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Generalized Knaster-Kuratowski-Mazurkiewicz
type theorems and applications to minimax
inequalities

Ha Manh Linh

Abstract— Knaster-Kuratowski-Mazurkiewicz type
theorems play an important role in nonlinear
analysis, optimization, and applied mathematics.
Since the first well-known result, many international
efforts have been made to develop sufficient
conditions for the existence of points intersection (and
their applications) in increasingly general settings: G-
convex spaces [21, 23], L-convex spaces [12], and FC-
spaces [8, 9].

Applications of Knaster-Kuratowski-Mazurkiewicz
type theorems, especially in existence studies for
variational inequalities, equilibrium problems and
more general settings have been obtained by many
authors, see e.g. recent papers [1, 2, 3, 8, 18, 24, 26]
and the references therein.

In this paper we propose a definition of generalized
KnasterKuratowski-Mazurkiewicz =~ mappings to
encompass R-KKM mappings [S5], L-KKM mappings
[11], T-KKM mappings [18, 19], and many recent
existing mappings. Knaster-KuratowskiMazurkiewicz
type theorems are established in general topological
spaces to generalize known results. As applications,
we develop in detail general types of minimax
theorems. Our results are shown to improve or
include as special cases several recent ones in the
literature..

Index Terms— L -T -KKM mappings, Generalized
convexity, Transfer compact semicontinuity, Minimax
theorems, Saddle-points.

1 INTRODUCTION

Existence of solutions takes a central place in the
optimization theory. Studies of the existence of

solutions of a problem are based on existence
results for important points in nonlinear analysis
like fixed points, maximal points, intersection

points, etc.
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One of the most famous existence theorems in
nonlinear analysis is the classical KKM theorem,
which has been generalized by many authors. For
example see [1, 2, 3, 4, 6, 10, 22, 23, 27]. In early
forms of this fundamental result, convexity
assumptions played a crucial role and restricted the
ranges of applicable areas. After, various
generalized linear/convex structures have been
proposed and corresponding types of KKM
mappings have been defined together with these
spaces, such as [3, 6, 21] investigated G-convex
spaces, Ding [7-9] introduced the concept of a FC-
space and then Khanh and Quan [18, 19], Khanh,
Lin and Long [14], Khanh and Long [15, 16] and,
Khanh, Long and Quan [17] generalized and
unified the previous spaces into a notion called a
GFC-space.

Applications of KKM-type theorems, especially
in existence studies for variational inequalities,
equilibrium problems and more general settings
have been obtained by many authors, see e.g. recent
papers [1, 2, 3, 8, 18, 24, 26] and the references
therein.

To avoid in a stronger sense convexity structures
in investigating KKM-type theorems, in this paper
we propose a definition of a generalized type of
KKM mappings in terms of a FLS-space and use it
to establish generalized KKM type theorems. As
applications we focus only on minimax and saddle-
point problems, which also generalize or improve
recent results in the literature [3, 5, 6, 10,...].

The outline of the paper is as follows. Section 2
contains definitions and preliminary facts for our
later use. In Section 3, we give our main results.
This section contains generalized KKM-type
theorems, a Ky Fan type matching theorem and
discuss their consequences in some particular cases.
In section 4, we obtain the sufficient conditions for
the solutions existence of minimax and saddle-
point problems.
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2 PRELIMINARIES

We recall now some definitions for our later use.
For a set x , by 2X and (x) we denote the family
of all nonempty subsets, and the family of
nonempty finite subsets, respectively. Let z, x be
topological spaces and 4,Bcz, int4, cl4 (or 4),
intz4 and clg4 stand for the interior, closure,

interior in B and closure in B of 4. 4 is called
compactly open (compactly closed, resp.) if for
each nonempty compact subset K of z, 4nK is
open (closed, resp.) in k. The compact interior and
compact closure of 4 are defined by

cintd = U{B c Z : B ¢ AandBiscompactlyopeninZ},

ccld= m{B c Z: B o AandBiscompactlyclosedinZ} .

