Chế tạo và khảo sát ảnh hưởng của nhiệt độ đến tính chất quang và điện của màng dẫn điện trong suốt SnO₂:Ga (GTO) loại p được chế tạo bằng phương pháp phún xạ magnetron DC

- Đặng Hữu Phúc
- Phạm Văn Nhân
- Lê Văn Hiếu

• Lê Trấn Trunh a Dai hao k

Trường Đại học Khoa học Tự nhiên, ĐHQG-HCM

(Bài nhận ngày 29 tháng 08 năm 2015, nhận đăng ngày 02 tháng 12 năm 2016)

TÓM TẮT

Màng SnO₂ pha tạp Ga (GTO) được chế tạo từ bia gốm hỗn hợp (SnO₂ + Ga₂O₃) bằng phương pháp phún xạ magnetron DC trong khí nền Ar ở áp suất 4.10⁻³ torr. Ảnh nhiễu xạ tia X (XRD), phương pháp đo Hall Van Der Pauw và phổ truyền qua UV- Vis được sử dụng để khảo sát đặc trưng của màng. Màng GTO được lắng đọng trực tiếp theo nhiệt độ đế từ nhiệt độ phòng đến 400 °C để khảo sát ảnh hưở ng của nhiệt độ đến tính chất quang và điện, cấu trúc tinh thể của màng. Sau đó màng GTO được lắng đọng ở nhiệt độ đế 400 °C và được ủ ở các nhiệt độ cao hơn **Từ khóa:** phún xạ magnetron DC, GTO, loại p

MỞ ĐẦU

Oxide thiếc (SnO_2) là một trong những vật liệu dẫn điện trong suốt quan trọng, được nhiều nhà khoa học quan tâm nghiên cứu do tính chất hóa lý nổi trội như có độ rộng vùng cấm lớn (3,6-4,3 eV), dẫn điện tốt, độ truyền qua cao trong vùng ánh sáng khả kiến, không độc hại, dư thừa trong tự nhiên, bền nhiệt và giá thành thấp.

Tính chất vật lý của SnO₂ được điều chỉnh theo nhu cầu ứng dụng bằng cách pha tạp các cation như galium (Ga) [8, 10], Indium (In) [4], alumium (Al) [5], Zinc (Zn) [6], antimony (Sb)

để khắc phục hiện tượng bù giữa hai loại hạt tải. Tính chất điện loại p màng GTO được khẳng định bởi đặc trưng I-V của tiếp xúc dị thể p-GTO/n-Si. Kết quả cho thấy, màng GTO có tính chất điện loại n ở nhiệt độ đế dưới 400 °C, không dẫn điện ở nhiệt độ đế 400 °C và có tính chất điện loại p tốt nhất với điện trở suất 0,63 Ω cm, độ linh động 3,01 cm²V¹s⁻¹, nồng độ lỗ trống 3,3×10¹⁸ cm⁻³, ở nhiệt độ ủ tối ưu 550 °C. Màng GTO có cấu trúc tinh thể bốn phương rutile của màng SnO₂ và có độ truyền qua trên 80 %.

[1], tantalum (Ta) [2] hay anion fluoride (F) [3]...Tùy thuộc vào loại tạp pha vào (donor hay acceptor), SnO₂ sẽ đóng vai trò dẫn điện loại n hay loại p. Cho đến thời điểm hiện tại, vật liệu SnO₂ pha tạp loại n đã được nghiên cứu rộng rãi và đạt kết quả khả quan như điện trở suất 10^{-3} - 10^{-4} Ω .cm và độ truyền qua trong vùng khả kiến 80-90 % [1-3], kết quả này có thể ứng dụng làm điện cực trong suốt trong pin mặt trời, Leds, Laser diode, cảm biến khí và các thiết bị quang điện khác. Trong khi đó SnO₂ pha tạp loại p chỉ mới được nghiên cứu trong những năm gần đây với số lượng công trình còn hạn chế [4-10]. Trong đó SnO₂ pha tạp nitrogen (N) [7] được lắng đọng bằng phương pháp phún xạ magnetron RF trong hỗn hợp khí Ar + N₂, mặc dù kết quả khá tốt với nồng độ lỗ trống 10^{19} cm⁻³ nhưng theo lý thuyết N rất khó chèn vào mạng do năng lượng hình thành Sn-N cao hơn Sn-O, còn SnO₂ pha tạp Zn đạt được kết quả nồng độ lỗ trống 10^{19} cm⁻³ nhưng do sai khác về bán kính ion giữa Zn²⁺ và Sn⁴⁺ nên dễ gây ra lệch mạng. Ngoài ra các kim loại nhóm III như Al, Ga, In, Sb khi được pha tạp vào SnO₂ cũng góp phần tạo ra lỗ trống.

