Asymptotic Farkas lemmas for convex systems

- Nguyen Dinh
 University International, VNU – HCM
- Tran Hong Mo
 Tien Giang University, Tien Giang

(Received on June 5th 2015, accepted on November 21st 2016)

Abstract

In this paper we establish characterizations of the containment of the set \(\{ x \in X : x \in C, g(x) \in -K \} \subseteq \{ x \in X : f(x) \geq 0 \} \), where \(C \) is a closed convex subset of a locally convex Hausdorff topological vector space, \(X, K \) is a closed convex cone in another locally convex Hausdorff topological vector space and \(g : X \rightarrow Y \) is a \(K \)-convex mapping, in a reverse convex set, define by the proper, lower semi-continuous, convex function. Here, no constraint qualification condition or qualification condition are assumed. The characterizations are often called asymptotic Farkas-type results. The second part of the paper was devoted to variant Asymptotic Farkas-type results where the mapping is a convex mapping with respect to an extended sublinear function. It is also shown that under some closedness conditions, these asymptotic Farkas lemmas go back to non-asymptotic Farkas lemmas or stable Farkas lemmas established recently in the literature. The results can be used to study the optimization

Keywords: Farkas lemma, sequential Farkas lemma, limit inferior, limit superior

Introduction and Preliminaries

Farkas-type results have been used as one of the main tools in the theory of optimization [8]. Typical Farkas lemma for cone-convex systems characterizes the containment of the set where is a closed convex subset of a locally convex Hausdorff topological vector space (briefly, lcHtvs), is a closed convex cone in another lcHtvs and is a -convex mapping, in a reverse convex set, define by the proper, lower semi-continuous, convex function. If the characterization holds under some constraint qualification condition or qualification condition then it is called non-asymptotic Farkas-type result (see [6], [10-12]). Otherwise (i.e., without any qualification condition), such characterizations often hold in the limit forms and they are called asymptotic Farkas-type results (see [7, 5, 9, 13] and references therein). In this paper, we mainly established several forms of asymptotic Farkas-type results for convex systems in the two means: systems convex with respect to a convex cone (called \(K \)-convex systems) and systems convex w.r.t. an extended sublinear function \(g \) (called \(S \)-convex systems). The results can be used to establish the optimality conditions and duality for optimization problems where constraint qualification conditions failed, such as classes of semidefinite programs, or scalarized multi-objective programs, scalarized vector optimization problems. We shone also that under some closedness conditions, these asymptotic Farkas lemmas came back to non-asymptotic Farkas lemmas or stable Farkas lemmas established recently in the literature.

Let \(X \) and \(Y \) be lcHtvs, with their topological dual spaces \(X' \) and \(Y' \), respectively. The only topology we consider on \(X' \), \(Y' \) is the weak* -topology. For a set \(A \subseteq X' \), the closure of \(A \) w.r.t.
the weak "-topology is denoted by c_1A. The indicator function of A is denoted by i_A, i.e., $i_A(x) = 0$ if $x \in A$, $i_A(x) = +\infty$ if $x \not\in A$. Let $f : X \to \mathbb{R} \cup \{+\infty\}$. The effective domain of f is the set $\text{dom} f := \{ x \in X : f(x) < +\infty \}$. The function f is proper if $\text{dom} f \neq \emptyset$. The set of all proper, lower semi-continuous (lsc in short) and convex functions on X will be denoted by $\Gamma(X)$.

The epigraph of f is

$$\text{epi} f := \{ (x, \alpha) \in X \times \mathbb{R} : f(x) \leq \alpha \}$$

The Legendre-Fenchel conjugate of f is the function $f^* : X^* \to \mathbb{R} \cup \{+\infty\}$ defined by

$$f^*(x^*) = \sup_{x \in X} \left\{ (x^*, x) - f(x) \right\}, \forall x^* \in X^*.$$

It is clear that for any $x^* \in X^*$ and $x \in X$, the Young-Fenchel inequality always holds:

$$f^*(x^*) \geq (x^*, x) - f(x) = f^*(x^*, x) - f^*(x).$$

Moreover, for any $\beta \in \mathbb{R}$ one has $(f - \beta)(x) = f(x) + \beta$ for all $x \in X$.

Now let K be a closed convex cone in Y and let \leq_K be the partial order on Y generated by K, i.e., $y_1 \leq_K y_2$ if and only if $y_2 - y_1 \in K$.

We add to Y a greatest element with respect to \leq_K, denoted by αK, which does not belong to Y, and let $Y^* = Y \cup \{\alpha K\}$.