It is clear that cint 4 (ccl 4, resp.) is compactly
open (compactly closed, resp.) in z and for each
nonempty compact subset K<z with 4nkK=Q,
one has Kn cint4 = intg(Kn4)
Knccla=clg(Kn4). It is equally obvious that
Acz is compactly open (compactly closed, resp.)
if and only if cint4 =4 (ccl4 =4, resp.). A set-
valued 7:x — 27 is said to be upper [lower resp.]
semicontinuous (usc) [Isc resp.] if for any open
[closed  resp.]  subset UcZ, the set

T :={xeX:T(x)cU} is open [closed resp]in x . T

and

is said compact if 7(X) is compact subset of z .
N, Q, and R denote the set of the natural
numbers, the set of rational numbers, and that of

the real numbers, respectively, and R= RU{—oo,+oo} .

For neN, A, stands for the »-simplex with the

n

vertices being the unit vectors ¢, ¢, ..., ¢,,; of a

basis of R

Definition 1 Let X be a topological space, Y be
a nonempty set and ¥ be a family of lower

semicontinuous mappings w:A, —>2%, neN. Then
a triple (X,Y,¥) is said to be a finitely lower
semicontinuous topological space (FLS-space in
short) if for each finite subset N ={yg,yj,...v,}€(¥),
there is yy:A, —»2% of the family ¥ . Later we
also use (x,Y,{yy}) to denote (X,Y,¥).

Remark 1 If v, is a continuous single-valued
mapping, then (X,Y,¥) becomes an GFC -space as
defitioned in [18-20]. If in addition Y=Xx then
(X,Y,¥) is rewritten as (X,¥) and becomes an
FC -space in [7, 8]. The Example 1 below shows
that in general the inverse is not true.

Definition 2 (See [18-20]). Let (x ,v,®) be a
GFC-space and Zz be a topological space. Let
T:X >2%, F:¥—>2% be two set-valued mappings.
F is called a generalized KKM mapping with
respect to 7 (7 -KKM mapping in short) if for
each N ={y...,y,}e(¥) and each {yio""’yfk}e<N>’

k
Ty (Ag) UOF(yi_/. )
P

where ¢y e® and

.

is corresponding to N
Ay =c0{ei0 eens€iy

Definition 3 (See [19]). Let (x,Y,®) be a GFC-
space and Z be a topological space. A set-valued
mapping T:Xx — 27 is called better admissible if T
is usc and compact-valued such that for each
N e(Y) and  each  comntinuous  mapping
i T(pn(Ap) = Ay, the composition

A .
CoTlpy(a) PN 8y > 2" has a fixed point, where
n

oy €@ is corresponding to N.

The class of all such better admissible mapping
from x to Zis denoted by B(X,Y,Z)

Definition 4 (See [7]). Let z be a topological
space and ¥ be a nonempty set. Let F:y —»2% isa
set-valued mapping.

1. F is called transfer open-valued (transfer
closed-valued, resp.) if, for each yeY and zeF(y)
(zeF(y), resp.) there exists j'eY such that
zeint F(y) (zecl F(y), resp.)

2. F is said to be transfer compactly open-
valued (transfer compactly closed-valued, resp.) if
for each yev, each nonempty compact subset
KczZ and each zeF(y)nK (zgF(y)nK, resp.),
there is that :zeint x(F(")nK)

y'eY such

(zecl x(FO)NK), resp.)
We will need the following well-known result.

Lemma 1 (/7]). Let Y be a set, X be a
topological space and F:y -»2%. The following
Statements are equivalent.

1. F is transfer compactly closed-valued
(transfer compactly open-valued, respectively).
2. for each compact subset K c X .
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Ewng) = )edrmnk)
yeY yeY

=(elxFmnk),

yeY

Jronn = Jenronk

yeY yeY

- U (int x F(5) A K).

yeY

Definition 5 Let (x,Y,¥) be a FLS -space and z
Let
T:X - 27 be set-valued mappings

1. F is said to be a generalized L-KKM
mapping wrt 7 (L -7 -KKM mapping in short) if]
for each  N={yp,yuynled) and each

be a topological space. F:Y—>2? and

k
Wiy yip i bV one has Tww@aoe| J Foi).
j=0 J

where is corresponding to N and

yye?
Ay =co{e,»0,el-1 ,...,el«k} .

