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ABSTRACT

This paper presents the hardware design
of a high performance cryptosystem for
video streaming application. Our proposed
system is the combination of two
cryptographic algorithms, symmetric key
algorithm and asymmetric key algorithm
(also called public key algorithm) to take
their benefits. The symmetric key algorithm
(ZUC) is used to encrypt/decrypt video, and
the public key algorithm (RSA) performs the
encryption/ decryption for the secret key.
This architecture has high performance,
including high security and high processing
bit rate. High security is achieved due to the
ease of key distribution of the asymmetric
key cryptosystem and the secret key can be

easily changed. The high processing bit rate
of video encryption/decryption is the result of
the high speed of encryption/decryption of
the symmetric key algorithm. The H.264
video decoder is also integrated into this
system to test the functionality of the
proposed cryptosystem. This system is
implemented in Verilog-HDL, simulated by
using the ModelSim simulator and evaluated
by using Altera  Stratix IV-based
Development Kit. The speed of video
decryption achieves up to 4.0 Ghps at the
operating frequency of 125 MHz, which
satisfies applications with high bandwidth
requirement such as video streaming.
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INTRODUCTION

Nowadays information security is a subject
with a high interest. The development of
computer networks, particularly the Internet,
results more and more applications and services
are carried out electronically, for example,
PayTV, video streaming, internet-banking, and so

on. Since the information on of these applications
and services are possible transmitted in insecure
channels, the demand of information security
becomes essential. The increase of the demand of
information security makes cryptography to
become important.
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Symmetric key cryptography uses the same
key for both encryption and decryption. The
advantage of symmetric key algorithms is that
their execution is fast [1]. However, the critical
issue of the symmetric key cryptosystem is the
secret key distribution. On the other hand, the
public key algorithm uses a pair of keys (public
key and private key) to perform data encryption
and decryption. The advantage of the public key
cryptosystem is that providing public keys is
easier than distributing secret keys securely [2].
However, the execution of public key algorithms
is much slower than the execution of symmetric
key algorithms. A hybrid cryptographic system in
[2] was implemented by combining Advanced
Encryption Standard (AES), Data Encryption
Standard (DES) and public key algorithm (RSA),
which offer benefits in key distribution and high
security [2]. The data block is encrypted by using
AES or DES while their secret keys are
encrypted by using RSA algorithm. The
encrypted secret key is then concatenated with
the encrypted data to form the packets and sent to
the destination. This implementation does not
need key exchange separately [2]. However,
every data block contains the encrypted key and
each data block is encrypted by using a different
session key, which does not save the transmission
bandwidth. And the system must decrypt the
secret key completely before data decryption and
this is not appropriate with video streaming
application. The system was proposed in [3]
included 1024-bit RSA algorithm, 163-bit
Elliptic Curve Cryptography (ECC) and 128-bit
AES. In this system, AES was used to encrypt the
transferred document to produce cipher-text, and
RSA (or ECC) provided encryption/decryption

for the secret key. This system also achieves high
security. However, it does not allow us to change
the secret key during data transfer. Both works
[2, 3], AES cryptosystem (block cipher) was used
to encrypt data. The drawback of the blocks
cipher are: (1) data block needs to be padded if
its size is less than block size, (2) be suffered
error propagation, (3) the speed of encryption/
decryption is less than that of a stream cipher.

Our proposed cryptosystem combines the
ZUC stream cipher [4] and the public key cipher
RSA with 1024-bit key length. RSA is widely
used public key algorithm [1]. The ZUC cipher is
the new stream cipher that is commonly used in
many countries [5]. It is simple, faster than block
cipher [1]. The video content is
encrypted/decrypted by using ZUC algorithm.
And the secret key is encrypted/decrypted by
using RSA algorithm. The encrypted symmetric
key is then concatenated with the encrypted video
to form the transmitted packets. In addition, our
system allows to change the secret key. In case of
no key changing, the encrypted key is not present
in the transmitted packets, which saves the
transmission bandwidth. Additionally, we build
the system that enables to decrypt a new secret
key and video in parallel. That means while RSA
core is decrypting new secret key, ZUC core still
uses the current secret key for data decryption.
This feature was not implemented in the existing
systems [2-3]. It is also difficult to implement
this feature by software. Our proposed system
achieves high security and speed which is very
suitable for real time applications. In this paper,
we focus on the implementation of the hardware
architecture of cryptosystem for video streaming
application.
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SYSTEM ARCHITECTURE

