
Science & Technology Development, Vol 18, No.T4-2015

Trang 200

Designing a high performance
cryptosystem for video streaming
application
 Nguyen Van Toan

 Do Quoc Minh Dang

 Nguyen Duc Phuc

 Huynh Huu Thuan

 Nguyen Dinh Thuc

University of Science , VNU-HCM
(Received on December 05 th 2014, accepted on September 23rd 2015)

ABSTRACT

This paper presents the hardware design

of a high performance cryptosystem for

video streaming application. Our proposed

system is the combination of two

cryptographic algorithms, symmetric key

algorithm and asymmetric key algorithm

(also called public key algorithm) to take

their benefits. The symmetric key algorithm

(ZUC) is used to encrypt/decrypt video, and

the public key algorithm (RSA) performs the

encryption/ decryption for the secret key.

This architecture has high performance,

including high security and high processing

bit rate. High security is achieved due to the

ease of key distribution of the asymmetric

key cryptosystem and the secret key can be

easily changed. The high processing bit rate

of video encryption/decryption is the result of

the high speed of encryption/decryption of

the symmetric key algorithm. The H.264

video decoder is also integrated into this

system to test the functionality of the

proposed cryptosystem. This system is

implemented in Verilog-HDL, simulated by

using the ModelSim simulator and evaluated

by using Altera Stratix IV-based

Development Kit. The speed of video

decryption achieves up to 4.0 Gbps at the

operating frequency of 125 MHz, which

satisfies applications with high bandwidth

requirement such as video streaming.

Keywords: cryptosystem, encryption, decryption, RSA, ZUC, FPGA.

INTRODUCTION

Nowadays information security is a subject

with a high interest. The development of

computer networks, particularly the Internet,

results more and more applications and services

are carried out electronically, for example,

PayTV, video streaming, internet-banking, and so

on. Since the information on of these applications

and services are possible transmitted in insecure

channels, the demand of information security

becomes essential. The increase of the demand of

information security makes cryptography to

become important.

TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 18, SOÁ T4- 2015

 Trang 201

Symmetric key cryptography uses the same

key for both encryption and decryption. The

advantage of symmetric key algorithms is that

their execution is fast [1]. However, the critical

issue of the symmetric key cryptosystem is the

secret key distribution. On the other hand, the

public key algorithm uses a pair of keys (public

key and private key) to perform data encryption

and decryption. The advantage of the public key

cryptosystem is that providing public keys is

easier than distributing secret keys securely [2].

However, the execution of public key algorithms

is much slower than the execution of symmetric

key algorithms. A hybrid cryptographic system in

[2] was implemented by combining Advanced

Encryption Standard (AES), Data Encryption

Standard (DES) and public key algorithm (RSA),

which offer benefits in key distribution and high

security [2]. The data block is encrypted by using

AES or DES while their secret keys are

encrypted by using RSA algorithm. The

encrypted secret key is then concatenated with

the encrypted data to form the packets and sent to

the destination. This implementation does not

need key exchange separately [2]. However,

every data block contains the encrypted key and

each data block is encrypted by using a different

session key, which does not save the transmission

bandwidth. And the system must decrypt the

secret key completely before data decryption and

this is not appropriate with video streaming

application. The system was proposed in [3]

included 1024-bit RSA algorithm, 163-bit

Elliptic Curve Cryptography (ECC) and 128-bit

AES. In this system, AES was used to encrypt the

transferred document to produce cipher-text, and

RSA (or ECC) provided encryption/decryption

for the secret key. This system also achieves high

security. However, it does not allow us to change

the secret key during data transfer. Both works

[2, 3], AES cryptosystem (block cipher) was used

to encrypt data. The drawback of the blocks

cipher are: (1) data block needs to be padded if

its size is less than block size, (2) be suffered

error propagation, (3) the speed of encryption/

decryption is less than that of a stream cipher.