2. We say that a set-valued mapping
T:X - 27 has the generalized L -KKM property if,
for each L-7-KKM mapping r:y—27, the
family {F(y):yeY} has the
property, i.e. all finite intersections of sets of this
family are nonempty. The class of all mappings
T:Xx »2? which have the generalized -KKM
property is denoted by L -KKM(X,Y,Z).

finite intersection

3. Let s:¥ »2% be a set-valued mapping. A
subset D of v is called an L - S -subset of v if, for

of
is

that
of a

one has wy:A, >2% ¥  such

yn (D) S(D),
corresponding to { Yigo-sVip ¥ -

where A, face

n

Remark 2 Note that the Definition 5 (i) is a
generalization of the Definition 2.1 of [11]. We
also see that every L-T-KKM mapping is a T -
KKM mapping when yy is a continuous single-
valued mapping. If in addition Y=Xx and T is the
identity map then L -T -KKM mapping becomes an
R -KKM mapping of [5] and thw Definition 2.2 of
[7].

The following example shows that the Definition
5 (i) contains the Definition 2.
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Example 1 Suppose that X=27z=[04o) and
Y =N. For each N (), we define py A, —2% by

0 if eefep,...,e,
[ 2t

We see that y is lower semicontinuous but not
continuous. Hence (X,v,¥) is a FLS-space.

Let F:¥y—>2? and r:x->2% be defined as
follows  F(»)=[0,y+2) for each and
T(x)=[0,1]foreachxe X. Then F is not a 7-KKM
mapping. However F is the generalized L-T -
KKM mapping. Also, the class {F(y:yer} has the

finite intersection property.

yeY

Lemma 2 (Classical) Let T:x —»2% be upper
semicontinuous with compact valued from a
compact space X to Y. Then T(X) is compact.

Lemma 3 Let (X,Y,®) be a GFC-space and Z be

a topological Then  B(X,Y,Z)c L-
KKM(X,Y,Z).

Proof. For each 7TeB(X,r,Z), let F

generalized -7 -KKM. Suppose to the contrary

that N ={y,... y,} (¥) exists such that

ﬁm: @
i=0

It follows that

space.

is a

Ton@an o[ JFon =2
i=0
and

T(pn(Ap)) = U[(Z \EF()) NT(on (Ap)]-
i=0

{Z\FON ATy (A )y

covering of the compact set T(py(A,)). Let {37,

Then is an open

be a continuous partition of unit associated with
this covering and ¢:T(py(A,))—>A, be defined by

cj(t)=zn ¢i(e,. Then ¢ is continuous. Since
i=0
TeB(X,Y,Z), the composition CoTlpy ) °PN has

a fixed point. Hence, there is z,eT(py(a,)) such
that 20 € T(pn (£ (20))) - Where

SEORD DN ICI LIV with

J(z0) ={j €{0,1,....n}: £ ;(z0) # 0}
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On the other hand, as F is L-7-KKM (T -
20 €T(pn(¢(z0)) =T(oN(A(zy)))

KKM), one has

so there is jeJ(zy) such that z, ery})

However, in view of the definitions of J(z,) and
of the {itino
20 elzeTlon(A,):¢5(2) % 0}

c(Z\FnT(en(An)
S Z\E(y5),

partition

a contradiction.

3 GENERALIZED L -T -KKM TYPE THEOREMS
Theorem 1 Let (X,Y,¥) be a FLS-space and Z

be topological spaces. Let F:y —2% and T:x — 2%
be set-valued mappings. Assume that the following
conditions hold

1. Fis L-T-KKM,;

2. TeL-KKM(X,Y,Z) and T(X) is a compact
subset of Z;

3. there are 4<(¥) and a nonempty compact
subset K of Z such that

ﬂcch »ck;

yed

4. F is transfer compactly closed-valued.
Then

KT(X) m(ﬂF(y)) +0.
yeY

Proof. Define a new set-valued mapping
H:Y 2T by
H(y)=T(X)n ccl F(y), for each yeY.

Then H has closed-values in 7(X). We show
that # is L -7 -KKM. Indeed, since F is L-T -
KKM, for each ~N={yy,.,»,}e) and each

{yio""’yik} c N one has

Ty n(A) :TI(CWN(Ak))mm

c UF(yij )AT(X)

j=0

(:::»

[FOi)0 T(X)]

j=0
k
c|l JHOG: ).