The overall block diagram of the proposed
embedded system

The block diagram of the proposed
embedded system is shown in Fig. 1.
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Fig. 1. The overall block diagram of the proposed
embedded system
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The encrypted data (the encrypted secret key
and the encrypted video stored in Server) are
streamed to the evaluation board via an Ethernet
interface and are stored into DDR3 (A). DMA
module reads the encrypted data from DDR3 (A)
and pushes them into FIFO. The cryptosystem
reads the encrypted data from the FIFO to
decrypt the video content. Firstly, the RSA
coprocessor decrypts the secret key. Secondly,
the ZUC coprocessor uses that secret key to
generate a keystream to decrypt the video content
(video in compressed H.264 format). Thirdly, the
video content is pushed into another FIFO. When
the video content is available in the FIFO, the
H.264 video decoder decodes the video content
and writes it to DDR3 (B). Finally, the display
controller reads video from DDR3 (B) and sends
it to the display device. H.264 decoder module
has a feature of being capable to decode
H.264/AVC baseline profile video of VGA
resolution (640x480) with 25 frames per second

at the clock frequency of 25 MHz. Output frame
format is in 4:2:0 YCbCr sampling format.

The block diagram of the proposed
cryptosystem

Our  proposed  cryptosystem is the
combination of ZUC algorithm and RSA
algorithm. The RSA algorithm is used to
encrypt/decrypt the secret key (key of ZUC
algorithm).  ZUC algorithm  provides the
encryption/decryption for the video content. Fig.
2 illustrates our proposed cryptosystem.

DECRYPT CONTROLLER controls to read
the encrypted secret key from FIFO to its
registers. And then RSA coprocessor performs to
decrypt the secret key. When RSA coprocessor
completes its decryption, it indicates to ZUC
coprocessor by asserting zuc_key valid signal.
The ZUC coprocessor then loads the secret key
into its LFSR and produces a keystream. The
video content is recovered by XORing the
encrypted video and the generated keystream.
The decrypted video will be stored in the FIFO.
Whenever the secret key needs to be changed
(through the signaling in the header of the
received packets), the RSA decrypts that new
secret key while ZUC still uses the current key to
produce the keystream for decrypting the video
content. As soon as RSA coprocessor completes
its operation, and the signaling in the received
packet indicates to apply the new secret key,
ZUC coprocessor then uses that new secret key to
generate a keystream for the next decryption. Fig.
3 shows the frame format of each transmitted
packet. It is made of the encrypted video, the
encrypted secret key and the signaling. The
signaling aims to: (1) when a new encrypted
secret key is coming, (2) when a new secret key
is applied.
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Fig. 2. The proposed cryptographic system
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Fig. 3. Encrypted packet

The advantages of our system are as follows

High security is achieved because the secret
key is encrypted with the RSA algorithm, and
there is no key establishment separately before
data transferring.

We can change the secret key at anytime
without key re-establishment as in the traditional
cryptosystem.

Our system saves the transmission bandwidth
by eleminating the encrypted secret key in the
packets that is sent in case of no key changing.

Our proposed system enables to decrypt a
new secret key and the encrypted video in
parallel, which makes better the quality of service
e.g., video decryption is performed continuously
and smoothly.

Design of ZUC

ZUC is a word-oriented stream cipher [4]. It
takes a 128-bit initial key and a 128-bit initial
vector as input, and outputs a keystream of 32-bit
words. The architecture of ZUC stream cipher is

proposed as Fig. 4. The top layer is a linear
feedback shift register (LFSR) that consists of 16
of 31-bit registers. The middle layer is bit
reorganization (BR) that extracts 128 bits of
registers of LFSR to form 4 of 32-bit words. The
first three words are the inputs of nonlinear
function F, and the last word is used in keystream
generation. The bottom layer is the nonlinear
function F that takes three words X0, X1, X2 as
inputs and outputs 32 bit word W. The outputted
keystream is shifted into a 32-bit register.

The LFSR has two operation modes:
initialization mode and working mode. In
initialization mode, the LFSR receives 31 bits of
W (bit 31 to 1) as its input. In the working mode,
the LFSR does not receive any input, and
produces a 32-bit word per clock cycle. In
hardware implementation, we use a multiplexer
to select the input for these modes. We found that
the critical path in the ZUC architecture is the
circuit used to update LFSR in the initialization
stage and the working stage. There is a chain of
six modulo (2*' — 1) additions to compute the
value of Si¢. Therefore, the timing optimization
of this critical path improves the operating
frequency of ZUC core. The expression of Sy is
given in equation (4).

v=2"S 428,428, 0+2%°S,+(1+2%)S,
mod (2*-1) (3)

Sye=[v+(W>>1)] mod (2*-1) (4)

We propose to use carry save adders (CSA)
to calculate the intermediate values and ripple
carry adder to calculate the final result. The
hierarchical CSA tree is shown in the Fig. 5. In
this architecture, one multiplexer selects the
mode of LFSR: initialization mode or working
mode. To perform modulo (2*' — 1) addition, for
each addition of CSA, carry is cyclic left-shifted
by one bit. This implementation helps to improve
the timing significantly because the delay of CSA
is exactly equal to the delay of 1-bit full adder.
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Fig. 5. Hierarchical Carry Save Adder tree