Then one has $y \leq_K \alpha K$ for every $y \in Y^*$. We assume by convention: $y + \alpha K = \alpha K + y = \alpha K$, for all $y \in Y^*$, and $\alpha \leq_K \alpha K$ if $\alpha \geq 0$. The dual cone of K, denoted by K^*, is defined by $K^* := \{ y^* \in Y^* : (y^*, y) \geq 0, \forall y \in K \}$. A mapping $h : X \to Y^*$ is called K-convex if

$$x_0, x_1, x_2 \in X, \mu_1, \mu_2 > 0, \mu_1 + \mu_2 = 1 \Rightarrow h(\mu_1 x_1 + \mu_2 x_2) \leq \mu_1 h(x_1) + \mu_2 h(x_2).$$

where "\leq_K" is the binary relation (generated by K) extended to Y^* by setting $y \leq_K \alpha K$ for all $y \in Y^*$. The domain of h, denoted by $\text{dom} h$, is defined to be the set $\text{dom} h := \{ x \in X : h(x) \in Y^* \}$.

The K-epigraph of h is the set $\text{epi}_K h := \{ (x, y) \in X \times Y : y \in h(x) + K \}$. Space, then, $h^*(-K)$ is closed (see [6]). It is worth observing that if h is K-convex, then $h^*(-K)$ is convex. Moreover, for any $y \in Y^*$ and $g : X \to Y^*$, we define the composite function $y^* g : X \to \mathbb{R} \cup \{+\infty\}$ as follows

$$(y^* g)(x) = \begin{cases} (y^*, g(x)), & \text{if } x \in \text{dom} g, \\ +\infty, & \text{else.} \end{cases}$$

The function $S : Y \to \mathbb{R} \cup \{+\infty\}$ is called (extended) sublinear if

$$S(y + y') \leq S(y) + S(y'),$$

and $S(\lambda y) = \lambda S(y)$, $\forall y, y' \in Y$, $\forall \lambda > 0$.

By convention, we set $S(0) = 0$ (this convention is appropriate to the assumption that S is lsc). Such a function S can be extended to Y^* by setting $S(\alpha K) = +\infty$. An extended sublinear function $S : Y \to \mathbb{R} \cup \{+\infty\}$ allows us to introduce in Y^* a binary relation which is reflexive and transitive:

$$y_1 \leq_K y_2 \text{ if } y_1 \leq_K y_2,$$

where $K = \{ y \in Y : S(-y) \leq 0 \}$

and $y \leq_K \alpha K$ for all $y \in Y^*$. We consider also the extension of S as $S : Y^* \to \mathbb{R} \cup \{+\infty\}$ By setting $S(\alpha K) = +\infty$.

Given an extended sublinear function $S : Y \to \mathbb{R} \cup \{+\infty\}$, we adapt the notion S-convex

(i.e., convex with respect to a sublinear function) in [6] which generalized the one in [16].

It is clear that h is K-convex if and only if $\text{epi}_K h$ is convex. In addition, $h : X \to Y^*$ is said to be K-epi closed if $\text{epi}_K h$ is a closed set in the product A mapping $h : X \to Y^*$ is said to be S-convex if for all $x_0, x_1 \in X, \mu_1, \mu_2 > 0, \mu_1 + \mu_2 = 1$, one has

$$h(\mu_1 x_1 + \mu_2 x_2) \leq \mu_1 h(x_1) + \mu_2 h(x_2).$$

It is worth observing that, as mentioned in [15, Remark 1.10], "S-convex means different things under different circumstances" such as, when $Y = \mathbb{R}$, if $S(y) := |y|$, $S(y) := y^+$, $S(y) := y^-$ or $S(y) = 0$, respectively, then "S-convex means
"affine", "convex", "concave" or "arbitrary", respectively.

Moreover, the equalities hold whenever one of the nets is convergent.

It is clear that if \(h \) is \(S \)-convex then \(h \) is \(K \)-convex with \(K := \{ y \in Y : S(-y) \leq 0 \} \). Conversely, if \(h \) is \(K \)-convex with some convex cone \(K \) then \(h \) is \(S \)-convex with \(S = i_K \) (see [6]).

Definition 1.1 [2, p.5] [1, p.32], [14, p.217]
Let \((a)_{\alpha\in I} \) be a net of extended real numbers defined on a directed set \((1,\sup)\) define limit inferior of the net \((a)_{\alpha\in I} \) as follows
\[
\liminf_{\alpha\in I} a := \liminf_{\alpha\in I} a = \sup_{\alpha\in I} \inf_{\beta\in I} a_
\]
Similarly, limit superior of the net \((a)_{\alpha\in I} \) is defined by
\[
\limsup_{\alpha\in I} a := \limsup_{\alpha\in I} a = \inf_{\alpha\in I} \sup_{\beta\in I} a_
\]
We say that \((a)_{\alpha\in I} \) converges to a \(a \in \mathbb{R} \) denoted by \(\lim a = a \) or \(a \to a \), if for any \(\varepsilon > 0 \), there exists \(\alpha_{\varepsilon} \) \(\in I \) such that \(|a - \alpha| < \varepsilon \) for all \(\alpha \) \(\geq \alpha_{\varepsilon} \).

The following properties were given in [2, p.9] and [14, p.221].