Trong các loại tạp nhóm III kể trên, Ga được chú ý nhiều nhất bởi vì ion Ga3+ và Sn4+ có bán kính xấp xỉ bằng nhau (0,62 Å và 0,69 Å), nên Ga có thể được pha tạp vào SnO_2 mà không gây ra ứng suất do lệch mạng như đã đề cập trong các công trình [4, 6, 7], tuy nhiên các thông số chế tạo chưa thật sự được nghiên cứu một cách hệ thống cũng như các cơ chế hình thành lỗ trống chưa được rõ ràng vì bên cạnh lỗ trống hình thành do sư thay thế của tạp vào trong mang còn tồn tại cơ chế tự bù. Hơn nữa đa phần các công trình sử dụng phương pháp chế tạo là phún xạ magnetron RF, phún xạ phản ứng, một số ít sử dung phương pháp hóa học như sol-gel, nhưng chưa có công trình nào nghiên cứu bằng phương pháp phún xạ magnetron DC từ bia gốm. Vì vậy trong công trình này, màng SnO₂ pha tap Ga (GTO) được lắng đọng trên để thạch anh từ phương pháp phún xạ magnetron DC từ bia gốm hỗn hợp SnO₂ và Ga₂O₃ và tính chất quang, điện và cấu trúc tinh thể của màng được khảo sát một cách chi tiết.

VẬT LIỆU VÀ PHƯƠNG PHÁP

Màng GTO được chế tạo bằng phương pháp phún xạ magnetron DC từ bia gốm hỗn hợp (SnO₂ và Ga₂O₃), với 15 % phần trăm khối lượng (% wt) Ga₂O₃, trong hệ tạo màng Univex 450. Đế được làm sạch bằng dung dịch NaOH 10 % và acetone để loại bỏ tạp bẩn, rồi được rửa bằng

Trang 138

nước cất và được sấy khô trước khi được đưa vào buồng chân không. Trước khi tiến hành phún xạ tạo màng, bia vật liệu được tẩy bề mặt bằng phóng điện plasma trong môi trường khí argon ở áp suất khoảng 10^{-3} Torr trong thời gian 15 phút. Áp suất khí nền ban đầu đạt 10^{-5} torr, áp suất làm việc 10^{-3} torr, công suất phún xạ là 15 W và khoảng cách giữa bia và đế 7 cm.

Quá trình tạo màng GTO được chia thành hai giai đoạn: Giai đoạn đầu, màng GTO được lắng đọng trực tiếp với nhiệt độ đế khác nhau. Giai đoạn thứ hai, màng GTO được lắng đọng ở 400 °C sau đó được ủ trong môi trường Ar theo nhiệt độ đế.

Độ dày màng được xác định bằng phần mềm Scout thông qua phổ truyền qua UV-VIS. Các màng có bề dày khoảng 400 nm. Cấu trúc tinh thể của màng được xác định bằng phương pháp nhiễu xạ tia X trên máy D8–ADVANCE. Phổ truyền qua trong vùng từ 200–1100 nm được đo bằng máy UV-Vis Jasco V-530. Tính chất điện được xác định bằng phép đo Hall Van der pauw trên máy đo HMS3000. Đặc trưng I-V của tiếp xúc dị thể p-GTO/n-Si được khảo sát bằng máy Keithley 2400.

Lỗ trống: ○ Điện tử • Hình 1. Biểu diễn sự thay thế Ga³⁺ vào vị trí Sn⁴⁺ và sự hình thành khuyết

KẾT QUẢ VÀ THẢO LUẬN

Khảo sát tính chất điện của màng GTO theo nhiệt độ

Theo giản đồ năng lượng Ellingham [15], năng lượng tự do Gibbs ở 300 K hình thành Ga_2O_3 (-158 Kcal) âm hơn so với SnO_2 (-125 Kcal), nên khả năng Ga^{3+} thay thế Sn^{4+} rất lớn, vì thế cấp nhiệt cho đế trong quá trình lắng đọng cần được khảo sát với mong muốn tìm được lượng Ga chèn vào trong mạng SnO_2 nhiều nhất có thể.

