
SCIENCE & TECHNOLOGY DEVELOPMENT, Vol.18, No.K5 - 2015

TRANG 108

Parallelizing random-walk based model
checking

 Thang H. Bui

Ho Chi Minh city University of Technology - Vietnam National University Ho Chi Minh City,
Vietnam

(Manuscript Received on May 18nd, 2014, Manuscript Revised August 28nd, 2015)

ABSTRACT

In model checking, a formal methods
technique to verify a system with some
desired properties, the guidance techniques
have been employed a long time ago in
driving the verification into area of `error` in
the state space. Another technique is to
choose the next state to be explored in a
walk randomly to avoid the `wrong`
guidance. When the latter is a non-
exhaustive technique in the sense that only
a manageable number of walks are carried

out before the search is terminated, it does
scale well. In enhancing the technique to
use recently powerful parallel/multi-core
systems, research on parallelizing the
algorithm shall be carried out. In this work,
we propose a method that parallelizes the
random-walk algorithm. It also increases
the completeness of the non-exhaustive
algorithm. The experimentation has shown
the great improvement of the proposed
algorithm compares to the original once.

Keywords: Model checking, random-walk, parallelization, multi-core.

1. INTRODUCTION

When software and hardware nowadays are
used widely in society and human life, their
correctness is the most challenge in system
designing and implementing. Therefore, model
checking, a formal methods approach, that
verifies a given system with a desired property,
is used recently in guarantee the correctness of
the system. Traditionally, it is an exhaustive
search on the state space of a system to ensure
that no state violates the given property.
Unfortunately, it faces the `state space

explosion` problem in searching the state space.
Although the use of heuristic guidance can
improve the performance, model checking in
reality is said not to scale well. Random-walk
search, that draws walks through any large state
space randomly to find errors, in contract, does
scale well [1, 2, 3, 4, 5, 6].

Research on randomization has been carried
out decades ago including random-walk [1, 14],
guided random-walk [2, 3, 4, 5, 6]. In random-
walk based model checking, the search verifies
the desired property along a path (walk)

TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 18, SOÁ K5- 2015

 TRANG 109

through the state space, in which each state is
chosen randomly among the available states of
the previous one (in the path). This approach
examines one path at the time then possibly it
needs only a minimum storage to keep explored
states. In some special case, we may need to
remember only the current state in the walk. Of
course, as it does not scan the whole state space
(or we do not know it does), it is an incomplete
solution [6] and suggested to be used in `bug
hunting` only.

The guided random-walk based model
checking is an application of heuristic search
into random-walk [3]. In the kernel, the
selection method to select the next state in a
random walk is biased such that the `bester`
states will have a higher probability to be chosen
than the others. This approach has been shown
to have impressive performance in model
checking [3]. Once again, it is still an
incomplete search.

Another model checking research in
randomization is randomized state space search
[15] and randomized heuristic search [16]. The
first one applies a random selection into the
exhausted search at every time the search selects
a state to be explored. The latter is to avoid
`wrong` heuristic (or local optimization) by
applying randomization in selection the next
state to be explored among the `best` states.

Research in paralleling model checking has
also been carried out long time ago. It is divided
into two main directions: parallel using
distributed systems [9, 17] and using multi-core
system [12]. The main difference between them
is how the main memory is managed: distributed
(in distributed systems) or centralized (in multi-
core systems). Of course, the performance of the
model checking based both on the number of the

computation components (computer or core) and
the cost of distributing data (explored states)
among those components. When the multi-core
systems are used widely nowadays, this research
area has been focused more recently.
Unfortunately, model checking using
parallel/multi-core systems is still facing its
`very old` problems such as state space
explosion.

This work is to propose an application of
parallelization and random walk in to the model
checking for reducing the affect of the state
space explosion (by using random walk) and
increasing the overall performance (by using
parallelization).

The rest of the paper is as follows: In
Section 2, some background knowledge about
model checking, random walk, parallelized
model checking is introduced. The proposed
approach is in Section 3. The experimentation is
in Section 4. The summary and future work is in
the last section.

2. BACKGROUND AND RELATED
WORKS

2.1. Model checking

Model checking is a method to verify if a
given (a model of) a system M satisfies a
desired property φ, M ⊨ φ. A model of a system
is usually defined as a transition system and the
property is given as a temporal logic expression.

Definition 1 [Transition system] A
transition system is a 3-tupe M = (S, S0, ∆), in
which S is a set of states, S0 ⊆ S is a set of initial
states, ∆ = S × S is a set of transition.

