and APPNP (fixed
propagation)17. These methods cover the main GNN
paradigms, allowing for a comprehensive evaluation
of whether adaptive attention better captures relation-
ships among stacked signs compared to simpler ag-
gregation schemes.

Figure 4: ROC curve and F1 score of the proposed
model.

The  ROC  curve  illustrates  the  trade-off  between  sen-
sitivity  (TPR)  and  specificity  (1  –  FPR);  curves  closer
to  the  top-left  corner  are  indicative  of  better  model
performance.  The  area  under  this  curve  (AUC)  de-
scribes  the  ability  of  the  model  to  distinguish  between
classes.Our  model  achieves  an  AUC  of  0.94  on  the
training  data  and  0.90  on  the  test  data,  resulting  in  an
ROC  curve  that  falls  near  the  upper  left  corner  of  the
chart,  highlighting  the  excellent  performance  of  this
model  at  distinguishing  classes.
Table  3  compares  the  proposed  AGNN  approach  with
three  baselines.  The  proposed  AGNN  achieves  an
AUC  of  0.90  compared  to  an  AUC  of  0.72  for  the  best-
performing  baseline,  a  significant  improvement  of
25%.  This  gain  underscores  the  importance  of  learned
attention  when  neighbor  relevance  varies,  as  is  the
case  in  stacked  sign  detection.  Consistent  improve-
ments  in  both  AUC  and  F1  confirm  that  adaptive  at-
tention  effectively  addresses  this  challenging  classifi-
cation  task.  In  summary,  the  proposed  AGNN  is  pro-
ficient  in  identifying  stacked  signs.
Traffic  sign  detection  and  recognition  was  then  eval-
uated  across  a  wide  range  of  scenes:  a  mix  of  stacked
and  individual  signs,  exclusively  stacked  signs  on
highways,  and  exclusively  stacked  signs  in  traffic  typ-
ical  of  urban  settings.  A  majority  of  images  used
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Table 3: Comparison of the performance of different GNNmethods for stacked sign detection. Best results are
shown in bold.

Method AUC Score F1 Score

YOLO + GraphSAGE 0.69± 0.023 0.78± 0.023

YOLO + APPNP 0.68± 0.018 0.65± 0.047

YOLO + GCN 0.72± 0.045 0.81± 0.038

YOLO + AttentionGNN 0.09± 0.005 0.84± 0.041

for this assessment were taken from highways in Ho
Chi Minh City normal traffic examples were obtained
from the same city (Figure 5).

Figure5: Results of using themodel onmultiple im-
ages from different scenarios in Ho Chi Minh City.

In Figure 5, the blue labels correspond to isolated
signs, while the red labels denote stacked signs. The
model successfully clusters stacked signs using spatial
cues, treating them as a single group, while individual
signs are correctly identified and remain separated. Its
output can be further processed to generate distinct
color-coded groups of stacked signs, improving inter-
pretability Figure 6.
Figure 6 demonstrates that the Attention Graph Neu-
ral Network can give the detection process context in-
formation that traditionalmethods cannot by extract-
ing and analyzing the relationships between each en-
tity in a large network. This adds more useful value to
the way we use the results for downstream task in the
ADAS system in the future.

CONCLUSIONS
This study demonstrates that constructing a graph
that detects traffic signs and applying an AGNN to

Figure 6: Further processing on the results for bet-
ter interpretation

handle spatial relationships between each node al-
lows for the reliable identification of stacked and iso-
lated signs. This approach ensures accurate detection
while capturing the collective intent of grouped signs,
thereby providing commuters with more dependable
and context-aware guidance.
Despite Vietnam’s complex and often disorganized
traffic environment, the proposed framework reliably
and efficiently organizes traffic signs in a way that can
be further processed to improve interpretability. Fu-
ture work should explore community detection to au-
tomatically cluster a collection of stacked signs with-
out manual labeling. The creation of large language
models that can use these clustered signs to provide
lane-specific guidelines should also be investigated.
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This will enhance ADAS systems and provide com-
muters on Vietnamese highways with more precise
and helpful instructions.

LIST OF ABBREVIATIONS
GNN - Graph Neural Networks.
GCN - Graph Convolution Neural Network.
YOLO - You Only Look Once.
SVM - Support Vector Machine.
AUC - Area under the Curves.
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