Bảng 1 cho thấy màng SnO_2 luôn có tính chất dẫn điện loại n khi được lắng đọng theo nhiệt độ đế. Trong khi đó màng GTO chỉ có tính chất dẫn điện loại n ở nhiệt độ đế dưới 400 °C và trở nên không dẫn điện ở 400 °C (nhiệt độ này tạm gọi là nhiệt độ tới hạn). Điều này là do hiện tượng bù hạt tải dương của acceptor Ga^{3+} và hạt tải âm của các khuyết oxygen (V_o) lân cận được sinh ra từ sự thay thế Ga^{3+} ở vị trí Sn^{4+} (Hình 1),

vì oxygen ở vị trí lân cận V_o có độ âm điện lớn, đồng thời tương tác giữa V_o và Sn²⁺ giảm so với tương tác giữa cation Sn⁴⁺ và anion O²⁻ của mạng chủ, cho nên hai điện tử của V_o dễ dàng rời khỏi vị trí và bị bẫy bởi acceptor Ga³⁺, dẫn đến màng GTO có điện trở vô cùng lớn ở nhiệt độ đế 400 °C. Trên nhiệt độ tới hạn, tốc độ tái bay hơi của những nguyên tử bia hấp phụ trên đế lớn hơn tốc độ lắng đọng màng, nên màng không thể hình thành, đây chính là hạn chế của phương pháp chế tạo màng có nhiệt độ đế cao trong quá trình lắng đọng, vì thế đại đa số các công trình chọn giải pháp ủ màng sau khi chế tạo [4-10].

Bảng 1. Kết quả đo Hall của màng SnO₂ và màng GTO được làm từ bia chứa 15 % Ga₂O₃ được lắng đọng theo nhiệt độ đế

	Màng SnO ₂				Màng GTO			
T (°C)	ρ (Ω.cm)	$\mu (cm^2 V^{-1} s^{-1})$	n/p (cm ⁻³)	Loại hạt tải	ρ (Ω.cm)	$\mu (cm^2 V^{-1} s^{-1})$	n/p (cm ⁻³)	Loại hạt tải
tp	8				2,40	2,62	-1,0×10 ¹⁸	n
200	1,0	1,391	-4,5×10 ¹⁸	n	0,52	4,66	-2,6×10 ¹⁸	n
300	3,5	0.519	-3,4×10 ¹⁸	n	0,70	2,94	$-2,1 \times 10^{18}$	n
400	0,5	2.217	-5,2×10 ¹⁸	n	x			

Bảng 2. Kết quả đo Hall của màng SnO₂ và màng GTO được làm từ bia chứa 15 % Ga₂O₃ được lắng đọng ở 400 °C sau đó ủ ở 500 °C, 550 °C, 600 °C 1 giờ trong môi trường Ar

	Màng SnO ₂				Màng GTO			
T (°C)	ρ (Ω.cm)	$(cm^2V^{-1}s^{-1})$	n/p (cm ⁻³)	Loại hạt tải	ρ (Ω.cm)	$(cm^2V^{-1}s^{-1})$	n/p (cm ⁻³)	Loại hạt tải
500	19,5	1,78	-1,86×10 ¹⁷	n	40,9	3,82	3,69×10 ¹⁶	р
550	56,2	1,84	-6,05×10 ¹⁶	n	9,0	0,43	$1,60 \times 10^{18}$	р
600	7,06	1,91	-4,63×10 ¹⁷	n	3,3	3,01	-6,33×10 ¹⁷	n

Bảng 2 cho thấy màng SnO₂ có nồng độ hạt tải âm giảm dần do sự bù giữa các donor tự nhiên với lỗ trống của acceptor Sn³⁺ (pha Sn₂O₃) ở nhiệt độ ủ \leq 550 °C. Nồng độ hạt tải dương tăng theo nhiệt độ ủ, tương ứng với điện trở suất của màng GTO giảm và đạt điện trở suất (ρ) nhỏ nhất là 9 Ω.cm ở nhiệt độ ủ 550 °C, nồng độ lỗ trống của màng GTO tăng là do ngoài sự đóng góp của acceptor Ga^{3+} còn có acceptor Sn^{3+} . Tuy nhiên khi nhiệt độ ủ lớn hơn 550 °C, màng GTO lại có tính chất dẫn điện loại n là do tốc độ sinh hạt tải âm tự nhiên lớn hơn tốc độ sinh hạt tải dương, điều này hoàn toàn tương ứng với nồng độ điện tử của màng SnO₂ tăng lên ở nhiệt độ này.