Therefore, # isthe L -7 -KKM mapping.

Moreover, since TelL-KKM(X,Y,Z) it follows
that the family

{H(y):yeY}={H(y):yeY}

has the finite intersection property. Since T(X) is
compact and {H(y):yeY} is a family of closed

subsets in 7(X), one has

@ nH(y) = ﬂ(T(X) ACelF ().

yeY yeY

Hence, there exists z"eﬂ Y(T(X)m ccl F(y)),

yve
i.e., Ze ccl F(y)), for each yeY. By (iii), there is
Ae(Yy and a compact subset K of z such that

ze ﬂcch(y)g K.
yed
Lemma 1, we

and have

By (iv)
z eﬂcch(z)mm

zeY o
- ﬂF(z) AT(X)

zeY

c F(y).
Thus we arrive at the conclusion
KAT(X) m(ﬂF(y)) +0.
yeY

Remark 3 Theorem | unifies and generalizes
Theorem 3.2 of [5], Theorem 3.2 of [11] and
Theorem 3.2 of [21] wunder much weaker
assumptions. By Lemma 3, Theorem 1 improves the
assertion (iii | ) of Theorem 2.2 of [19].

The following example shows that we cannot use
of known results in FC -spaces of [7] or GFC-
convex spaces of [18-20], but is easily investigated
by FLS -spaces.

Example 2 Let Y =NuU{0} and X =Z =[0;+x). For
each N ={yy,yj,..ynteY), we define gy :A,— X,

by on(e)= Z” Oﬂiyi, where e= Zn Oﬂiei eA, and
= =
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floﬂ,-zl. Then (x.Y,{py}) IS the GFC -space. Let
i=

F:Y—>2% and T:x - 27 are defined as follows
F(y) = {{0} if y=0, [0,0.S]if otherwise..

T(x) = {{or [0, 1), [0, 1]if otherwise..

We can see that F is not 7 -KKM. Indeed, we
choose N«={y,=1}e(), one has

o, (A9)=1 and

T(pn, (89))=[0,1]U[0,0.5]= F(1).

Hence the results in [18-20] are out of use for
this case.
To apply our Theorem 1, we now define a FLS -

space by ¥Y=Nu{0}, X=[0;+0) and the
corresponding vy :A, »2%, by
wy(e) = {0} if eefeg,..e), [0;

0.5]if otherwise..

We see that yy
mapping, (X.Yiyn)
Furthermore, for each N = {yq, y,.... v,} € (Y) We have

is lower semicontinuous

SO is a  FLS-space.

T(yn(Ay) = {0} F(y) for each yeY
Therefore F isa L -7 -KKM mapping, so (i) of
Theorem 1 is satisfied. Clearly 7(x)=[0,1] is the

compact subset of z and the class {F(y:ye¥} has
the finite intersection property,i.e., (ii)of Theorem 1
is fulfilled. If we choose 4={0,1} and K =[0,1] then
assumptions (iii) of Theorem 1 are satisfied.
Moreover it is easy to see that F is transfer
compactly closed-valued. By Theorem 1, one
concludes that
KmT(X)m(ﬂF(y))={0}¢®.
yeY

Theorem 2 Let (XY, ¥ ) be a FLS -space and Z
be topological spaces. Let s:y —»2%, F:y 2%
and T:X 2% be set-valued mappings. Assume
that Y is an L-S-subset of itself. Let the following
conditions hold

1. F is L-T-KKM and transfer compactly
closed-valued;
2. 1eL-KKM(X,Y,Z), T(S(Y)) is a compact
subset of Z.
Then
TSN ﬂF(y) +0.
yeY
Proof. We

H:y —»2T6W) py
H(y)=T(S(Y))n ccl F(y), for each yeY.

define a set-valued mapping
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Then H has closed values in 7(S(Y)). We show
that # is L -7 -KKM. Indeed, by F is L -7 -KKM
mapping, for any N={y,..y,}e(r), and any

k
g b one has Tov@e( JFon).

Since v is L-S -subset of ¥, T(wy(A)=T(S(Y)).

