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ABSTRACT  

In model checking, a formal methods 
technique to verify a system with some 
desired properties, the guidance techniques 
have been employed a long time ago in 
driving the verification into area of `error` in 
the state space. Another technique is to 
choose the next state to be explored in a 
walk randomly to avoid the `wrong` 
guidance. When the latter is a non-
exhaustive technique in the sense that only 
a manageable number of walks are carried 

out before the search is terminated, it does 
scale well. In enhancing the technique to 
use recently powerful parallel/multi-core 
systems, research on parallelizing the 
algorithm shall be carried out. In this work, 
we propose a method that parallelizes the 
random-walk algorithm. It also increases 
the completeness of the non-exhaustive 
algorithm. The experimentation has shown 
the great improvement of the proposed 
algorithm compares to the original once.

Keywords: Model checking, random-walk, parallelization, multi-core. 

 

1. INTRODUCTION 

When software and hardware nowadays are 
used widely in society and human life, their 
correctness is the most challenge in system 
designing and implementing. Therefore, model 
checking, a formal methods approach, that 
verifies a given system with a desired property, 
is used recently in guarantee the correctness of 
the system. Traditionally, it is an exhaustive 
search on the state space of a system to ensure 
that no state violates the given property. 
Unfortunately, it faces the `state space 

explosion` problem in searching the state space. 
Although the use of heuristic guidance can 
improve the performance, model checking in 
reality is said not to scale well. Random-walk 
search, that draws walks through any large state 
space randomly to find errors, in contract, does 
scale well [1, 2, 3, 4, 5, 6]. 

Research on randomization has been carried 
out decades ago including random-walk [1, 14], 
guided random-walk [2, 3, 4, 5, 6]. In random-
walk based model checking, the search verifies 
the desired property along a path  (walk) 
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through the state space, in which each state is 
chosen randomly among the available states of 
the previous one (in the path). This approach 
examines one path at the time then possibly it 
needs only a minimum storage to keep explored 
states. In some special case, we may need to 
remember only the current state in the walk. Of 
course, as it does not scan the whole state space 
(or we do not know it does), it is an incomplete 
solution [6] and suggested to be used in `bug 
hunting` only. 

The guided random-walk based model 
checking is an application of heuristic search 
into random-walk [3]. In the kernel, the 
selection method to select the next state in a 
random walk is biased such that the `bester` 
states will have a higher probability to be chosen 
than the others. This approach has been shown 
to have impressive performance in model 
checking [3]. Once again, it is still an 
incomplete search.  

Another model checking research in 
randomization is randomized state space search 
[15] and randomized heuristic search [16]. The 
first one applies a random selection into the 
exhausted search at every time the search selects 
a state to be explored. The latter is to avoid 
`wrong` heuristic (or local optimization) by 
applying randomization in selection the next 
state to be explored among the `best` states. 

Research in paralleling model checking has 
also been carried out long time ago. It is divided 
into two main directions: parallel using 
distributed systems [9, 17] and using multi-core 
system [12]. The main difference between them 
is how the main memory is managed: distributed 
(in distributed systems) or centralized (in multi-
core systems). Of course, the performance of the 
model checking based both on the number of the 

computation components (computer or core) and 
the cost of distributing data (explored states) 
among those components. When the multi-core 
systems are used widely nowadays, this research 
area has been focused more recently. 
Unfortunately, model checking using 
parallel/multi-core systems is still facing its 
`very old` problems such as state space 
explosion.  

This work is to propose an application of 
parallelization and random walk in to the model 
checking for reducing the affect of the state 
space explosion (by using random walk) and 
increasing the overall performance (by using 
parallelization). 

The rest of the paper is as follows: In 
Section 2, some background knowledge about 
model checking, random walk, parallelized 
model checking is introduced. The proposed 
approach is in Section 3. The experimentation is 
in Section 4. The summary and future work is in 
the last section. 

2. BACKGROUND AND RELATED 
WORKS 

2.1. Model checking 

Model checking is a method to verify if a 
given (a model of) a system M satisfies a 
desired property φ, M ⊨ φ. A model of a system 
is usually defined as a transition system and the 
property is given as a temporal logic expression. 