Our proposed cryptosystem combines the

ZUC stream cipher [4] and the public key cipher

RSA with 1024-bit key length. RSA is widely

used public key algorithm [1]. The ZUC cipher is

the new stream cipher that is commonly used in

many countries [5]. It is simple, faster than block

cipher [1]. The video content is

encrypted/decrypted by using ZUC algorithm.

And the secret key is encrypted/decrypted by

using RSA algorithm. The encrypted symmetric

key is then concatenated with the encrypted video

to form the transmitted packets. In addition, our

system allows to change the secret key. In case of

no key changing, the encrypted key is not present

in the transmitted packets, which saves the

transmission bandwidth. Additionally, we build

the system that enables to decrypt a new secret

key and video in parallel. That means while RSA

core is decrypting new secret key, ZUC core still

uses the current secret key for data decryption.

This feature was not implemented in the existing

systems [2-3]. It is also difficult to implement

this feature by software. Our proposed system

achieves high security and speed which is very

suitable for real time applications. In this paper,

we focus on the implementation of the hardware

architecture of cryptosystem for video streaming

application.

Science & Technology Development, Vol 18, No.T4-2015

Trang 202

SYSTEM ARCHITECTURE

The overall block diagram of the proposed

embedded system

The block diagram of the proposed

embedded system is shown in Fig. 1.

AVALON SWITCH FABRIC

ETHERNET

DMA
CRYPTOSYSTEM

(RSA, ZUC)
FIFO

H.264
DECODER

FIFO

DDR3 (A) DDR3 (B)NIOS II
DISPLAY

CONTROLLER

ENCRYPTED
VIDEO

DISPLAY DEVICE

Fig. 1. The overall block diagram of the proposed

embedded system

The encrypted data (the encrypted secret key

and the encrypted video stored in Server) are

streamed to the evaluation board via an Ethernet

interface and are stored into DDR3 (A). DMA

module reads the encrypted data from DDR3 (A)

and pushes them into FIFO. The cryptosystem

reads the encrypted data from the FIFO to

decrypt the video content. Firstly, the RSA

coprocessor decrypts the secret key. Secondly,

the ZUC coprocessor uses that secret key to

generate a keystream to decrypt the video content

(video in compressed H.264 format). Thirdly, the

video content is pushed into another FIFO. When

the video content is available in the FIFO, the

H.264 video decoder decodes the video content

and writes it to DDR3 (B). Finally, the display

controller reads video from DDR3 (B) and sends

it to the display device. H.264 decoder module

has a feature of being capable to decode

H.264/AVC baseline profile video of VGA

resolution (640x480) with 25 frames per second

at the clock frequency of 25 MHz. Output frame

format is in 4:2:0 YCbCr sampling format.

The block diagram of the proposed

cryptosystem

Our proposed cryptosystem is the

combination of ZUC algorithm and RSA

algorithm. The RSA algorithm is used to

encrypt/decrypt the secret key (key of ZUC

algorithm). ZUC algorithm provides the

encryption/decryption for the video content. Fig.

2 illustrates our proposed cryptosystem.

DECRYPT CONTROLLER controls to read

the encrypted secret key from FIFO to its

registers. And then RSA coprocessor performs to

decrypt the secret key. When RSA coprocessor

completes its decryption, it indicates to ZUC

coprocessor by asserting zuc_key_valid signal.

The ZUC coprocessor then loads the secret key

into its LFSR and produces a keystream. The

video content is recovered by XORing the

encrypted video and the generated keystream.

The decrypted video will be stored in the FIFO.

Whenever the secret key needs to be changed

(through the signaling in the header of the

received packets), the RSA decrypts that new

secret key while ZUC still uses the current key to

produce the keystream for decrypting the video

content. As soon as RSA coprocessor completes

its operation, and the signaling in the received

packet indicates to apply the new secret key,

ZUC coprocessor then uses that new secret key to

generate a keystream for the next decryption. Fig.

3 shows the frame format of each transmitted

packet. It is made of the encrypted video, the

encrypted secret key and the signaling. The

signaling aims to: (1) when a new encrypted

secret key is coming, (2) when a new secret key

is applied.

TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 18, SOÁ T4- 2015

 Trang 203

ZUC RSA

DECRYPT

CONTROLLER

FIFO OUT FIFO IN
reset_n clk enable

fifo_rd_req

fifo_almost_empty

data_fr_fifo

clk

fifo_wr_req

fifo_almost_full

zuc_key_valid

zuc_key

clk

d
ata_

to
_
fifo

data_fr_fifo

32

k
ey

stream

32

32

32

ctrl_sig_zuc ctrl_sig_rsa

Fig. 2. The proposed cryptographic system

Encrypted video Encrypted key Signaling

Fig. 3. Encrypted packet

The advantages of our system are as follows

High security is achieved because the secret

key is encrypted with the RSA algorithm, and

there is no key establishment separately before

data transferring.

We can change the secret key at anytime

without key re-establishment as in the traditional

cryptosystem.

Our system saves the transmission bandwidth

by eleminating the encrypted secret key in the

packets that is sent in case of no key changing.

Our proposed system enables to decrypt a

new secret key and the encrypted video in

parallel, which makes better the quality of service

e.g., video decryption is performed continuously

and smoothly.

Design of ZUC

ZUC is a word-oriented stream cipher [4]. It

takes a 128-bit initial key and a 128-bit initial

vector as input, and outputs a keystream of 32-bit

words. The architecture of ZUC stream cipher is

proposed as Fig. 4. The top layer is a linear

feedback shift register (LFSR) that consists of 16

of 31-bit registers. The middle layer is bit

reorganization (BR) that extracts 128 bits of

registers of LFSR to form 4 of 32-bit words. The

first three words are the inputs of nonlinear

function F, and the last word is used in keystream

generation. The bottom layer is the nonlinear

function F that takes three words X0, X1, X2 as

inputs and outputs 32 bit word W. The outputted

keystream is shifted into a 32-bit register.

The LFSR has two operation modes:

initialization mode and working mode. In

initialization mode, the LFSR receives 31 bits of

W (bit 31 to 1) as its input. In the working mode,

the LFSR does not receive any input, and

produces a 32-bit word per clock cycle. In

hardware implementation, we use a multiplexer

to select the input for these modes. We found that

the critical path in the ZUC architecture is the

circuit used to update LFSR in the initialization

stage and the working stage. There is a chain of

six modulo (2
31

 – 1) additions to compute the

value of S16. Therefore, the timing optimization

of this critical path improves the operating

frequency of ZUC core. The expression of S16 is

given in equation (4).

v=2
15

S15+2
17

S13+2
21

S10+2
20

S4+(1+2
8
)S0

mod (2
31

-1) (3)

S16=[v+(W>>1)] mod (2
31

-1) (4)

We propose to use carry save adders (CSA)

to calculate the intermediate values and ripple

carry adder to calculate the final result. The

hierarchical CSA tree is shown in the Fig. 5. In

this architecture, one multiplexer selects the

mode of LFSR: initialization mode or working

mode. To perform modulo (2
31

 – 1) addition, for

each addition of CSA, carry is cyclic left-shifted

by one bit. This implementation helps to improve

the timing significantly because the delay of CSA

is exactly equal to the delay of 1-bit full adder.

Science & Technology Development, Vol 18, No.T4-2015

Trang 204

S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

Addition modulo (2
31

 – 1)

<<15 <<17 <<21 <<20 <<8

16 16 16 16 16 16 16 16

Reg R1

W1

Reg R2

32-bit

register

W2

U

L1 L2S(LUT) S(LUT)

MUX

X0 X1 X2 X3

W

>>1 0

initialize

keystream

LFSR

BR

F Modulo 232 addition

Bit-wise XOR operation

Key loading

key IV D

. . . .