Lemma 1.1 Let \((a)_{\alpha\in I} \) and \((b)_{\alpha\in I} \) be nets of extended real numbers. Then the following statements hold:

(i) \(\limsup_{\alpha\in I} (-a) = -\liminf_{\alpha\in I} a \) and \(\limsup_{\alpha\in I} a \geq \liminf_{\alpha\in I} a \).

(ii) \(\lim_{\alpha\in I} a = a \in I \) if and only if \(\lim_{\alpha\in I} a = \limsup_{\alpha\in I} a = a \).

(iii) If \(a \leq b \) for all \(\alpha \in I \), then \(\liminf_{\alpha\in I} a \leq \liminf_{\alpha\in I} b \) and \(\limsup_{\alpha\in I} a \leq \limsup_{\alpha\in I} b \),
\[
\liminf_{\alpha\in I} (a + b) \geq \liminf_{\alpha\in I} a + \liminf_{\alpha\in I} b,
\]
and \(\limsup_{\alpha\in I} (a + b) \leq \limsup_{\alpha\in I} a + \limsup_{\alpha\in I} b \),
provide that the right side of the inequalities are defined.

Approximate Farkas lemma for cone-convex systems

In this section we will establish one of the main results of this paper: the asymptotic version of Farkas lemma for convex systems, which holds without any qualification condition.

Let \(X, Y \) be a closed convex cone in \(Y \), \(C \) be a proper lsc and convex function. Let further \(g : X \to \mathbb{R} \) be a \(K \)-convex and \(K \)-epli closed mapping. Let \(A := C \cap g^{-1}(K) \) and assume that \((\text{dom } f) \cap A \neq \emptyset \).

Theorem 2.1 [Asymptotic Farkas lemma 1]
The following statements are equivalent:

(i) \(x \in C, g(x) \in -K \Rightarrow f(x) \geq 0 \),

(ii) there exist nets \((y_i)_{i \in I} \subset K^* \) and \((x_i, \varepsilon_i)_{i \in I} \) such that \(\varepsilon_i \geq f(x_i) + (y_i \cdot g)(x_i) + \frac{1}{i}, \forall i \in I \), \(x_i + x_i + x_i, \varepsilon_i \to (0, \varepsilon, 0), \)

(iii) there exist nets \((y_i)_{i \in I} \subset K^* \) and \((x_i, \varepsilon_i)_{i \in I} \subset X^* \times \mathbb{R} \) such that \(\varepsilon_i \geq (f + y_i \cdot g + i)(x_i), \forall i \in I \) and \(x_i, \varepsilon_i \to (0, \varepsilon, 0), \)

(iv) there exists a net \((y_i)_{i \in I} \subset K^* \) such that \(f(x) + \liminf_{i \in I} (y_i \cdot g)(x) \geq 0, \forall x \in C \).

Proof. \([i] \iff [ii] \) Assume that \((i)\) holds. Observe firstly that \(A \) is closed and convex. Secondly, \(i\) is equivalent to
\[
0 \geq (f + i_i)(0),
\]
or equivalently, \((0, \varepsilon, 0) \in \text{epi}(f + i_i). \)

Since we also have [4, p. 328]
\[
\text{epi}(f + i_i) = \overline{\text{conv}} \left(\text{epi} f' + \bigcup_{K^+} \text{epi}(\lambda g)^* + \text{epi} \lambda' \right),
\]
and so, \(i\) is equivalent to \((0, \varepsilon, 0) \in \overline{\text{conv}} \left(\text{epi} f' + \bigcup_{K^+} \text{epi}(\lambda g)^* + \text{epi} \lambda' \right), \)
and the equivalence between \(i\) and \(ii\) follows.
[(ii) ⇒ (iii)] Assume that (ii) holds, i.e., there exist nets \((\gamma_i')_{i\in I} \subset K^\ast\) and
\((x_i', y_i, x_i, \epsilon_i)_{i \in I} \subset X^\ast \times X \times X^\ast \times \mathbb{R}\) such that
\[\epsilon_i \geq f'(\gamma_i') + (y_i' \ast g + i\epsilon_i)(\gamma_i''), \forall i \in I, \quad (2.1) \]
and
\[(x_i' + x_i + x_i', \epsilon_i) \to (0, 0) \quad (2.2) \]
By the definition of the conjugate function, (2.1) implies that
\[\epsilon_i \geq (f + y_i' \ast g + i\epsilon_i')(\gamma_i''), \forall i \in I \]
and (2.2) becomes
\[(x_i' + x_i + x_i', \epsilon_i) \to (0, 0). \]

[(iii) ⇒ (iv)] Assume that (iii) holds, i.e., there exist nets \((\gamma_i', \epsilon_i)_{i \in I} \subset K^\ast\) and
\((x_i', \epsilon_i)_{i \in I} \subset X^\ast \times \mathbb{R}\) such that
\[\epsilon_i \geq (f + y_i' \ast g + i\epsilon_i')(\gamma_i''), \forall i \in I \]
and
\[(x_i', \epsilon_i) \to (0, 0). \]
Again by the definition of the conjugate function, one has
\[\epsilon_i \geq (f + y_i' \ast g + i\epsilon_i')(\gamma_i''), \forall \gamma_i' \in X \times \mathbb{R}, \forall i \in I, \]
or equivalently,
\[f(x) + (y_i' \ast g)(x) \geq (x_i', x_i, \epsilon_i), \forall x \in C, \forall i \in I, \]
(which still holds even in case \(x \notin \text{dom } f\) and \(x \in \text{dom } g\).