Thời gian (giờ)	ρ (Ω.cm)	μ (cm ² V ⁻¹ s ⁻¹)	$n/p (cm^{-3})$	Loại hạt tải
1	9,0	0,43	1,6×10 ¹⁸	р
2	0,63	3,01	3,3×10 ¹⁸	р

Bảng 3. Kết quả đo Hall của màng GTO được lắng đọng ở 400 °C sau đó ủ lên 550 °C ủ trong 1 giờ và 2 giờ trong môi trường khí Ar

Để tìm điều kiện tối ưu theo thời gian ủ ở nhiệt độ 550 °C, màng GTO được ủ trong 2 giờ. Kết quả cho thấy điện trở suất giảm từ 9,0 Ω .cm xuống còn 0,63 Ω .cm (Bảng 3). Điện trở suất giảm là do sự đóng góp đồng thời của acceptor Ga³⁺, Sn³⁺ và độ linh động của lỗ trống tăng.

Ngoài nhiệt độ ủ tối ưu tìm được, cần kiểm chứng kết quả đạt được là do cơ chế bù giữa hai loại hạt tải hay do nhiệt độ lắng đọng, màng GTO cần được khảo sát theo nhiệt độ lắng đọng từ nhiệt độ phòng đến nhiệt độ tới hạn (400 °C), sau đó ủ ở 550 °C trong 1 giờ.

Bảng 4. Kết quả đo Hall của màng GTO được lắng đọng ở tp, 300 °C, 400 °C và 450 °C sau đó ủ lên 550 °C 1 giờ trong môi trường khí Ar

Tên mẫu	ρ (Ω.cm)	$\mu (cm^2 V^{-1} s^{-1})$	n/p (cm ⁻³)	Loại hạt tải
GTO tp	∞			
GTO 300 °C	140	2,38	$1,87 \times 10^{16}$	р
GTO 400 °C	9,0	0,43	$1,60 \times 10^{18}$	р

Bảng 4 cho thấy màng GTO có nồng độ lỗ trống cao nhất ở nhiệt độ lắng đọng tới hạn, điều này là do sự chèn của Ga^{3+} vào vị trí Sn^{4+} tăng theo nhiệt độ lắng đọng, nên ở nhiệt độ ủ như nhau, cơ chế lấp khuyết như nhau, số lỗ trống cao nhất đối với màng được lắng đọng ở nhiệt độ tới hạn là hoàn toàn hợp lý; đặc biệt màng được lắng đọng ở nhiệt độ phòng có điện trở suất vô cùng, chứng minh được Ga^{3+} có thể chưa chèn vào vị trí Sn^{4+} , nên sau khi cơ chế bù hạt tải xảy ra, thì màng không có hạt tải đại đa số.

Để xác định hơn nữa về tính chất điện loại p của màng GTO, màng được lắng đọng trên đế n-Si với điều kiện tối ưu đã được khảo sát ở trên. Đặc trưng I-V của tiếp xúc dị thể p-GTO/n-Si được trình bày trong Hình 2A.

Từ đường cong ở Hình 2A cho tỷ số dòng chỉnh lưu giữa phần thuận và phần nghịch ở thế 5 V là 158, thế mở là 1,78 V và dòng rò nghịch là 3,8.10⁻⁵ A ở thế -5 V. Đặc trưng chỉnh lưu này chứng minh có sự hình thành tiếp giáp p-GTO/n-Si. Mô tả toán học của dòng qua tiếp giáp p-n được cung cấp bởi phương trình diode Shockley $I=I_0exp(qV/nKT-1)$, trong đó n là hệ số lý tưởng được xác định từ đồ thị $\log(I/I_0)$ -V ở Hình 2B. Kết quả cho thấy đặc trưng ba vùng tuyến tính khác nhau phụ thuộc vào n: vùng 1 (0,7-2,5 V, n= 3,4) là vùng đặc trưng chỉnh lưu không hoàn toàn lý tưởng do ngoài dòng giới hạn bởi điện tích không gian còn có tồn tại các bẫy điện tử trong vùng nghèo. Vùng 2 (2,5-4,5 V, n= 2,6) là vùng đặc trưng chỉnh lưu của tiếp giáp p-n gần lý tưởng do những bẫy trong vùng nghèo tiệm cận đến giới hạn lấp đầy. Vùng 3 (4,5–10 V, n= 2,0) là vùng đặc trưng của điện trở series của thiết bị do hạt tải đa số khuếch tán qua tiếp giáp từ lớp n sang lớp p.