S15 S14 S0

128128 240

V

Fig. 4. Architecture of ZUC

31-bit CSA 31-bit CSA

31-bit CSA

31-bit CSA

31-bit CSA

Adder mod (231-1)

A B C D E F

0 W[31:1]

s1a

s16

c1a c1b

s1b

s2 c2

s3 c3

s4 c4

MUX mode

Fig. 5. Hierarchical Carry Save Adder tree

Design of RSA

The most popular public key algorithm is

RSA invented by Rivest, Shamir, and Adleman

[1]. For high security reason, the key length of

the RSA algorithm is 1024 bits or greater [7].

The main operation of the RSA algorithm is the

modular exponentiation. The modular

exponentiation is performed by a series of the

modular multiplications. The Montgomery

multiplication (MP) on the large integer number

is the efficient method to perform the modular

multiplication. There are two methods to

compute the modular exponentiation: right-to-left

(R-L) method and left-to-right (L-R) method. The

R-L method is faster than L-R method because

the multiplication and squaring can be performed

in parallel. However, the price paid for hardware

resource is higher. In this paper, we compute the

modular exponentiation by using L-R method

and the Montgomery multiplication.

TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 18, SOÁ T4- 2015

 Trang 205

Algorithm 1 implements the Montgomery

multiplication. The addition of long operands in

the loop is performed by 3-to-2 carry save adder

(CSA). To get the final result, we need to add the

carry output and the sum output of CSA. In this

paper, we use 32-bit RCA and a shift register to

implement this final addition because of its

simplicity and area saving. It takes (k+3+k/32)

clock cycles to complete the Montgomery

multiplication, where k is the size of the

operands; k/32 is the number of clock cycle to

complete the final addition. Fig. 6 shows the

CSA-based Montgomery multiplier.

Algorithm 2 implements the modular

exponentiation by using the Montgomery

multiplier. In this algorithm, C is the operand that

has the length of 1024 bits; di is the exponent

with the length of 1024 bits.The block diagram of

the modular exponentiation is shown in Fig. 7.

This architecture uses only one Montgomery

multiplier. Two multiplexers are used to select

the inputs for the Montgomery multiplier. Based

on the input value di, the control block

determines the values of sel_1 and sel_2.

Algorithm 1 – Montgomery multiplication by using

CSA

//Inputs: x, y, n

ps = 0, pc = 0, ss = 0, sc = 0;

for (i = 0; i <= k+1; i= i + 1){

(sc, ss) = (ps + pc + x(i) * y);

(pc, ps) = (ss + sc + ss(0)*n)/2;

}

return (ps + pc)

//Output: p = xyr
-1

 mod n with r = 2
(k+2)

Algorithm 2 – Modular exponentiation, L-R

method

a = C.r mod n;

b = 1.r mod n;

for (x = b, i = k – 1; i >= 0; i = i + 1) {

 x = MP (x, x);

 if (di == 1) x = MP (x, a);

}

x = MP (x, 1);

return x;

//Output: x = C
d

CSA

CSA

two registers

RCA

sumcarry

register

sssc

Control

Unit

ss(0)

loadshift

xn

y

x(i)

Fig. 6. Montgomery multiplier

Montgomery

multiplier

register

Initial = b

Control

0 1

x y

z

b x

00 01 10 11

1x a

Register (d)

sel_1
sel_2

sel_2

start

done

load shift di

x

Fig. 7. Modular exponentiation using MP

Science & Technology Development, Vol 18, No.T4-2015

Trang 206

RESULTS AND DICUSSION

Experimental results of ZUC and RSA

The ZUC implementation is passed all test

sets that were provided by ZUC Implementor’s

Test Data [7]. All the stages of the ZUC core

have been implemented in hardware. To make

the fair comparison, the implementation is

synthesized with Quartus II (Altera) and ISE

(Xilinx) as well. In [5], they implemented a

pipeline architecture that achieves the maximum

operating frequency of 222 MHz. However, it

costs higher hardware resources, higher latency

(4 extra clock cycles), and initialization stage was

implemented in software to reduce hardware

resources. In [6], their proposal used ripple carry

adders in series, which limits the operating

frequency of the circuit. Our proposal uses

hierarchical CSA tree, and RCAs, which achieves

throughput up to 4.45 Gbps in Virtex 5, and 4.0

Gbps in FPGA Stratix IV EP4SGX230KF40C2.