Taking limit in both sides of the last inequality, we get (iv).
[(iv) ⇒ (i)] Assume that (iv) holds, i.e., there exists a net \((\gamma_i')_{i \in I} \subset K^\ast\) such that
\[f(x) + \liminf_{i \to \infty} (y_i' \ast g)(x) \geq 0, \forall x \in C. \]
Observe that if \(x \in C\) such that \(g(x) \in -K\), then \((y_i' \ast g)(x) \leq 0\) for all \(i \in I\). Thus, for \(x \in C\) such that \(g(x) \in -K\), one gets
\[f(x) \geq f(x) + \liminf_{i \to \infty} (y_i' \ast g)(x) \geq 0. \]
The proof is complete.

Remark 2.1 The equivalence [(i) ⇔ (iv)] was established in [5] involved the space \(Y\) (instead of \(Y^\ast\)), under the assumption that \(y_i' \ast g \in \Gamma(X)\) for all \(y_i' \in K^\ast\), which is much stronger the S-epi closedness of \(g\) used in Theorem 2.1.
(vi) there exists $y^* \in K^*$ such that
\[f(x) + (y^* \circ g)(x) \geq 0, \quad \forall x \in C. \]
Then one has:
(a) (2.3) is equivalent to $[(i) \Leftrightarrow (v)]$,
(b) (2.4) is equivalent to $[(i) \Leftrightarrow (vi)]$.

Proof. As in the proof of Theorem 2.1, one has (i) is equivalent to $(0, x, 0) \in clD$.
Moreover, it is easy to check that (v) is equivalent to $(0, x, 0) \in clF$.
As shown in the proof of Theorem 2.1, (ii) is equivalent to $(0, x, 0) \in clF$. Therefore, one also gets (b). The proof is complete.

Corollary 2.2 [Stable Farkas lemma for cone-valued systems]
Consider the following conditions:
\[\text{epi} f^* + \bigcup_{y^* \in K^*} \text{epi}(y^* \circ g)^* + \text{epi} \eta^* \text{ is weak}^* \text{-closed in } X^* \times I. \]
(2.6)
Then we have
(c) (2.5) holds if and only if for any $x^* \in X^*$ and any $\beta \in \mathbb{R}$,
\[(x \in C, g(x) \in -K \Rightarrow f(x) - \left\langle x^*, x \right\rangle \geq \beta) \]
(c)
\[(\exists y^* \in K^*, x^* \in X^* \text{ and } x \in C \text{ such that } f^*(x^*) + (y^* \circ g)^*(x^* - x) \leq -\beta). \]
(d) (2.6) holds if and only if for any $x^* \in X^*$ and any $\beta \in \mathbb{R}$,
\[(x \in C, g(x) \in -K \Rightarrow f(x) - \left\langle x^*, x \right\rangle \geq \beta) \]
(c)
\[(\exists y^* \in K^*, f(x) - \left\langle x^*, x \right\rangle + (y^* \circ g)(x) \geq \beta, \forall x \in C. \]

Proof. The proof is similar to that of Theorem 2.1.

Remark 2.2 It is worth noting that (d) was given in [6]. Moreover, if we replace (2.5) by
\[\text{epi}(f + i_i^*) = \text{epi} f^* + \bigcup_{y^* \in K^*} \text{epi}(y^* \circ g)^* + \text{epi} \eta^*, \quad \text{and} \]
(2.6) by \[\text{epi}(f + i_i^*) = \bigcup_{y^* \in K^*} \text{epi}(f + y^* \circ g + i_i^*) \]
A := $C \cap g^*(-K)$, then the conclusion of Corollary 2.2 still holds, and the assumptions on the closedness and the convexity of C, f, and g can be removed.

Asymptotic Farkas lemma for sublinear-convex systems
Let X, Y be lHtvs, C be a nonempty closed convex subset of X, $S : Y \to \mathbb{R} \cup \{+\infty\}$ be an lsc sublinear function and $g : X \to Y^*$ be an S-convex mapping such that the set
\[\{(x, y, \lambda) \in X \times Y \times \mathbb{R} : S(g(x) -\lambda) \leq 0\} \]
(3.1)
is closed in the product space $X \times Y \times \mathbb{R}$. Let us consider $f : X \to \mathbb{R} \cup \{+\infty\}$ and $\psi : \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ be proper convex lsc functions.

We now establish an asymptotic Farkas lemma for systems that are convex w.r.t. the sublinear function $S : Y \to \mathbb{R} \cup \{+\infty\}$.