Tyn@Ag) =Ty A))NTSET))

k
<o pntemy
=0
k
Theref
erelore = JrFoi ) n TG
J
=0
k
gUH(yl-jy
=0
Hence, H# is L-T-KKM. As TelL-
KKM(X,Y,Z), it follows that the family

{H(y):yeY}={H(y):yeY} has the finite intersection
property. Since T(S(Y)) is compact and {H(y):yeY}
is a family of closed subsets in 7(S(¥)) and by
Lemma 1 have

TS [ JFm = )TE@)AF)

yeY

w¢e

yeY

= ﬂ(T(S(Y ) N eclF ()

- ﬂH(y);t 2.

yeY
Remark 4 Theorem 2 contains Theorem 1 of
[21], Theorem 3.1, 3.2 and 3.3 of [7] and Theorem

3.10f[18].

Theorem 3 Let (X,Y, ¥ ) be a FLS-space and Z
be topological spaces. Let s:Y »2%, G:z—>2'

and T:x 2% be set-valued mappings. Assume
that Y is an L-S-subset of itself. Let the following
conditions hold

1. ¢7! is transfer compactly open-valued,
2. for each Ne(y) and each Wigredig JEN,

k
,1 . _
T(wN(Ak»mﬂOG (0:i)=2
-

3. TeL-KKM(X,Y,Z), T(S(Y)) is a compact
subset of Z.
Then there exists zeT(S(Y)) such that G(2)=@

Proof. To apply Theorem 2, we define a new
set-valued mapping F:y 2% by
F(»)=2Z\G™\(y), for each yeY.
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Then F 1is transfer compactly closed-valued.
We show that F is L -7 -KKM. Indeed, by (ii) for

has T(yy(Ap) N ﬂizoc‘l(y,-j Y=g , it follows that

k
-1,
Ty (Ap) QZ\QG Gi)
-

k
=(Jroip.
J=0

Therefore F isa L -7 -KKM mapping. It is clear
to see that all conditions of Theorem 2 are satisfied.
By Theorem 2

TSI ﬂyeyF(y) +0.
Hence, there exists
£eTEM) A JFw.
yeY
It follows that
2ez\G"\(y) foreach yev,
ie, 2e¢G71(y) for each yev.

Thus, there exists ze7T(S(Y)) such that G(Z)=@.
w

Remark 5 Theorem 3 contains the assertion
(iii 1) of Theorem 4.1 of [19] and Theorem 3.1 of

[8].

As a consequence of the generalized L -7 -KKM
theorems, we prove a generalization of the Ky fan
type matching theorem.

Theorem 4 Let (X,Y,¥ ) be a FLS -space and Z
be a topological space. Let s:y »2%, F:y 27
and T:x 2% be set-valued mappings. Assume
that Y is an L-S-subset of itself. Let the following

conditions hold.
1. F is a transfer compactly open-valued

mapping;
2. 7e L-KKM(X,Y,Z), and T7(S(v)) is
compact;
3. T(S(Y)cF(Y).
Then, there
{yio""’yik}gM such that

exist and

M ={ygss ym} €CY)

k

T(y (A | IF ;) =D

Wy Ao N Oi;)#
=

Proof. Suppose that the conclusion is not true.
Then for any N={yy..y,}e(¥) and any

k
Wiyt JEN Ty (Ak»mﬂj:OF(y,-) -3,

Therefore where

k
roveosJ_#on,

H(y)=Z\F(y). It follows that # is L -7 -KKM. By

(1), # is transfer compactly closed-valued. Clearly,
all conditions of Theorem 2 are satisfied. It follows
from Theorem 2 that

TSN YH(y);t@.

ye

Hence, 71(S())0F(Y), but this contradictions

(iii). Thus there exist M ={yg,... yy}e(¥)
{yl»o,...,y,»k}gM such that

and

k
TW (Ak»mﬂj:OF(y =D,

Remark 6 Theorem 3 generalizes Theorem 8 of
[21] and Theorem 3.1 of [12] since being G-KKM
mapping and R -KKM mapping are special cases of
L - T -KKM mapping.