Definition 1 [Transition system] A 
transition system is a 3-tupe M = (S, S0, ∆), in 
which S is a set of states, S0 ⊆ S is a set of initial 
states, ∆ = S × S is a set of transition. 

An execution path is defined as s0s1…, in 
which each <si,si+1> ∈ ∆. An execution path is a 
counter-example if it is an example to show a 
violation of system M to the property φ. 
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For reasoning about time, a property can be 
expressed in temporal logic, an extension of 
propositional logic to consist of temporal 
operators such as [] (always), <> (eventually), 
etc. (Linear Temporal Logic - LTL) and may 
consists of some qualifier such as ∀ (for all) and 
∃ (exists) (Computational Tree Logic - CTL). 

There are two main approaches in checking 
a model: explicit-state, which uses theories of 
automata, and symbolic, which uses symbolic 
representation for checking. In this work, we 
focus on the first approach only. 

2.2. Automata-theoretic model checking 

In this approach, both model and property 
are converted into Büchi automata, a kind of 
automata which accepts infinity languages. A 
(infinity) word is accepted in this automata if 
and only if an accepting/final state occurs 
infinity often in the word. 

Suppose that BM and B¬φ are Büchi 
automata for the model and the negation of the 
property, respectively. If the language of the 
production of those automata is empty, L(BM× 
B¬φ) = ∅, the model does satisfy the property. In 
reverse, if it is not empty, a accepting word of 
that language will be a counter-example.  

To do so, a search in the state space of the 
production B = BM× B¬φ is performed. If the 
current execution path is accepted, it will be 
returned as a counter-example. The famous 
search algorithm in this approach is Nested 
Depth First Search - NDFS [7]. In general, the 
algorithm has two Depth First Search (DFS) 
loops, the outer searches for the first accepting 
state, and then the inner starts its own search 
from that state back to that state again (a strong 
connected component in the path). In this case, 
the current path, which ensures that a final state 
will be appeared infinity often, is a counter-
example. 

2.3. Randomization in model checking 

The NDFS is simply an exhausted search, 
so it faces the state space explosion problem. To 
avoid that problem, [1, 14] applies random-walk 
to search the state space. There is only one loop: 
explore next state randomly until a strong 
connected component, which contains a final 
state, in the current path is confirmed. Each path 
can be limited in length (cut off point) and the 
search can be restarted. Research in [10] has 
shown that, the number of walks can be 
determined by N = ln(δ) / ln(1-ε), in which the 
probability that an accepting path can be found 
if make more walk is less than δ, given that the 
probability of a walk is greater than or equal ε. 
The cut off can be the point when the probability 
of a walk drops below ε. The algorithm is 
illustrated in Listing 1.  

1. for N times 

2.    s = rand(S0) 

3.    while (!is_goal(s) and !cut_off) 

4.       s = rand(successors(s)) 

5.       if is_goal(s) 

6.         return counter-example(s) 

7. return nill 

Listing 1. Random-walk based algorithm 

In this algorithm, the function rand returns 
one element of the input set randomly, 
successors returns all successors of a input state, 
is_goal checks for an accepted path, and 
counter-example builds the counter-example 
from the initial state to the input state.  

To due with the incompleteness of the 
random-walk based algorithm, a `nearly-
complete` random algorithm has been proposed. 
It  remembers all explored states and keeps a 
fringe of to-be-explored states. At every step, a 
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state is the fringe will be picked up randomly to 
be explored [11]. The algorithm is in Listing 2. 
It is actually a complete algorithm that explores 
the whole state space, but one can stop earlier at 
any time. In this algorithm, function 
rand_remove picks up one element from the 
input set randomly. 

To avoid memory overload, we can choose 
to not to store all explored states (as in line 8). 
In this case, the walk may re-scan visited states 
and then reduces the performance.  