Theorem 3.1 [Asymptotic Farkas lemma 2]
Assume that the following condition holds:
\[(\text{dom } f) \cap \{x \in C : \exists \alpha \in \text{dom } \psi \text{ s.t. } S g(x) \leq \alpha \neq \emptyset \}. \]
Then the following statements are equivalent:
(a) $x \in C, \alpha \in \mathbb{R}$, $(S g)(x) \leq \alpha \Rightarrow f(x) + \psi(\alpha) \geq 0$
(b) there exist nets $(y_i^*, y_i)_{i \in I} \subset Y^* \times \mathbb{R}_+$ and $(x_i^*, x_i, \eta_i, \epsilon_i)_{i \in I} \subset X^* \times X^* \times \mathbb{R} \times \mathbb{R}$ such that $y_i^* \leq \gamma S$ on Y for all $i \in I$ such that
\[\epsilon_i \geq (f^*(x_i^*) + (y_i^* \circ g)^*(x_i^*) + i_i^* + i_i^* + \psi(\eta_i + \gamma_i), \quad \forall i \in I \]
and
\[(x_i^* + x^* \circ g, \eta_i, \epsilon_i) \to (0, x^*, 0, 0), \]
(c) there exist nets $(y_i^*, y_i)_{i \in I} \subset Y^* \times \mathbb{R}_+$ and $(x_i^*, \eta_i, \epsilon_i)_{i \in I} \subset X^* \times \mathbb{R} \times \mathbb{R}$ with $y_i^* \leq \gamma S$ on Y for all $i \in I$ such that
\[\epsilon_i \geq (f^* + y_i^* \circ g + i_i^* + \psi(\eta_i + \gamma_i), \quad \forall i \in I \]
and
\[(x_i^*, \eta_i, \epsilon_i) \to (0, x^*, 0, 0), \]
(3.3)
(3.4)
Proof. Let us set $\tilde{Y} = Y \times \mathbb{R}, \tilde{Y} = Y^* \times \mathbb{R}$, and set $\tilde{S} : \tilde{Y} \to \mathbb{R} \cup \{+\infty\}$ defined by $\tilde{S}(y, \lambda) = S(y) - \lambda$ for all $(y, \alpha) \in \tilde{Y}$ Then \tilde{C} is a nonempty closed convex subset of $X \times \mathbb{R}$, \tilde{S} is an lsc sublinear function. Let also $\tilde{X} = X \times \mathbb{R}$.
\(\tilde{g} = \tilde{F} \times \tilde{Y} \) and \(\tilde{f} : \tilde{R} \to \mathbb{R} \cup \{+\infty\} \) be mappings defined by
\[
\tilde{g}(x, \alpha) = (g(x), \alpha), \forall x \in \tilde{R}
\]
and \(\tilde{f}(x, \alpha) = f(x) + \psi(x), \forall (x, \alpha) \in \tilde{R} \).

[(a) \Rightarrow (b)] Assume that (a) holds. Since \(f, \psi \) are proper lsc, convex functions, so is \(\tilde{f} \). Moreover, \(\tilde{g} \) is \(\tilde{S} \)-convex as \(g \) is \(S \)-convex. Now let \(\tilde{R} \) be the closed convex cone defined by \(\tilde{R} = \{(y, \lambda) : \tilde{S}(y, \lambda) \leq 0\} \). Then, \(\tilde{g} \) is \(\tilde{R} \)-convex as well. The assumption (3.1) ensures that \(\tilde{g} \) is \(\tilde{R} \)-epi closed while (3.2) guarantees (dom \(\tilde{f} \) \(\cap \tilde{g}^{-1}(-\tilde{R}) \) is closed.

We now try to apply Theorem 2.1 with \(\tilde{X}, \tilde{Y}, \tilde{R}, \tilde{g}, \tilde{f} \), and \(\tilde{R} \) playing the roles of \(X, Y, C, g, f, \) and \(K \), respectively.

From (a) and the definition of \(\tilde{f}, \tilde{g}, \tilde{R}, \) we have \((x, \alpha) \in \tilde{R}, \tilde{g}(x, \alpha) = (g(x), \alpha) \in -\tilde{R} \Rightarrow \tilde{f}(x, \alpha) \geq 0,\)

which shows that (i) in Theorem 2.1 holds, and hence, there exist nets \((\tilde{x}_i, \tilde{\alpha}_i) \subseteq \tilde{R} \) and \((\tilde{x}_i, \tilde{\alpha}_i, \tilde{\beta}_i, \tilde{\delta}_i) \subseteq \tilde{R} \times \tilde{R} \times \tilde{R} \times \mathbb{R} \) such that
\[
\tilde{\varepsilon}_i \geq \tilde{f}(\tilde{x}_i, \tilde{\alpha}_i) + (\tilde{\alpha}_i, \tilde{\beta}_i, \tilde{\delta}_i, \tilde{\eta}_i) \quad \forall i \in I.
\]

(3.5)

and
\[
(\tilde{x}_i, \tilde{\alpha}_i, \tilde{\beta}_i, \tilde{\delta}_i) \to (0, 0). \]

(3.6)

Since \(\tilde{X} = X^* \times _1 \), there exist such \((x_i, x_i', x_i, \alpha_i, \beta_i, \delta_i) \subseteq X^* \times X^* \times X^* \times \mathbb{R} \) such that \((\tilde{x}_i, \tilde{\alpha}_i) = (x_i, \alpha_i) \), \((\tilde{x}_i, \tilde{\beta}_i) = (x_i, \beta_i) \), and \((\tilde{x}_i, \tilde{\delta}_i) = (x_i, \delta_i) \).