Theorem 5 Theorem 2 and 4 are equivalent.
Proof. We saw that Theorem 4 can be proved
by using Theorem 2. Now we derive Theorem 2
from Theorem 4. Suppose that

1) JFm=2.
yeY

Let H(»)=Z\F(y).

compactly open-valued and T(SY)cHY). It

follows from Theorem 4 that there exist M e(Y)

and that

Then H(y) 1is transfer

{yio,...,y,-k joM such

k
T(V/M(Ak))ﬁﬂjon(yii)i @, (where yye¥).

k
Hence T((pM(Ak))@U;:oF(yij)' This contradicts the

fact that F is L -7 -KKM. Thus the conclusion of
Theorem 2 follows Theorem 4.

4 KY FAN TYPE MINIMAX INEQUALITIES

In this section, by applying L-7-KKM
theorems, we shall establish some new Ky Fan type
minimax inequalities and saddle point problems.

Definition 6 Let (Xx,v,¥) be a FLS-space and
z be a topological space. Let
T:X 2% g:YxZ—>Rufto} and 1eR. ¢ is called
A - L -quasiconvex (4 -L -quasiconcave, resp.) wrt
T in ¥ if, VN e(Y) and
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one has

v{yio""’yik yE N VzeT(yn(Ap),

max o< j<k g(yz‘]. ,2)2 2 (Min g j<f g(yij ,2)< A, TESp.).

Remark 7 Definition 6 generalizes Definition
4.1 of [9], Definition 4.1 of [20] and Definition 1.7

of [25]

Definition 7 Let (Xx,v,¥) be a FLS-space and
z be a topological space. Let
T:X—>2%,g:YxZ—>R and «,fcR with a<p . ¢
is called «-p-L-quasiconcave wrt 7 in y if]
VYN e(Y), V{yio,...,yik}gN,VzeT(u/N(Ak))7 there is an

re{0,..,k} satisfying aSg(yl-r,z)Sﬂ. If @ =-o, then

the notion in Definition 7 reduces to the

corresponding notion in Definition 6.

We need also the following notion of Definition
2.6 in [6].

Definition 8 Let v be a nonempty set and z be
a topological space. Let f:YxZ—>R and AeR. f
is called i -transfer compactly lower (upper, resp.)
semicontinuous in z if for each compact subset K
of z and for each zeK , there exists a yeY such

that f(y,z)>21 (f(y,2)<4, resp.,) implies that there
exists an open neighborhood U(z) of z and a point
yoe¥ suchthat f(yy,z')>1 ( f(y9,2)<4A, resp.,) for
all ZeU(z).

Let F:vy—22 by FO)={zeZ:f(y.2)<A
(f(y,z)> 4, resp.). Then f is A -transfer compactly
lower (upper, resp.) semicontinuous in z if and
only if F is transfer compactly closed-valued
(open-valued resp.).

Theorem 6 Let (X,Y,¥) be a FLS -space and Z
topological space. Let
T:X 2%, f,6:YxZ—>Rultw! and AeR be such
that

1. for each (y,z)eYxZ, f(y,2)<g(y,2);

2. g is generalized 2 -L-quasiconcave wrt T
my;

3. fis A- transfer compactly in z;

4, T e L-KKM(X,Y,Z) and 7(X) is a
compact subset of Z;

5. there exist 4<(¥) and a nonempty compact

be a

subset K of Z such that the set
ﬂ ccizeZ: fn) <A K .

yed

Then there exists a point zeZ such that

S0 <A, VyeY.
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Proof. First, we define two set-valued mappings
F,G:Y 2% by
F(y)={zeZ:f(y.0)< A}
and G(y)={zeZ:g(y,z)<A},VyeY.
By (i), we have that G(y)cF(y),vyeY. By (ii)
and Definition 6, for each ~N={yy,...y,}e(¥), each

each zeT(yn(Ag)),

Wigseedi 3 €CN) and
n

such that g0y <A, ie.,
-

k k
sedoipel_goipel,roip-
zeT(yy(Ay)) 1s arbitrary, we have

Since

k
reveoelJ _Foi)-

Hence, F is a generalized L - 7 -KKM mapping.
The condition (iii) implies that F is transfer
compactly closed-valued. The condition (v) implies
that there exists 4e(¥) and a nonempty compact
subset kK of z such that

NyeqcclF(y)c K.