In contract, work of [15] just applies the 
randomization into an exhausted search to avoid 
`model-bias`, a special cases in DFS in which 
the direction to the counter-example is always 
explored last. This leads to the case that, the 
error state can only be found when almost all 
states have been explored [1]. In that work, at 
every search step, a next state is chosen 
randomly to be explored. They later proposes 
that the whole algorithm can be paralleled if the 
main algorithm is duplicated into some other 
machines [8]. The drawback is that, each 
machine runs separately without any 
communication, so some machines re-do what 
the other machine already done.  

1. explored = Ø 

2. fringe = S0 

3. while (fringe ≠ Ø and !cut_off) 

4.   s = rand_remove(fringe) 

5.  if is_goal(s) 

6.     return counter-example(s) 

7.   fringe = fringe⋃(successors(s) \ 
explored) 

8.   explored = explored ⋃ {s} 

9. return nill 
Listing 2. Nearly-complete random-walk based 

algorithm 

2.4. Multi-core model checking 

As modern computer systems have been 
armed multi-core CPUs for performance 
improvement, some model checking algorithms 
have been proposed to gain advantages from the 
multi-core architecture. 

The most famous multi-core approach is to 
separate the outer and inner DFS into different 
concurrent processes, called dfs_blue and 
dfs_red, respectively [12] and using a set of 
colors (red, blue, cyan) to indicates visiting 
status of a state. By this approach, the outer DFS 
thread (dfs_blue) does not wait for the inner 
DFS thread (dfs_red) to be finished. 

[13] later proposed another way to increase 
the number of threads that the same time by 
adding a new color (pink) and sharing all status 
of each state (its colors). The performance is 
improved dramatically. 

3. RANDOM-WALK BASED MULTI-CORE 
MODEL CHECKING 

As mentioned earlier in this text, in bug-
hunting manner, we have to consider two 
problems: state space explosion and `model-
bias`. The random-walk have been shown to 
solve both problems well [1, 6]. To improve the 
performance of this approach, a parallelization 
will be applied. 

3.1. System architecture 

The architecture of the whole algorithm has 
been illustrated in Figure 1. The whole system is 
a network of parallel workers (depicted as 
worker, …). Each worker has its own local 
queue to store the to-be-explored states and to 
receive the to-be-explored states that comes 
from other workers in the system. 



SCIENCE & TECHNOLOGY DEVELOPMENT, Vol.18, No.K5 - 2015 

TRANG 112 

Figure 1. System architecture 

In this approach, the state explorer 
component in each worker gets a state from its 
queue randomly and generates all successors of 
that state. Those generated states can be put 
back to the queue or dispatched to other workers 
randomly. If each worker is initialized by 
different random seeds, the degree of 
randomization is increased. 

By this design, our proposed method can be 
executed in both random-walk modes: (1) basic 
random-walk mode (rw), in which only a few 
successors of the current state is explored at 
every step (see Listing 1); and (2) nearly-
complete mode (rwnc), in which all successors 
of the current state are put in the fringe (see 
Listing 2).  

In the first mode, the state explorer in each 
worker will put a successor to its queue and then 
may randomly send another successor, if any, to 
another worker. In some case, a worker may 
have more than one state in its queue (it put one 
in its queue when receiving another one from 
the network, simultaneously). In this case, it 
likely become a light-weight version of the 
second mode. As mentioned earlier in this text, a 
number of trials will be performed before 
terminating the whole search if no accepting 
random walk was found. 

In the second mode, the fringe is partitioned 
and distributed in all workers (such that the 
queues of all workers form the fringe). When 
each worker only picks a state from its own 
queue (partial fringe), there is no mutual 
exclusion when the workers intercept each 
others in selecting a state (from the fringe). Of 
course, there is still problem when a worker 
receives more than one state dispatched from the 
network at the same time. But that problem can 
be solved independently in each worker. 

This architecture allows us to install this 
system in a distributed system (distributed 
memory) when each worker can work 
independently. To reduce the bandwidth of the 
network, data may be redirected to the local 
queue more often than to be delivered over the 
network. The dispatching (of states) is not a 
problem in a share-memory/multi-core system. 