This and (3.6) imply that \(x_i + x_i' \to 0^* \) and \(\alpha_i + \beta_i + \delta_i \to 0\).

(3.7)

Moreover, since \((\tilde{x}_i, \tilde{\alpha}_i, \tilde{\beta}_i, \tilde{\delta}_i) \subseteq \tilde{R} \), by Lemma 3.5 in [6], there exists a net \((y_i', y_i) \subseteq \tilde{Y} \) such that
\[
\tilde{g}(y_i', -y_i) \gtrless 0 \quad \text{and} \quad y_i' \leq y_i \text{ on } Y \text{ for all } i \in I.
\]

By the definition of the conjugate function, for any \(i \in I \), one has (17, p.76)

\[
\tilde{f}(x_i', \alpha_i) = f(x_i', \psi(\alpha_i).
\]

(3.8)

\[
\tilde{f}(x_i', \alpha_i) = \sup_{x \in \tilde{X}, \alpha_i} \{x_i', \alpha_i + \alpha - (y_i', \alpha) \} = \sup_{x \in \tilde{X}, \alpha_i} \{x_i', \alpha_i + \alpha - (y_i', \alpha) \}
\]

(3.9)

and
\[
\tilde{f}(x_i', \alpha_i) = \sup_{x \in \tilde{X}, \alpha_i} \{x_i', \alpha_i + \alpha - (y_i', \alpha) \}
\]

(3.10)

Combining (3.5), (3.8), (3.9), and (3.10) we get

(3.11)

Thus (b) is satisfied.

[(b) \Rightarrow (c)] The same as the proof of [(ii) \Rightarrow (iii)] in Theorem 2.1.

[(c) \Rightarrow (a)] Assume that (c) holds, i.e., there exist nets
\[
(\tilde{y}_i', \tilde{y}_i) \subseteq \tilde{Y} \times \tilde{X}
\]

(3.12)

and \((\tilde{y}_i', \tilde{y}_i, \tilde{\eta}_i) \subseteq \tilde{X} \times \mathbb{R} \times \mathbb{R} \) with \(\tilde{y}_i' \leq \gamma_i \) on \(Y \) for all \(i \in I \) such that (3.3) and (3.4) hold. It follows from (3.3) that \(\tilde{\varepsilon}_i \geq (x_i, \lambda, (f + y_i, g)(\lambda) + (\tilde{\eta}_i + \gamma_i) \alpha - \psi(\alpha), \forall (x, \alpha) \subseteq C \times \mathbb{R} \), \(\forall i \in I \), or equivalently, \(f(x, \lambda, (y_i, g)(\lambda) \equiv (x_i', \lambda, -\psi(\alpha), \forall (x, \alpha) \subseteq C \times \mathbb{R} \), \(\forall i \in I \).
Since \(y_i' \leq \gamma S \) on \(Y \) for all \(i \in I \), if \(x \in C \) and \(\alpha \in i \) such that \((S \circ g)(x) \leq \alpha\), then \((y_i' \circ g)(x) \leq (S \circ g)(x) \leq \gamma \alpha \) for all \(i \in I \) (note that \(\gamma \geq 0 \) for all \(i \in I \)). So, for any \(x \in C \) and \(\alpha \in i \) with \((S \circ g)(x) \leq \alpha\), (3.11) gives
\[
f(x) + \psi(\alpha) + \gamma \alpha \geq (x', x) - \varepsilon_i + \eta \alpha + \gamma \alpha, \quad \forall i \in I.
\]
which means that if \(x \in C \) and \(\alpha \in i \) with \((S \circ g)(x) \leq \alpha\), one has
\[
f(x) + \psi(\alpha) \geq (x', x) - \varepsilon_i + \eta \alpha, \quad \forall i \in I.
\]

Passing to the limit both sides of the last inequality and taking the fact that (3.4) into account, we get (a). The proof is complete.

Theorem 3.2 [Asymptotic Farkas lemma] Assume that (3.2) holds. Then the following statements are equivalent:

(a) \(x \in C, \alpha \in i \), \((S \circ g)(x) \leq \alpha\) \(\Rightarrow \) \(f(x) + \psi(\alpha) \geq 0 \).