Hình 2. Đặc trưng I-V của màng p-GTO/n-Si trên A) hệ I-V và B) hệ log(I/Io)-V

Khảo sát cấu trúc tinh thể của màng GTO theo nhiệt độ

Hình 3. Phổ nhiễu xạ tia X của màng A) SnO₂ B) GTO được lắng đọng theo nhiệt độ đế

Hình 3A và 3B biểu diễn ảnh nhiễu xạ tia X của màng SnO_2 và GTO được lắng đọng theo nhiệt độ đế. Kết quả cho thấy màng SnO_2 vô định hình ở nhiệt độ phòng (tp) và tinh thể ở nhiệt độ đế 200 °C với cấu trúc tứ giác rutile của SnO_2 (JCPDS No. 41-14445) bao gồm mặt mạng SnO_2 (002) và (111), đặc biệt màng tinh thể cao ở nhiệt độ đế 400 °C với hai mặt mạng SnO_2 (110) và (211), trong đó mặt (110) phát triển mạnh là do số lượng ion Sn^{4+} tăng lên bởi lượng ion Sn^{2+} bị oxy hóa thành Sn⁴⁺. Mặt (110) được gọi là mặt oxy hóa như công trình [20] đã đề cập. Trong khi đó, màng GTO tinh thể ở nhiệt độ đế 300 °C, với mặt mạng (101) chiếm ưu thế, sự thay đổi mặt (110) thành mặt (101) do sự thay thế của tạp Ga³⁺ vào vị trí Sn⁴⁺ tương tự sự thay thế Sn⁴⁺ bởi Sn²⁺ được giải thích ở công trình [20]. Sự thay thế Ga³⁺ vào vị trí Sn⁴⁺ rõ ràng hơn khi nhiệt độ đế cao hơn 300 °C, thể hiện qua mặt (101) có cường độ nhiễu xạ cao hơn.

Hình 4. Phổ nhiễu xạ tia X của màng A) SnO₂, B) GTO được lắng đọng ở 400°C sau đó ủ theo nhiệt độ

Hình 5. Phổ nhiễu xạ tia X của màng GTO được lắng đọng ở 400 °C sau đó ủ ở 555 °C trong 1 giờ và 2 giờ

Hình 4A và 4B trình bày cấu trúc tinh thể của màng SnO_2 và màng GTO được lắng đọng ở nhiệt độ tới hạn, rồi ủ lên các nhiệt độ cao hơn. Kết quả cho thấy màng SnO_2 có cấu trúc tứ giác rutile của SnO_2 (JCPDS No. 41-14445), với hướng phát triển theo thứ tự ru tiên là (110) và (211), các mặt này tăng dần theo nhiệt độ ủ do số lượng ion Sn^{2+} bị oxy hóa thành Sn^{4+} tăng, và khi nhiệt độ ủ đạt 550 °C, mặt mạng Sn_2O_3 (231) xuất hiện là do sự phân ly của SnO_2 . Trong khi đó màng GTO có mặt mạng (101) chiếm ru thế ở tất cả các nhiệt độ ủ, đồng thời pha Sn_2O_3 xuất hiện với mặt mạng (021) ở nhiệt độ ủ 500 °C và (030) ở nhiệt độ ủ 550 °C. Điều này có thể giải thích rằng khi

Trang 142

Hình 6. Phổ nhiễu xạ tia X của màng GTO được lắng đọng ở tp, 300 °C, 400 °C sau đó ủ lên 550 °C 1 giờ trong môi trường khí Ar

nhiệt độ ủ tăng từ 500 °C lên 550 °C, Ga^{3+} chèn vào mạng SnO_2 đáng kể, cho nên cường độ đỉnh SnO_2 (101) phát triển mạnh, đồng thời năng lượng tỏa ra làm phân ly SnO_2 thành Sn_2O_3 , năng lượng này đóng góp vào sự chuyển từ mặt Sn_2O_3 (021) thành mặt Sn_2O_3 (030). Năng lượng giải phóng này cũng góp phần làm oxy hóa Sn_2O_3 hoàn toàn thành SnO_2 , làm cho số lỗ trống tự nhiên Sn^{3+} biến mất, đồng thời khuyết oxygen dương $V_0^{\bullet\bullet}$ xuất hiện nhiều bù với lỗ trống có được từ acceptor Ga^{3+} ở nhiệt độ ủ 600 °C.

Hình 5 biểu diễn ảnh nhiễu xạ tia X của màng GTO được lắng đọng ở nhiệt độ tới hạn, sau đó ủ ở 550 °C trong 1 và 2 giờ. Kết quả cho

thấy màng GTO được ủ trong 2 giờ tinh thể hơn so với màng ủ trong 1 giờ, điều này thể hiện qua cường độ nhiễu xạ của mặt SnO_2 (101), Sn_2O_3 (030) của màng được ủ trong 2 giờ tăng chút ít so với màng được ủ trong 1 giờ.