In case of completeness, the network needs 
a share storage to store all explored states. That 
could be a problem in a distributed system. 

A failure recovery component can also be 
included in this network to discover crashed 
worker. In this case, the local queue of the 
crashed one will be re-distributed to other 
workers.  

3.2. The algorithm 

The algorithm is illustrated in Listing 3 and 
4.  The algorithm is at follows. 

The main procedure starts all the workers 
(function start_all_workers in line 2). Each 
worker will do nothing when its queue is 
initialized empty (line 10, 11). Then, depend on 
the mode of the algorithm (mode=rw for basic 
random-walk and mode=rwnc for nearly-
complete random-walk), it initializes the queue 
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of the worker0 (line 3-8). In rw mode, the 
algorithm carries out a number of trials (N 
times) if no accepted path is found (goal_found). 
Of course, it has to clear all queue of all workers 
before starting the next trail (function 
clear_all_queues in line 5). In this mode, the 
queue of the first worker (queue0) is initialized 
by only one initial state randomly. In the second 
mode, that queue is initialized by the set of all 
initial states. Note that, all the queues together 
act as the fringe. At the end, all workers should be 
terminated (function stop_all_workers in line 9). 

proc main 

1. explored = Ø 

2. start_all_workers() 

3. if mode=rw 

4.    for N times and !goal_found 

5.       clear_all_queues() 

6.       queue[0] = {rand(S0)} 

7.  else if mode=rwnc 

8.     queue[0] = S0 

9. stop_all_workers() 

Listing 3. Parallel random-walk based 
algorithm (1) 

All worker works exactly the same without 
any priority. It scans its own queue for any  

 

 

 

 

 

 

activity. When the queue is empty, it is inactive 
(line 11). We can also modify this line to put 
this worker into sleeping mode for a while when 
necessary. Similar to the algorithm in Listing 2, 
when the current path is at the cut off point, the 
current path can be rejected. 

The main different to the algorithm listing 
in Listing 1 & 2 is in line 17-26. In rw mode, a 
successor state will be selected randomly to put 
into the queue of the worker (line 19). A 
randomly decision will be made (function 
random_decide in line 20) to send another 
successor state (function send in line 22) to a 
random worker (function rand_select in line 21 
return a worker randomly). 

At this step, we can only select an inactive 
worker that has no state in its queue, to send a 
state to. This will make all the workers work as 
much as possible. And hence, we can use the 
network effectively. 

In mode rwnc mode, all successor states 
will be dispatched (line 23-26) to all workers, 
including itself, randomly (function rand_select 
in line 25 picks one worker randomly). 

The function send(s, j), that distributes state 
around the network, should be synchronized 
when there may be more than one other workers 
send states to a worker at the same time. 



SCIENCE & TECHNOLOGY DEVELOPMENT, Vol.18, No.K5 - 2015 

TRANG 114 

proc worker(i) 

10. while (true) 

11.   if (queue[i] = Ø) continue  /* inactive */ 

12.   s = rand_remove(queue[i]) 

13.   if is_goal(s) 

14.      goal_found = true 

15.      return counter-example(s) 

16.   if (cut_off) continue 

17.   Sc = successors(s) \ explored 

18.   if mode=rw 

19.      queue[i] = 
queue[i]⋃(rand_remove(Sc)) 

20.      if random_decide() 

21.         if (workerj = rand_select(workers)) 

22.           send(rand_remove(Sc), workerj) 

23.    else if mode=rwnc 

24.       for all s’ ∈ Sc 

25.          if (workerj = rand_select(workers)) 

26.            send(s’, workerj) 

27.    explored = explored ⋃ {s} 

28. return 0 

 

proc send(s, j) synchronized 

29.    queue[j] = queue[j] ⋃ {s} 

Listing 4. Parallel random-walk based 
algorithm (2) 

3.3. Compare to related works 

This proposed approach is totally different 
with all works discussed in section 2.3 and 2.4. 
The work of [8] different with our work in two 
manners: the random-walk approach and the 
parallelization approach. When applying 
randomization, they randomly shuttle the queue 

in an exhausted search. When applying the 
parallelization, they duplicate one worker 
multiply with different random seed. All 
workers have no communication with each 
other. We also have a feature that allow us to 
reduce the coupling if we reduce the frequency 
of sending states around (in line 21, 22 and 25). 