Table 1. The comparison of the two architectures

Architecture Technology Slices/ALUTs
Frequency

(MHz)

Bit rate

(Gbps)

Our proposal EP4SGX230KF40C2 1166 ALUTs 125 4.0

Our proposal XC5VLX50-3FF324 384 slices 139 4.45

ZUC [5] XC5VLX110T 575 slices 222 7.1

ZUC [6] XC5VLX50-3FF324 385 slices 65 2.08

In the RSA implementation, we use 3-to-2

CSA and 32-bit RCA to implement the

Montgomery multiplier, which is technology

independent. It takes 2(k+3+k/32)*kd clock

cycles to complete the modular exponentiation,

where k is the bit length of the modulus, k/32 is

the number of clock cycles cost to complete the

final addition (sum and carry) in the Montgomery

multiplication and kd is the bit length of the key.

Compared with systolic architecture [3], our

implementation has a higher operating frequency.

The architecture in [9] used 4-to-2 CSA to

implement the Montgomery multiplication.

However, this costs some extra registers to store

intermediate results of CSA.

Table 2. The comparison of the two implementations

Architecture Technology LEs
Fmax

(MHz)

Number of clock

cycles

Our proposal EP4SGX230KF40C2 16964 214.10 (k+3+k/32)(2kd+1)

Our proposal EP1S40F780C5 16969 145.07 (k+3+k/32)(2kd+1)

[3] EP1S40F780C5 12881, 5120 RAM bits 100.25 -

[9] XC2V6000 22075 Slices 93.34 2(k+2)(kd+3)

Experimental results of the proposed

cryptosystem

The design is synthesized with Quartus II

tool based on Stratix IV FPGA

EP4SGX230KF40C2. The results show that our

proposed system allows the secret key to be

changed. At the operating frequency of 125 MHz,

the total processing bit rate is 4.0 Gbps that

satisfies the required bandwidth in the video

streaming application. Fig. 8 and Fig. 9 show the

decryption process for video content. The

original video content is recovered by XORing

the generated keystream and the encrypted video.

Fig. 9 shows the new secret key applied when the

signaling value of 0x2.

TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 18, SOÁ T4- 2015

 Trang 207

Fig. 8 The result captured by SignalTap Logic Analyzer (using the first key)

Fig. 9 The result captured by SignalTap Logic Analyzer (using the second key)

To test the operation of our cryptosystem, we

integrated H.264 decoder into our system (Fig. 1)

to decode the video content. Fig. 10 shows the

video content in memory captured by In-system

Memory Content Editor tool that is integrated

into the Quartus II tool. Fig. 11 shows one video

frame that is displayed on the display device.

Fig. 10 Video captured by In-system Memory Editor

Fig. 11 Video content displayed on the display device

Science & Technology Development, Vol 18, No.T4-2015

Trang 208

CONCLUSION

The high performance cryptosystem is

presented in this paper that has been implemented

and prototyped on FPGA Stratix IV

EP4SGX230KF40C2. The experimental results

show that the key exchange does not need to be

performed on a dedicated channel as in the

traditional cryptosystem. In addition, key

changing can be performed during one session,

which maximizes the security of this

cryptosystem. The decryption bit rate of this

architecture is up to 4.0 Gbps at the operating

frequency of 125 MHz, which is high enough for

the real-time application such as video streaming.

In this implementation, we focus not only on

improving the operating frequency, but also

optimizing the hardware resources.

Acknowledgement: The authors would like

to thank to CESLab for technical support and for

providing us with FPGA evaluation board. The

Department of Science and Technology of Ho Chi

Minh City has funded this research.