Hình 6 biểu diễn phổ nhiễu xạ tia X của màng GTO được lắng đọng theo nhiệt độ từ t_p đến 400 °C, sau đó màng được ủ ở cùng nhiệt độ 550 °C trong 1 giờ, kết quả cho thấy cường độ nhiễu xạ các đỉnh SnO₂ (101) tăng theo nhiệt độ lắng đọng, đó là do Ga³⁺ chèn vào vị trí nút mạng Sn⁴⁺ của màng GTO tăng. Như vậy nồng độ hạt tải dương tăng là do sự thay thế của Ga³⁺ vào vị trí Sn⁴⁺ trong quá trình lắng đọng lẫn quá trình ủ. Tuy nhiên, màng được lắng đọng ở nhiệt độ phòng có cấu trúc tinh thể kém, vì Ga³⁺ ngoài nút mạng SnO₂ hình thành nên những đám Ga₂O₃ ở dạng vô định hình, xen lẫn với pha SnO₂.

Khảo sát tính chất quang của màng GTO theo nhiệt độ

Hình 7A và 7B biểu diễn phổ truyền qua trong vùng bước sóng 200-1100 nm của màng SnO₂ và GTO được lắng đọng theo nhiệt độ đế trong khí Ar. Kết quả cho thấy ở nhiệt độ phòng, bờ hấp thu dịch về phía bước sóng dài, điều đó chứng tỏ mức acceptor Sn2+ là tâm sâu nên hấp thu một phần ánh sáng khả kiến có bước sóng nhỏ hơn 450 nm như đã đề cập trong công trình [18, 19]. Trong khi đó màng GTO có có bờ hấp thu dịch về bước sóng ngắn điều này là do Ga3+ chèn vào vị trí nút mạng Sn4+, làm giải phóng năng lượng, cung cấp cho acceptor Sn²⁺ và vì thế nó chuyển thành Sn4+. Khi nhiệt độ đế trên 200 °C, pha SnO nhận đủ năng lượng và chuyển dần thành SnO_2 vì thế bờ hấp thụ dịch về vùng bước sóng ngắn. Trong khi đó hiện tượng dịch bờ hấp thu không xảy ra ở màng GTO, chỉ có độ truyền qua của màng tăng lên do sự đóng góp của năng lượng nhiệt, khẳng định pha SnO chuyển hoàn toàn thành SnO₂, và vì thế bờ hấp thu thẳng đứng.

Hình 7. Phổ truyền qua của màng A) SnO₂ và B) GTO được lắng đọng theo nhiệt độ đế

Hình 8A và 8B, biểu diễn phổ truyền qua trong vùng bước sóng 200–1100 nm của màng SnO₂ và màng GTO được lắng đọng ở 400 °C sau đó được ủ theo nhiệt độ trong khí Ar. Kết quả cho thấy độ truyền qua của màng SnO₂ ủ ở các nhiệt độ khác nhau gần xấp xỉ nhau và trên 80 % Trong khi đó, độ truyền qua của màng GTO trên 80 % ở nhiệt độ ủ 500 °C, nhưng độ truyền qua của màng giảm khi nhiệt độ ủ lớn hơn 500 °C, đó là do bậc tinh thể của màng tăng phù hợp với cấu trúc tinh thể của màng được trình bày ở mục Hình 4B.

Hình 8. Phổ truyền qua của màng A) SnO2 và B) GTO được lắng đọng ở 400 °C sau đó ủ 1 giờ theo nhiệt độ trong khí Ar

Hình 9 biểu diễn phổ truyền qua của màng GTO được lắng đọng ở 400 °C sau đó ủ lên 550 °C trong 1 giờ và 2 giờ trong môi trường khí Ar, cho thấy độ truyền qua của màng GTO được ủ trong 2 giờ thấp hơn màng được ủ trong 1 giờ, điều này hoàn toàn phù hợp với sự phát triển tinh thể của màng như được trình bày trong Hình 4A.