Design of RSA

The most popular public key algorithm is
RSA invented by Rivest, Shamir, and Adleman
[1]. For high security reason, the key length of
the RSA algorithm is 1024 bits or greater [7].
The main operation of the RSA algorithm is the
modular  exponentiation. The modular
exponentiation is performed by a series of the
modular  multiplications. The Montgomery
multiplication (MP) on the large integer number

is the efficient method to perform the modular
multiplication. There are two methods to
compute the modular exponentiation: right-to-left
(R-L) method and left-to-right (L-R) method. The
R-L method is faster than L-R method because
the multiplication and squaring can be performed
in parallel. However, the price paid for hardware
resource is higher. In this paper, we compute the
modular exponentiation by using L-R method
and the Montgomery multiplication.
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Algorithm 1 implements the Montgomery
multiplication. The addition of long operands in
the loop is performed by 3-to-2 carry save adder
(CSA). To get the final result, we need to add the
carry output and the sum output of CSA. In this
paper, we use 32-bit RCA and a shift register to
implement this final addition because of its
simplicity and area saving. It takes (k+3+k/32)
clock cycles to complete the Montgomery
multiplication, where k is the size of the
operands; k/32 is the number of clock cycle to
complete the final addition. Fig. 6 shows the

CSA-based Montgomery multiplier.

Algorithm 2 implements the modular
exponentiation by using the Montgomery
multiplier. In this algorithm, C is the operand that
has the length of 1024 bits; d; is the exponent
with the length of 1024 bits.The block diagram of
the modular exponentiation is shown in Fig. 7.
This architecture uses only one Montgomery
multiplier. Two multiplexers are used to select
the inputs for the Montgomery multiplier. Based
on the input value d;, the control block
determines the values of sel_1 and sel_2.

Algorithm 1 — Montgomery multiplication by using
CSA
[Mnputs: X, y, n
ps=0,pc=0,ss=0,sc=0;
for (i=0;i<=k+1;i=i+1){
(sc, ss) = (ps + pc + x(i) *y);
(pc, ps) = (ss + sc + ss(0)*n)/2;

return (ps + pc)
//Output: p = xyr* mod n with r = 2&*2)

y

(i)
] register

T A A
y
CSA noox
ss0)__|
sc ss @ shift | load
' . v
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y A,
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Fig. 6. Montgomery multiplier

Algorithm 2 — Modular exponentiation, L-R
method
a=C.rmodn;
b=1.rmodn;
for(x=b,i=k-1;i>=0;i=i+1){

X =MP (X, X);

if (dj==1) x=MP (X, a);

}
X =MP (X, 1);

return x;
//Output: x = C*

X al

RN

0 1 00 01 10 11 —~ cel 2
i sel_2 i .

start T

— X

y
Montgomery ¢
multiplier done | control
z
A
'Oﬂi shift | d,
N
register )
Initial = b Register (d)

1 x

Fig. 7. Modular exponentiation using MP
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RESULTS AND DICUSSION
Experimental results of ZUC and RSA

The ZUC implementation is passed all test
sets that were provided by ZUC Implementor’s
Test Data [7]. All the stages of the ZUC core
have been implemented in hardware. To make
the fair comparison, the implementation is
synthesized with Quartus Il (Altera) and ISE
(Xilinx) as well. In [5], they implemented a
pipeline architecture that achieves the maximum

operating frequency of 222 MHz. However, it
costs higher hardware resources, higher latency
(4 extra clock cycles), and initialization stage was
implemented in software to reduce hardware
resources. In [6], their proposal used ripple carry
adders in series, which limits the operating
frequency of the circuit. Our proposal uses
hierarchical CSA tree, and RCAs, which achieves
throughput up to 4.45 Gbps in Virtex 5, and 4.0
Gbps in FPGA Stratix IV EP4SGX230KF40C2.

Table 1. The comparison of the two architectures

Architecture Technology Slices/ALUTSs [(:'\r/? gl;()ancy ?étbrpa:)e
Our proposal EP4SGX230KF40C2 | 1166 ALUTs | 125 4.0
Our proposal XC5VLX50-3FF324 | 384 slices 139 4.45
ZUC [5] XC5VLX110T 575 slices 222 7.1
ZUC [6] XC5VLX50-3FF324 | 385 slices 65 2.08

In the RSA implementation, we use 3-t0-2
CSA and 32-bit RCA to implement the
Montgomery multiplier, which is technology
independent. It takes 2(k+3+k/32)*ky clock
cycles to complete the modular exponentiation,
where Kk is the bit length of the modulus, k/32 is
the number of clock cycles cost to complete the
final addition (sum and carry) in the Montgomery

multiplication and kq is the bit length of the key.
Compared with systolic architecture [3], our
implementation has a higher operating frequency.
The architecture in [9] used 4-t0-2 CSA to
implement the Montgomery multiplication.
However, this costs some extra registers to store
intermediate results of CSA.