Add the condition (iv), all conditions of Theorem
1 are satisfied. By Theorem 1 we have,
ﬁyeyF(y) = .

Taking  any we  obtain

S(no)<Avyey. W

Remark 8 Theorem 6 generalize Theorem 2.1-
2.4 of [26].

ZAemerF(y) 5

Theorem 7 Let (X,Y,¥) be a FLS -space and Z
be a topological space. Let
T:X 2%, f,6:YxZ—>Ruftol and AeR be such
that

1. for each (v,2)eYXZ, f(y,2)<g(y,z)

2. g is generalized A -L-quasiconcave wrt T
ny;

3. f is A -transfer
semicontinuous in z;

4. T1eL-KKM(X)Y,Z); There is s:v —2%
such that Y is an L-S-subset of itself and 7(S(Y)) is
compact.

Then there exists a point
f(y,2)<A,VyeY.

Proof. Define
F.G:Y »27 by
F(»)={zeZ:f(y,2)< A} and

G(y)={zeZ:g(y,z)<A},VyeY.

By (i), we have that G(y)cF(y),vyeY. By (ii)
and Definition 6, for each ~={yy,...y,}e(r), each

zeT(pN(Ag)) >

compactly lower

zeZ such that

two set-valued mappings

Wigreensdi 3 €N and each
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min o< ;<;g(y; ,z) <A . Hence there exists re{0,....k}
J

such that g sS4, ie.,
-

k k
SEUSE G MKCURL § AR

zeT(wy(Ay)) 1s arbitrary, we have

Since

k
ryveoeJ_Foi).

Hence, F is a generalized L - 7 -KKM mapping.
The condition (iii) implies that F is transfer
compactly closed-valued. All conditions of
Theorem 2 are satisfied. By Theorem 2 we have
Nyey F(»)#@. Then, there is Zency F(y) such that

S <A VyeY.

Theorem 8 Let (X,Y,¥), (Y,X,¥) be two FLS -
topological space. Let
g:YxZ >RuU {0} .

spaces and Z be a
T:X 27, H:x 2",
Assumption that

1. gis generalized 0-L-quasiconcave wrt T in
y and generalized 0-L-quasiconvex wrt H in z;

2. g is O0-transfer compactly lower
semicontinuous in z and 0 -transfer compactly
upper semicontinuous in y;

3. TeL-KKM(X,Y,Z); there is §,:¥ —»2%
such that Y is an L- §; -subset of itself and 7(S;(Y))
is compact;

4. HeL-KKM(X,Z)Y); there is S,:Z—>2%
such that Z is an L- S, -subset of itself and 7(S,(2))
is compact.

Then, g has a saddle point (3,%)e¥YxZ, i.e.,
g(n.2)<g(3.2)<g(3,2).V(».2) €Y x Z.
In particular, we have

infoezsup ey 8(y,2) = supyeyinfzez8(,2) = 0.

Proof. Applying Theorem 7 with 1=0 and
f =g, there exists a point zeZ such that g(y,2)<0
for all yey. Let f(z,y)=-g(y,z) for all (z,y)ezZxY.
We apply Theorem 7 with 1=0 again, there is a
point yeY such that f(z,7)<0 for all zez. Then
we have g(3,2)<0<g(,2),¥(y,z)eYxZ.  Thus,
g(»,2)=0 and

g(n.2)<g(3,2)<g(3,2),¥(y,2) €Y X Z ,

which implies

infoezsup ey g(v,2) < g(3,2) <supeyinfzezg(y,2)

Since  infoczsupyeyg(,2) 2 supyeyinfzezg(v,2) 18
always hold, we get

infoczsup ey 8(y,2) = supyeyinfzez8(y,2) = 0.

w

Remark 9 Theorem 8 contains Theorem 4.2 of

[25].