Thiết kế phần cứng hệ thống mật mã
có hiệu năng cao cho ứng dụng truyền
video
 Nguyễn Văn Toàn

 Đỗ Quốc Minh Đăng

 Nguyễn Đức Phúc

 Nguyễn Đình Thúc

 Huỳnh Hữu Thuận
Trường Đại học Khoa học Tự Nhiên, ĐHQG-HCM

TÓM TẮT

Bài báo này trình bày về thiết kế phần

cứng hệ thống mật mã có hiệu năng cao

dành cho ứng dụng truyền video. Hệ thống

chúng tôi đề nghị là hệ thống kết hợp hai

thuật toán mã hóa đối xứng và mã hóa công

khai nhằm tận dụng các ưu điểm của chúng.

Thuật toán mã hóa đối xứng ZUC được sử

dụng để mã hóa/giải mã video, trong khi đó

thuật toán mã hóa công khai RSA thực hiện

mã hóa/giải mã khóa bí mật. Kiến trúc này

đạt được hiệu năng cao như: độ bảo mật

cao và tốc độ xử lí (mã hóa/giải mã) cao. Hệ

thống đạt được độ bảo mật cao nhờ sự trao

đổi khóa bí mật dễ dàng của hệ mật mã

công khai. Nhờ tốc độ mã hóa/giải mã cao

của thuật toán mã hóa khóa đối xứng mà tốc

độ mã hóa/giải mã của hệ thống đạt được là

rất cao. Bộ giải mã video H.264 cũng được

tích hợp vào hệ thống để kiểm thử chức

năng của hệ thống mật mã. Hệ thống này

được thực hiện phần cứng bằng ngôn ngữ

đặc tả phần cứng Verilog-HDL, sau đó được

mô phỏng bằng bộ mô phỏng ModelSim, và

được kiểm tra, đánh giá trên bộ Kit của

Altera dùng FPGA Stratix IV. Tốc độ giải mã

mà hệ thống đạt được lên đến 4.0 Gbps tại

tần số hoạt động là 125 MHz, thỏa mãn các

ứng dụng truyền video.

Keywords: hệ thống mật mã, mã hóa, giải mã, RSA, ZUC, FPGA.

TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 18, SOÁ T4- 2015

 Trang 209

REFERENCES

[1]. A. Menezes, P. Oorschot, S. Vanstone,

Handbook of applied cryptography, CRC

Press (1997).

[2]. A.A. Gutub, F.A. Khan, Hybrid crypto

hardware utilizing symmetric-key & public-

key cryptosystems, International Conference

on Advanced Computer Science

Applications and Technologies, IEEE

(2012).

[3]. M.K. Hani, H.Y. Wen, A. Paniandi, Design

and Implementation of a private and public

key crypto processor for next-generation its

security applications, Malaysian Journal of

Computer Science, 19, 1, 29-45 (2006).

[4]. ETSI/SAGE Specification. Specification of

the 3GPP confidentiality and integrity

algorithms 128-EEA3 & 128-EIA3.

Document 2: ZUC Specification; Version:

1.6; Date: 28
th

 June 2011.

[5]. L. Wang, et al, Evaluating optimized

implementations of stream cipher ZUC

algorithm on FPGA, Springer, 202-215

(2011).

[6]. P. Kitsos, N. Sklavos, A.N. Skodras, An

FPGA implementation of the ZUC stream

cipher, 14
th

 Euromicro Conference on Digital

System Design, IEEE (2011).

[7]. C. McIvor, M. McLoone, J.V. McCanny,

Fast Montgomery modular multiplication

and RSA cryptographic processor

architectures, Conference Record of the

thirty-seventh Asilomar Conference, 379-384

(2003).

[8]. ETSI/SAGE Specification. Specification of

the 3GPP confidentiality and integrity

algorithms 128-EEA3 & 128-EIA3.

Document 3: Implementor’s Test Data;

Version: 1.1; Date: 4
th

 Jan 2011.

[9]. N. Wen, Z.B. Dai, Y.F. Zhang, FPGA

Implementation of alterable parameters RSA

public-key cryptographic Co-processor,

IEEE (2005).