(d) there exists a net \((y_i', \gamma_i, \eta_i, \varepsilon_i)_{i \in I} \subset Y \times i \times i \) with \(y_i' \leq \gamma S \) on \(Y \) for all \(i \in I \) such that \(\eta_i \to 0 \), \((\eta_i + \gamma_i)_{i \in I} \subset \text{dom} \psi^*\) and
\[
f(x) + \liminf_i (y_i' \circ g)(x) - \psi'(\eta_i + \gamma_i)) \geq 0, \quad \forall x \in C.
\]

(3.12)

Proof. [(a) \(\Rightarrow \) (d)] Assume that (a) holds. It follows from Theorem 3.1 that (c) holds, i.e., there exist nets \((y_i', \gamma_i, \eta_i, \varepsilon_i)_{i \in I} \subset Y \times i \times i \) and \((x_i, \eta_i, \varepsilon_i)_{i \in I} \subset X^* \times i \times i \) with \(y_i' \leq \gamma_i S \) on \(Y \) for all \(i \in I \) such that (3.3) and (3.4) hold. It follows from (3.3) that and (3.13) gives rise to
\[
c_i \geq (x'_i, x_i) - (f + y_i' \circ g + i_i)(x_i) + \psi'(\eta_i + \gamma_i), \forall x_i \in X, \forall i \in I.
\]
Moreover, \((\eta_i + \gamma_i)_{i \in I} \subset \text{dom} \psi^*\), i.e., \(\psi'(\eta_i + \gamma_i)\) attains finite value for all \(i \in I \). So (3.15) is equivalent to
\[
f(x) + (y_i' \circ g)(x) - \psi'(\eta_i + \gamma_i) \geq (x'_i, x_i) - \varepsilon_i, \quad \forall x \in C, \forall i \in I.
\]
Taking the limit in both sides of the last inequality (note also that (3.14) holds), we get
\[
f(x) + \liminf_i (y_i' \circ g)(x) - \psi'(\eta_i + \gamma_i)) \geq 0, \quad \forall x \in C.
\]
This means that (d) holds.

[(d) \(\Rightarrow \) (a)] Assume that (d) holds, i.e., there exists a net \((y_i', \gamma_i, \eta_i, \varepsilon_i)_{i \in I} \subset Y \times i \times i \) with \(y_i' \leq \gamma_i S \) on \(Y \) for all \(i \in I \) such that \(\eta_i \to 0 \), \((\eta_i + \gamma_i)_{i \in I} \subset \text{dom} \psi^*\) and (3.12) holds. Then from the definition of the conjugate function and (3.12), one gets
\[
f(x) + \liminf_i (y_i' \circ g)(x) - \psi'(\eta_i + \gamma_i)) \geq 0, \quad \forall x \in C, \forall \alpha \in i,
\]
which implies
\[
f(x) + \psi(\alpha) + \liminf_i (y_i' \circ g)(x) - \psi'(\eta_i + \gamma_i)) \geq 0, \quad \forall x \in C, \forall \alpha \in i.
\]

(3.16)

According to Lemma 1.1 (iv) and the fact that \(\eta_i \to 0 \), we have
\[
\liminf_i (y_i' \circ g)(x) - \eta \alpha - \gamma \alpha \geq 0
\]
\[
= \liminf_i (y_i' \circ g)(x) - \eta \alpha + \liminf_i (-\eta \alpha)\]
\[
= \liminf_i (y_i' \circ g)(x) - \gamma \alpha, \quad \forall x \in C, \forall \alpha \in i.
\]
Combining this and (3.16), one gets
\[
f(x) + \psi(\alpha) + \liminf_i (y_i' \circ g)(x) - \gamma \alpha \geq 0, \quad \forall x \in C,
\]
\[
\forall \alpha \in \text{dom} \psi^*.
\]
(Note that the last inequality still holds even \(\alpha \in \text{dom} \psi^* \).

Hence,
\[
f(x) + \psi(\alpha) + \liminf_i (y_i' \circ g)(x) - \gamma \alpha \geq 0, \quad \forall x \in C, \forall \alpha \in i.
\]

(3.17)

On the other hand, as \(y_i' \leq \gamma_i S \) on \(Y \) for all \(i \in I \), it follows that if \(x \in C \) and \(\alpha \in i \) such that \((S \circ g)(x) \leq \alpha\), then
\[
(y_i' \circ g)(x) \leq (S \circ g)(x) \leq \gamma \alpha, \quad \forall i \in I,
\]
and hence, \((y_i' \circ g)(x) - \gamma \alpha \leq 0, \quad \forall i \in I.
\]
So, for any \(x \in C \) and \(\alpha \in \mathbb{R} \) with \((S \circ g)(x) \leq \alpha\), we obtain from (3.17)
\[
f(x) + \psi(\alpha) \geq f(x) + \psi(\alpha) + \liminf_i ((y_i \circ g)(x) - \gamma(x)) \geq 0,
\]
which is (a) and the proof is complete.