Our proposed work also different with the 
works of [12] and [13]. Their works play around 
with sharing the status of states (colors) in 
NDFS (or blue-red search). The latter increase 
the number of workers by adding some more 
colors. Importantly, their algorithms are 
complete as in the worst case, they scan the 
whole state space. Our approach in general is 
incomplete as it is a random-walk based 
algorithm. Although we have one mode in our 
algorithm to allow the completeness, we 
actually do not focus in that case. We work for 
`bug-hunting`, so the random, fast and 
lightweight features are very important. In 
parallelizing the algorithm, we distribute states 
around the workers to increase the balance 
workload of the whole network. Moreover, as 
mentioned earlier in this text, our algorithm has 
a very nice feature to reduce the network 
workload by not sending states over the network 
frequently. 

4. EXPERIMENTATION 

4.1. Experimentation setup 

The system: the whole algorithm has been 
built in Spin model checker1.  

Benchmarks: we re-uses benchmark using 
in previous works published in [1, 6]. They are 
`error` versions of leader-election (l3_error, 

                                                

1 http://spinroot.com 
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l4_error, l5_error), peterson (peterson3, 
peterson4), and mutual-exclusion (mutex8, 
mutex12) protocols. We are not going to use 
`correct` versions when our work is not an 
exhausted search, then in the worst case, it may 
return no counter-example and conclude that 
there is no error with a probability [1]. 

Environment: all experiments are carried 
out in a 16-core server 3.27GHz with 16GB of 
RAM running CentOS 6.5. All data are 
averaged over 10 executions. 

4.2. Experimentation result 

The experimental results for all case studies 
with different modes are shown in Table 1 and 
illustrated in Figure 2, Figure 3 and Figure 4. 
We use two metrics in measuring the 
performances of all the algorithm: running time 
in seconds and the length of the counter-
example found by the algorithms. They are 
named time (s) and cxl in Table 1, respectively. 

The algorithms are as follow: 

- Parallel Breadth First Search (BFS_P): 
parallel version of the Breadth First Search 
provided by Spin. 

- Parallel BFS with randomization approach 
(BFS_P_RW): an application of random to 
the BFS_P, similar to the randomization in 
the work of [8]. 

- Parallel Nested Depth First Search 
(NDFS_P): the parallel version of the core 
algorithm (NDFS) using in Spin. 

- Parallel NFDS with our nearly-complete 
random-walk approach (NDFS_P_RW): the 
main contribution in this work. 

 

Table 1. Experimental results 

 

It is easy to see that, the randomization 
applied to Breadth First Search (BFS) slows 
down the system (around 7~13%). It is 
reasonable when the randomization takes time in 
shuttling the states in the queue. Of course, we 
can believe that the randomization may 
overcome the `bias` of the system-under-test. In 
this experiment, it is not that case. We suggest 
that, the work of [8] may have no advantage in 
applying into BFS.  

Another observable issue in this experiment 
is that the NDFS_P takes advantages to that of 
BFS_P in some cases, but some others. For 
example, it reduces the execution time in 
checking the leader-election protocol (l4_error) 
and peterson protocol (peterson4) around ~90%. 
However, it takes 70% more in the mutual-
exclusion (mutex12) protocol. It is illustrated in 
Figure 2, Figure 3 and Figure 4 (BFS_P and 
NDFS_P). 

As expected, our algorithm (NDFS_P_RW) 
overcomes NDFS_P in all the cases. It reduces 
the running time in checking the peterson3 
protocol to 100% (0.0040s down to 0.0020s). 
We believe that, when the random-walk is 
applied, the system has chances to avoid the 
`bias` of the system-under-test then it may reach 
the `error` faster in some case. Moreover, the 
randomization makes the checking stable, no 
matter how `bias` the system-under-test is. Of 
course, naturally, the NDFS_P_RW, a version 
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of NDFS, cannot guarantee about the optimal 
counter-example, if any, as in BFS. 