Hình 10 biểu diễn phổ truyền qua của màng GTO được lắng đọng ở các nhiệt độ, rồi ủ ở 550

Hình 9. Phổ truyền qua của màng GTO được lắng đọng ở 400 °C sau đó ủ 550 °C trong 1 giờ và 2 giờ

KÉT LUẬN

Bài báo đã chỉ ra ảnh hưởng của nhiệt độ đến tính chất quang điện và cấu trúc của màng GTO, điện trở màng dẫn điện vô cùng lớn ở nhiệt độ đế 400 °C và dẫn điện loại n ở nhiệt độ đế dưới 400 °C. Màng GTO đạt được tính chất điện loại p tốt nhất khi được lắng đọng ở 400 °C và ủ ở nhiệt độ tối ưu 550 °C trong hai giờ với điện trở suất,

Trang 144

°C trong 1 giờ. Kết quả cho thấy độ truyền qua của màng giảm dần theo độ tinh thể của màng tăng, và có giá trị thấp nhất ở nhiệt độ lắng đọng 400 °C tương ứng với màng tinh thể cao nhất như đã đề cập trong Hình 6. Kết quả này cho thấy độ tinh thể của màng không chỉ phụ thuộc vào nhiệt độ ủ sau cùng mà còn phụ thuộc vào nhiệt độ lắng đọng.

Hình 10. Phổ truyền qua của màng GTO được lắng đọng ở tp, 300 °C và 400 °C sau đó ủ lên 550 °C 1 giờ trong môi trường khí Ar

nồng độ lỗ trống và động linh động của hạt tải tương ứng là 0,63 Ω.cm, $3,3.10^{18}$ cm⁻³, 3,01 cm²V⁻¹s⁻¹. Màng GTO được tạo đều có cấu trúc đa tinh thể rutile, định hướng tốt theo phương (101) bắt đầu từ 300 °C. Độ truyền qua của màng trong vùng khả kiến 80 %, kết quả này đáp ứng được tiêu chuẩn của màng dẫn điện trong suốt. Đặc trưng I-V của màng GTO được chế tạo ở

điều kiện tối ưu trên đế loại n Sillic cho đặc trưng chỉnh lưu với hệ số lý tưởng n=2,6 và thế mở là $V_{on} = 1,78 \text{ V}.$

Lời cảm ơn: Nghiên cứu này được tài trợ bởi Đại học Quốc gia Thành phố Hồ Chí Minh trong khuôn khổ đề tài mã số C2014-18-27.

Fabricating and investigating the influence of the temperature on electrical and optical properties of the p-type SnO₂:Ga (GTO) thin films prepared by DC magnetron sputtering

- Dang Huu Phuc
- Pham Van Nhan
- Le Van Hieu
- Le Tran
 - University of Science, VNU-HCM

ABSTRACT

Transparent Ga-doped tin oxide (GTO) thin films were fabricated on quartz glasses from $(SnO_2 + Ga_2O_3)$ mixture ceramic target by direct current (DC) magnetron sputtering in Ar gas at the pressure of 4.10^{-3} torr. X ray diffraction (XRD), Hall - effect and UV-vis spectra measurements were performed to characterize the deposited films. Films were deposited directly with different temperatures in order to investigate the influence of temperature on their electrical and optical propertises. After that GTO films were deposited at 400 °C and then were annealed in Ar gas at different temperature in order to eliminate acceptor and donor compensation. Deposited films showed p-type electrical property, polycrystalline tetragonal rutile structure and their average transmittance above 80 % in visible light range at the optimum annealing temperature of 550 °C. In addition, ptype conductivity was also confirm by the nonlinear characteristics of a p-type GTO/n Si. The best electrical properties of film were obtained on 15 % wt Ga₂O₃-doped SnO₂ target with its resistivity, hole concentration and Hall mobility were 0,63 Ω cm, 3,3.10¹⁸ cm⁻³ and 3,01 cm²V⁻¹s⁻¹, respectively.

Keyword: p-type transparent conducting oxide, Ga-doped SnO₂ thin film, DC magnetron sputtering, X-ray diffraction, photoluminescence

TÀI LIỆU THAM KHẢO

- [1]. F. Chen, N. Li, Q. Shen, C. Wang, L. Zhang, Fabrication of transparent conducting ATO films using the ATO sintered targets by pulsed Laser deposition, *Solar Energy Materials & Solar Cells*, 105, 153–158 (2012).
- [2]. Y. Muto, S. Nakatomi, N. Oka, Y. Iwabuchi, H. Kotsubo, Y. Shigesato, Amorphous structure and electrical

performance of low temperature annealed amorphous indium zinc oxide transparent thin film transistors, *Thin Solid Films*, 520, 10, 3746–3750 (2012).

[3]. Z. Remes, M. Vanecek, H.M. Yates, P. Evans, D.W. Sheel, Optical properties of SnO₂:F films deposited by atmospheric pressure CVD, *Thin Solid Films*, 517, 23, 6287–6289 (2009).