An execution path is defined as s0s1…, in
which each <si,si+1> ∈ ∆. An execution path is a
counter-example if it is an example to show a
violation of system M to the property φ.

SCIENCE & TECHNOLOGY DEVELOPMENT, Vol.18, No.K5 - 2015

TRANG 110

For reasoning about time, a property can be
expressed in temporal logic, an extension of
propositional logic to consist of temporal
operators such as [] (always), <> (eventually),
etc. (Linear Temporal Logic - LTL) and may
consists of some qualifier such as ∀ (for all) and
∃ (exists) (Computational Tree Logic - CTL).

There are two main approaches in checking
a model: explicit-state, which uses theories of
automata, and symbolic, which uses symbolic
representation for checking. In this work, we
focus on the first approach only.

2.2. Automata-theoretic model checking

In this approach, both model and property
are converted into Büchi automata, a kind of
automata which accepts infinity languages. A
(infinity) word is accepted in this automata if
and only if an accepting/final state occurs
infinity often in the word.

Suppose that BM and B¬φ are Büchi
automata for the model and the negation of the
property, respectively. If the language of the
production of those automata is empty, L(BM×
B¬φ) = ∅, the model does satisfy the property. In
reverse, if it is not empty, a accepting word of
that language will be a counter-example.

To do so, a search in the state space of the
production B = BM× B¬φ is performed. If the
current execution path is accepted, it will be
returned as a counter-example. The famous
search algorithm in this approach is Nested
Depth First Search - NDFS [7]. In general, the
algorithm has two Depth First Search (DFS)
loops, the outer searches for the first accepting
state, and then the inner starts its own search
from that state back to that state again (a strong
connected component in the path). In this case,
the current path, which ensures that a final state
will be appeared infinity often, is a counter-
example.

2.3. Randomization in model checking

The NDFS is simply an exhausted search,
so it faces the state space explosion problem. To
avoid that problem, [1, 14] applies random-walk
to search the state space. There is only one loop:
explore next state randomly until a strong
connected component, which contains a final
state, in the current path is confirmed. Each path
can be limited in length (cut off point) and the
search can be restarted. Research in [10] has
shown that, the number of walks can be
determined by N = ln(δ) / ln(1-ε), in which the
probability that an accepting path can be found
if make more walk is less than δ, given that the
probability of a walk is greater than or equal ε.
The cut off can be the point when the probability
of a walk drops below ε. The algorithm is
illustrated in Listing 1.

1. for N times

2. s = rand(S0)

3. while (!is_goal(s) and !cut_off)

4. s = rand(successors(s))

5. if is_goal(s)

6. return counter-example(s)

7. return nill

Listing 1. Random-walk based algorithm

In this algorithm, the function rand returns
one element of the input set randomly,
successors returns all successors of a input state,
is_goal checks for an accepted path, and
counter-example builds the counter-example
from the initial state to the input state.

To due with the incompleteness of the
random-walk based algorithm, a `nearly-
complete` random algorithm has been proposed.
It remembers all explored states and keeps a
fringe of to-be-explored states. At every step, a

TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 18, SOÁ K5- 2015

 TRANG 111

state is the fringe will be picked up randomly to
be explored [11]. The algorithm is in Listing 2.
It is actually a complete algorithm that explores
the whole state space, but one can stop earlier at
any time. In this algorithm, function
rand_remove picks up one element from the
input set randomly.

To avoid memory overload, we can choose
to not to store all explored states (as in line 8).
In this case, the walk may re-scan visited states
and then reduces the performance.

In contract, work of [15] just applies the
randomization into an exhausted search to avoid
`model-bias`, a special cases in DFS in which
the direction to the counter-example is always
explored last. This leads to the case that, the
error state can only be found when almost all
states have been explored [1]. In that work, at
every search step, a next state is chosen
randomly to be explored. They later proposes
that the whole algorithm can be paralleled if the
main algorithm is duplicated into some other
machines [8]. The drawback is that, each
machine runs separately without any
communication, so some machines re-do what
the other machine already done.

1. explored = Ø

2. fringe = S0

3. while (fringe ≠ Ø and !cut_off)

4. s = rand_remove(fringe)

5. if is_goal(s)

6. return counter-example(s)

7. fringe = fringe⋃(successors(s) \
explored)

8. explored = explored ⋃ {s}

9. return nill
Listing 2. Nearly-complete random-walk based

algorithm

2.4. Multi-core model checking

As modern computer systems have been
armed multi-core CPUs for performance
improvement, some model checking algorithms
have been proposed to gain advantages from the
multi-core architecture.