 

Figure 2. Running times for leader-election 
protocol 

 

Figure 3. Running times for mutual-
exclusion protocols 

 

Figure 4. Running times for peterson 
protocols 

4.3. Thread to validity 

In this work, we propose an algorithm with 
two execution modes: random-walk and nearly-
complete random-walk. The experimentation is 
for the nearly-complete mode only. The `purely` 
random-walk has not be experimented yet and 
may has a better or worse performance. That 
experimentation will be carried out in the near 
future. 

We also mentioned that, our algorithm can 
work on the real distributed system over a 
network of separated computers using separated 
memory. That experimentation will also be 
carried in the future. 

The implementation of our algorithm is in 
the Spin tool, then the correctness of the related 
features such as analysing the source models, 
the kernel of the model checking, etc. is 
trustable. 

5. SUMMARY AND FUTURE WORK 

In this work, we have proposed a new 
approach in parallelizing the random-walk based 
model checking. This approach allows a 
network of workers work simultaneously to 
explore the state space. It has a feature to share 
state around the network to increase the chance 
in finding error in the system-under-test and 
increase the overall performance. It also has a 
mode to consider the complete search through 
the state space by maintaining the explored 
states. Our proposed approach is shown to be 
different with related works. 

The performance of the proposed method is 
quite extremely good compare to the parallel 
version of NDFS algorithm in the Spin itself. 
That is expected when we do not suffer from the 
`bias` of the system-under-test as in Spin. Of 
course, in some circumstance, Spin will be best 
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as it may luckily reach the goal on it first few 
attempt. 

There are still works to do with our 
approach: (1) install it into a distributed system 
(and distributed memory) to find out the 

configuration of dispatching states around the 
network; (2) study about the cut off points as it 
may affect the completeness of the algorithm; 
(3) applying heuristic into random-walk as it has 
been research years ago in [6]. 

 

 

 

 

 

 

Song song hóa kiểm tra mô hình dựa trên 
đường đi ngẫu nhiên 

 
 Bùi Hoài Thắng 

Trường Đại học Bách Khoa, ĐHQG-HCM 

TÓM TẮT  

Phương pháp kiểm tra mô hình là một 
phương pháp hình thức được dùng rộng rãi 
trong thời gian gần đây để kiểm định tính 
đúng đắn của các hệ thống phần mềm và 
phần cứng. Các kỹ thuật dẫn hướng dùng 
heuristic đã được sử dụng trong một thời 
gian dài để dẫn hướng việc tìm kiếm vào 
trong các vùng có khả năng có sai sót. Một 
kỹ thuật khác là dùng đường đi ngẫu nhiên, 
nghĩa là chọn các trạng thái đi kiểm tra một 
cách ngẫu nhiên, để tránh việc dẫn hướng 
sai lầm. Kỹ thuật này là một kỹ thuật không 
phải vét cạn nên nó không (thực sự) cần bộ 
nhớ lớn và như vậy có thể tránh né sự bùng 

nổ tổ hợp trong bài toán kiểm tra mô hình. 
Để nâng cao hiệu quả của hướng nghiên 
cứu này và tận dụng sức mạnh của các hệ 
thống song song/đa nhân gần đây, việc áp 
dụng giải pháp song song hóa là rất cần 
thiết. Nghiên cứu này đề xuất một phương 
pháp song song hóa giải thuật đường đi 
ngẫu nhiên để nâng cao hiệu suất kiểm tra. 
Ngoài ra, nghiên cứu này cũng quan tâm 
đến việc tăng cường tính đầy đủ của giải 
thuật kiểu không vét cạn như thế này. Thực 
nghiệm cho thấy, giải pháp đề ra rất hiệu 
quả.

Từ khóa: Kiểm tra mô hình, đường đi ngẫu nhiên, song song hoá, đa-nhân. 
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