Table 2. The comparison of the two implementations

Architecture Technology LEs (FI\TI?;) L\lylg:;ts)er of clock
Our proposal EP4SGX230KF40C2 | 16964 214.10 (k+3+k/32)(2kq+1)
Our proposal EP1S40F780C5 16969 145.07 (k+3+k/32)(2kq+1)
[3] EP1S40F780C5 12881, 5120 RAM bits | 100.25 -

[9] XC2V6000 22075 Slices 93.34 2(k+2)(kgt+3)

Experimental results of the proposed
cryptosystem

The design is synthesized with Quartus 1l
tool based on Stratix v FPGA
EP4ASGX230KF40C2. The results show that our
proposed system allows the secret key to be
changed. At the operating frequency of 125 MHz,
the total processing bit rate is 4.0 Gbps that

satisfies the required bandwidth in the video
streaming application. Fig. 8 and Fig. 9 show the
decryption process for video content. The
original video content is recovered by XORing
the generated keystream and the encrypted video.
Fig. 9 shows the new secret key applied when the
signaling value of 0x2.
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Fig. 8 The result captured by SignalTap Logic Analyzer (using the first key)
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Fig. 9 The result captured by SignalTap Logic Analyzer (using the second key)

To test the operation of our cryptosystem, we Memory Content Editor tool that is integrated
integrated H.264 decoder into our system (Fig. 1) into the Quartus Il tool. Fig. 11 shows one video
to decode the video content. Fig. 10 shows the frame that is displayed on the display device.
video content in memory captured by In-system
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Fig. 10 Video captured by In-system Memory Editor
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Fig. 11 Video content displayed on the display device
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CONCLUSION

The high performance cryptosystem is
presented in this paper that has been implemented
and prototyped on FPGA Stratix IV
EP4SGX230KF40C2. The experimental results
show that the key exchange does not need to be
performed on a dedicated channel as in the
traditional ~cryptosystem. In addition, key
changing can be performed during one session,
which  maximizes the security of this
cryptosystem. The decryption bit rate of this

architecture is up to 4.0 Ghps at the operating
frequency of 125 MHz, which is high enough for
the real-time application such as video streaming.
In this implementation, we focus not only on
improving the operating frequency, but also
optimizing the hardware resources.
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Thiét ké phan ctrng hé thong mat ma
cO hiéu nang cao cho ng dung truyén

video

e Nguyén Vin Toan

« D6 Quéc Minh Pang
e Nguyén Bc Phic

e Nguyén Pinh Thuc
e Huynh Hipu Thuan

Trwong Pai hoc Khoa hoc Ty Nhién, PHQG-HCM

TOM TAT

Bai bao nay trinh bay vé thiét ké phéan
clrng hé théng méat ma cé hiéu ndng cao
danh cho (g dung truyén video. Hé théng
chung téi dé nghj la hé théng két hop hai
thuét toan ma héa dbi xirng va méa héa céng
khai nham tan dung céc wu diém cua chung.
Thuét toan ma héa déi xirng ZUC duoc st
dung dé ma héa/gidi méa video, trong khi d6é
thuat toan ma hoa cbéng khai RSA thuc hién
ma héa/gidi ma khéa bi méat. Kién tric nay
dat dwoc hiéu ndng cao nhw: d0 bado mét
cao va téc doé xi Ii (ma héa/gidi ma) cao. Hé
théng dat dwoc do bdo mét cao nho sy trao
déi khéa bi mat dé dang cta hé mat ma

céng khai. Nho téc d6 méa héa/gidi ma cao
cla thuat toan ma héa khoéa déi xirmng ma téc
d6 ma hoéa/gidi ma cua hé théng dat duoc la
rat cao. Bé gidi ma video H.264 ciing duoc
tich hop vao hé théng dé kiém thir churc
ndng ctua hé théng mat ma. Hé théng nay
duoc thuc hién phén cung bédng ngén ngik
dac té phéan cung Verilog-HDL, sau d6 duoc
mé phéng badng b6 mé phéng ModelSim, va
duoc kiém tra, danh gié trén bé Kit cla
Altera dung FPGA Stratix IV. Téc do gidi méa
ma hé théng dat duoc lIén dén 4.0 Gbps tai
tén s6 hoat déng la 125 MHz, théa méan céc
rng dung truyén video.

Keywords: hé théng mat ma, ma hda, gidi ma, RSA, ZUC, FPGA.
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