- [4]. Z. Ji, Z. He, Y. Song, K.Liu, Z. Ye, Fabrication and characterization of indium doped p-type SnO₂ thin films, *Journal of Crystal Growth* 259, 282–285 (2003).
- [5]. K.Y. Park, G.W. Kim, Y.J. Seo, S.N. Heo, H.J. Ko, S.H. Lee, T.K. Song, B.H. Koo, Effect of annealing temperature on properties of p-type conducting Al/SnO₂/Al multilayer thin films deposited by sputtering, *Journal of Ceramic Processing Research*, 13, 2, 385–389 (2012).
- [6]. J.M. Ni, X.J. Zhao, J. Zhao, Structural, Electrical and optical properties of *p*-type transparent conducting SnO₂:Zn film, *Journal Inorg Organomet Polym*, 22–21, 26 (2012).
- [7]. S.S. Pan, S. Wang, Y.X. Zhang, Y.Y. Luo, F.Y. Kong, S.C. Xu, J.M. Xu, G.H. Li, ptype conduction in nitrogen-doped SnO₂ films grown by thermal processing of tin nitride films, *Appl Phys A*, 109, 267, 271 (2012).
- [8]. F. Finanda, Damisih, H.C. Ma, H.Y. Lee, Characteristics of p-type gallium tin oxide (GTO) thin films prepared by RF magnetron sputtering, *Journal of Ceramic Processing Research*, 13, 2, 181–185 (2012).
- [9]. Y. Huang, Z. Ji, C. Chen, Preparation and characterization of p-type transparent conducting tin-gallium oxide films, *Applied Surface Science*, 253, 4819–4822 (2007).
- [10]. T. Yang, X. Qin, H. Wang, Q. Jia, R. Yu, B. Wang, J. Wang, K. Ibrahim, X. Jiang, Q. He, Preparation and application in p-n homojunction diode of p-type transparent conducting Ga-doped SnO₂ thin films, *Thin Solid Films*, 518, 5542–5545 (2010).
- [11]. C.Y. Tsay, S.C. Liang, Fabrication of p-type conductivity in SnO₂ thin films through Ga doping, *Journal of Alloys and Compounds*, 622, 644–650 (2015).
- [12]. S.N. Vidhya, O.N. Balasundaram, M. Chandramohan, Structural and optical

investigations of gallium doped tin oxide thin films prepared by spray pyrolysis, *Journal of Saudi Chemical Society*, 19, 293–296 (2015).

- [13]. S. Pan, G. Li, Recent Progress in p-Type Doping and optical properties of SnO₂ nanostructures for optoelectronic device applications, *Recent Patents on Nanotechnology*, 5, 138–161 (2011).
- [14]. Q. Mao, Z. Ji, L. Zhao, Mobility enhancement of p-type SnO₂ by In–Ga codoping, *Phys. Status Solidi B* .247, 2, 299– 302 (2010).
- [15]. J. Russell, R. Cohn, *Ellingham Diagram*, Book on Demand Ltd (2012).
- [16]. S.S. Pan, G.H. Li, L.B. Wang, Y.D. Shen, Y. Wang, Atomic nitrogen doping and ptype conduction in SnO₂, *Applied Physics letter*, 95, 222112 (2009).
- [17]. J. Ni, X. Zhao, X. Zheng, J. Zhao, B. Liu, Electrical, structural, photoluminescence and optical properties of p-type conducting, antimony-doped SnO₂ thin films, *Acta Materialia*, 57, 278–285 (2009).
- [18]. W. Guo, L. Fu,Y. Zhang, K. Zhang, L.Y. Liang, Z.M. Liu, H.T. Cao, X.Q. Pan, Microstructure, optical, and electrical properties of p-type SnO thin films, *Appl. Phys. Lett*, 96, 042113 (2010)
- [19]. P.C. Hsu, W.C. Chen, Y.T. Tsai, Y.C. Kung, C.H. Chang, C.J. Hsu, C.C. Wu, H.H. Hsieh, Fabrication of p-type SnO thinfilm transistors using sputtering and practical metal electrodes, *Japanese Journal* of Applied Physics, 52 (2013).
- [20]. J. Montero, C. Guill'en, C.G. Granqvist, J. Herrero, G.A. Niklasson, Preferential Orientation and surface oxidation control in reactively sputter deposited nanocrystalline SnO₂:Sb films: Electrochemical and optical results, ECS Journal of Solid State Science and Technology, 151-153 (2014).

Trang 146