Set
\[
M := \{(x', r) \in \text{epi } f' \} + \{(0, r) : (\eta, r) \in \text{epi } \psi'\}
\]
\[
+ \{(x', r) \in \text{epi } J' \}
\]
\[
N := \{(0, r) : (\eta, r) \in \text{epi } \psi'\}
\]
\[
+ \{(x', r) \in \text{epi } (f + y' \circ g + i_J') \}
\]

Corollary 3.1 [Farkas lemma for sublinear-convex systems] Assume that (3.2) holds. Consider the following conditions:
\[
(0, 0, 0) \in \text{cl } M \Rightarrow (0, 0, 0) \in M,
\]
\[
(0, 0, 0) \in \text{cl } N \Rightarrow (0, 0, 0) \in N,
\]
and the following statements:
(a) \(x \in C, \alpha \in \mathbb{R}, (S \circ g)(x) \leq \alpha \Rightarrow f(x) + \psi(\alpha) \geq 0 \)
(b) there exist \((y', \gamma) \in Y \times \mathbb{R}^+\) and \((x', \gamma') \in X \times X'\) with \(y' \leq \gamma S \) on \(Y \) such that
\[
0 \geq f(x') + \psi(\gamma')(x' - x) + \psi'(\gamma'),
\]
(c) there exist \((y', \gamma) \in Y \times \mathbb{R}^+\) and \((x', \gamma') \in X \times X'\) such that
\[
f(x') + (y' \circ g)(x) \geq \gamma S \] on \(Y \)
\[
\forall x \in C.
\]
Then one gets
(i) (3.18) is equivalent to \([a] \Leftrightarrow (b)\),
(ii) (3.19) is equivalent to \([a] \Leftrightarrow (c)\).

Proof. Set \(\hat{R}, \hat{F}, \hat{C}, \hat{g}, \hat{f}, \) and \(\hat{K} \) as in the proof of Theorem 3.1. The conclusion follows from Corollary 2.1 with \(\hat{R}, \hat{F}, \hat{C}, \hat{g}, \hat{f}, \) and \(\hat{K} \)
playing the roles of \(X, Y, C, g, f \) and \(K \), respectively.

Similar to Corollary 2.2, we get the following result.

Corollary 3.2 [Stable Farkas lemma for sublinear-convex systems] Assume that (3.2) holds. Consider the following statements:
(d) \(M \) is weak' closed in \(X \times \mathbb{R}^+ \) and any \(\beta \in \mathbb{R} \).
(e) \(N \) is weak' closed in \(X' \times \mathbb{R}^+ \).
(f) For any \(\mathcal{F} \subseteq (x, \eta) \in X \times \mathbb{R}^+ \) and any \(\beta \in \mathbb{R} \).
\[
(x \in C, \alpha \in \mathbb{R}, (S \circ g)(x) \leq \alpha \Rightarrow f(x) + \psi(\alpha) - (x, \alpha) \geq \beta) \]
\[
\text{c}
\]
\[
(\exists (y', \gamma) \in Y \times \mathbb{R}^+ \text{ such that } y' \leq \gamma S \text{ on } Y)
\]
\[
\text{and } f(x') + (y' \circ g)(x' - x) + \psi'(\gamma) \leq -\beta.
\]
\[
(\exists (y', \gamma) \in Y \times \mathbb{R}^+ \text{ such that } y' \leq \gamma S \text{ on } Y)
\]
\[
\text{and } f(x') + (y' \circ g)(x' - x) + \psi'(\gamma) \leq -\beta, \quad \forall x \in C.
\]

Then we have \([d] \Leftrightarrow (f)\) and \([e] \Leftrightarrow (g)\).

Remark 3.1 It is worth noting that \([e] \Leftrightarrow (g)\] was given in [6].

Các bộ đê Farkas đang tiềm căn cho các hệ lồi

• Nguyễn Định
Trường Đại học Quốc tế, DHQG-HCM

• Trần Hồng Mơ
Trường Đại học Tiền Giang

TÓM TAT

Trong bài báo này chúng tôi thiết lập các điều kiện tương đương (gọi là các đặc trưng) của bao lồi

\[\{x \in X : x \in C, g(x) \in -K\} \subseteq \{x \in X : f(x) \geq 0\}.
\]

trong đó \(C \) là tập con lồi, đồng của không gian lồi địa phương (kgldp) \(X, K \) là nón lồi đồng trong...
kgldp Y, và $s: \infty \rightarrow \infty$ là ảnh xạ K- lồi, còn tập lồi đạo beiden bao hàm thực trên được xác định bởi một hàm lồi, núa liên tục dưới f. Các đặc trưng này được thiết lập mà không có bất kỳ điều kiến chính quy nào và thường được gọi là các kết quả dạng Farkas tiệm cận (hay dạng xấp xỉ). Phân thứ hai của bài báo dành cho thiết lập các biến thể quả dạng Farkas tiệm cận (hay dạng xấp xỉ). Phần kiện chính quy nào và thường được gọi là các kết quả đạt được có thể được sử dụng để nghiên cứu các bài toán tối ưu mà ở đó các điều kiện chính quy không thỏa mãn.

Từ khóa: Bổ đề Farkas, Bổ đề Farkas theo dãy, giới hạn trên, giới hạn dưới.

REFERENCES