Theorem 9 Let (X,Y,¥) be a FLS-space and Z
be a topological space. Let
T:X 2%, f,6:YxZ—>RUtw! and a,fecR With
a<p besuch that

1. for each (y.z)eYxZ,a<g(y,z)<p implies
a<f(y,2)<p;

2. gis generalized « - g -L-quasiconcave wrt
Tiny;

3. f is
semicontinuous in z and «-transfer compactly
upper semicontinuous in z;

4. TeL-KKM(X,Y,Z); There is s:Y —»2%
such that Y is an L-S-subset of itself and 7(S(Y)) is

compact.
Then, there exists a point zeZ such that

a<f(y,z2)<BVyeY.

B -transfer compactly lower

Proof. We
F,G:Y 27 by

F(y)={zeZ:a< f(y,2)<p} and

G(y)={zeZ:a<g(y,z)<f},VyeY

Then, by (i), we have G(y)cF(y) for all yev.
By (i), for each N={yy,.,y,}e(), each
{yio,.,.,y,-k}cN and each zeT(py(Ap)), there is an

also define two mappings

k
seteziasgi D p=coeromel | _rop)

Since arbitrary, we have

zeT(yy(Ag) IS

k
T(WN(Ak))cU/_ZOF(y,»j). Hence F isa L-7-KKM

mapping.

We set

Ay)={zeZ:f(y,2)< B}

B(y)={zeZ:f(y,z)2a}

Then one has F(y)=A4(y)nB(y). The condition
(ii1) implies that 4 and B are transfer compactly
closed-valued. We need show that F is transfer
compactly closed-valued. For each compact subset
K of z,by Lemma 1, we have

(orn o= (el 40 &)
yeY yeY

and

(ew K =(ekBmnK.
yeY yeY

It follows that
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[ @10) A BONAK) = [[(elk A0) el BGNAK).
yeY yeY
On the other hand,

(10 nBGIAK) < \elkl4) A BOINK)

yeY yeY

< (\telk A el BONAK).
yeYy

Therefore F is transfer compactly closed-
valued. Clearly, all conditions of Theorem 2 are

satisfied. Applying theorem 2 ﬂ YF(y);t@.
ye

Taking z e ﬂ YF(y), we obtain zeZ such that
ye

(1]

(2]

[3]

(4]

(3]

(6]

(7]

(8]

(]

(10]

(1]

[12]

[13]

a< f(y,z2)<B,VyeY.
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Céac dinh ly loai Knaster-Kuratowski-
Mazurkiewicz va cac ap dung cho cac bat dang
thirc minimax

Ha Manh Linh

Tom tit - Cac dinh ly loai Kanaster-
Kuratowski-Mazurkiewicz déng mot vai tro
quan trong trong cac linh vwe gidi tich phi
tuyén, t6i wu va toan wng dung. Ké tir khi xuét
hién, nhiéu nha nghién ctru di nd lyc phat trién
cac diéu kién di cho sy ton tai cic diém giao (va
ciac ap dung ciia ching) trong ciac khong gian
tong quat nhw: Cac khéng gian G-Loi [21,23],
khong gian L-16i [12], va FC-khong gian [8,9]

Ciac 4p dung cua cac dinh ly loai Kanaster-
Kuratowski-Mazurkiewicz, dic biét la nghién
ciru s ton tai cho cac bat ding thirc bién phan,
cac bai toan cin bing va cac bai toan tong quat
khac di dwoc thu dwoc béi nhiéu tac gia, xem
cac bai bao gin day [1, 2, 3, 8, 18, 24, 26] va
trong cac tai liéu tham khdo cia cac bai bao nay.

Trong bai bao nay, ching tdi dé xuit Kkhai
niém anh xa L-T-KKM nhim bao ham cac dinh
nghia anh xa R-KKM [5], anh xa L-KKM [11],
anh xa T-KKM 018,19], va cac khai niém da c6
gin diy. Cac dinh Iy KKM suy réng 1a dwoc
thiét lap dé mé rfng cac két qua tl‘ll’O'C do.
Trong phan ap dung, chung t6i phat trién cac
dinh ly minimax é dang tong quat Cic két qua
chung t6i dwgce chi ra la cai tién hodc chira cac
két qua khac nhw truomg hop dic biét.

Tir khéa - Cac anh xa L-T-KKM; Ldi suy rong;
Truyen compact nira lién tuc dwéi, Cac dinh ly
minimax, Cac diém yén ngua vo han.