The most famous multi-core approach is to
separate the outer and inner DFS into different
concurrent processes, called dfs_blue and
dfs_red, respectively [12] and using a set of
colors (red, blue, cyan) to indicates visiting
status of a state. By this approach, the outer DFS
thread (dfs_blue) does not wait for the inner
DFS thread (dfs_red) to be finished.

[13] later proposed another way to increase
the number of threads that the same time by
adding a new color (pink) and sharing all status
of each state (its colors). The performance is
improved dramatically.

3. RANDOM-WALK BASED MULTI-CORE
MODEL CHECKING

As mentioned earlier in this text, in bug-
hunting manner, we have to consider two
problems: state space explosion and `model-
bias`. The random-walk have been shown to
solve both problems well [1, 6]. To improve the
performance of this approach, a parallelization
will be applied.

3.1. System architecture

The architecture of the whole algorithm has
been illustrated in Figure 1. The whole system is
a network of parallel workers (depicted as
worker, …). Each worker has its own local
queue to store the to-be-explored states and to
receive the to-be-explored states that comes
from other workers in the system.

SCIENCE & TECHNOLOGY DEVELOPMENT, Vol.18, No.K5 - 2015

TRANG 112

Figure 1. System architecture

In this approach, the state explorer
component in each worker gets a state from its
queue randomly and generates all successors of
that state. Those generated states can be put
back to the queue or dispatched to other workers
randomly. If each worker is initialized by
different random seeds, the degree of
randomization is increased.

By this design, our proposed method can be
executed in both random-walk modes: (1) basic
random-walk mode (rw), in which only a few
successors of the current state is explored at
every step (see Listing 1); and (2) nearly-
complete mode (rwnc), in which all successors
of the current state are put in the fringe (see
Listing 2).

In the first mode, the state explorer in each
worker will put a successor to its queue and then
may randomly send another successor, if any, to
another worker. In some case, a worker may
have more than one state in its queue (it put one
in its queue when receiving another one from
the network, simultaneously). In this case, it
likely become a light-weight version of the
second mode. As mentioned earlier in this text, a
number of trials will be performed before
terminating the whole search if no accepting
random walk was found.

In the second mode, the fringe is partitioned
and distributed in all workers (such that the
queues of all workers form the fringe). When
each worker only picks a state from its own
queue (partial fringe), there is no mutual
exclusion when the workers intercept each
others in selecting a state (from the fringe). Of
course, there is still problem when a worker
receives more than one state dispatched from the
network at the same time. But that problem can
be solved independently in each worker.

This architecture allows us to install this
system in a distributed system (distributed
memory) when each worker can work
independently. To reduce the bandwidth of the
network, data may be redirected to the local
queue more often than to be delivered over the
network. The dispatching (of states) is not a
problem in a share-memory/multi-core system.

In case of completeness, the network needs
a share storage to store all explored states. That
could be a problem in a distributed system.

A failure recovery component can also be
included in this network to discover crashed
worker. In this case, the local queue of the
crashed one will be re-distributed to other
workers.

3.2. The algorithm

The algorithm is illustrated in Listing 3 and
4. The algorithm is at follows.

The main procedure starts all the workers
(function start_all_workers in line 2). Each
worker will do nothing when its queue is
initialized empty (line 10, 11). Then, depend on
the mode of the algorithm (mode=rw for basic
random-walk and mode=rwnc for nearly-
complete random-walk), it initializes the queue

TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 18, SOÁ K5- 2015

 TRANG 113

of the worker0 (line 3-8). In rw mode, the
algorithm carries out a number of trials (N
times) if no accepted path is found (goal_found).
Of course, it has to clear all queue of all workers
before starting the next trail (function
clear_all_queues in line 5). In this mode, the
queue of the first worker (queue0) is initialized
by only one initial state randomly. In the second
mode, that queue is initialized by the set of all
initial states. Note that, all the queues together
act as the fringe. At the end, all workers should be
terminated (function stop_all_workers in line 9).

proc main

1. explored = Ø

2. start_all_workers()

3. if mode=rw

4. for N times and !goal_found

5. clear_all_queues()

6. queue[0] = {rand(S0)}

7. else if mode=rwnc

8. queue[0] = S0

9. stop_all_workers()

Listing 3. Parallel random-walk based
algorithm (1)

All worker works exactly the same without
any priority. It scans its own queue for any

activity. When the queue is empty, it is inactive
(line 11). We can also modify this line to put
this worker into sleeping mode for a while when
necessary. Similar to the algorithm in Listing 2,
when the current path is at the cut off point, the
current path can be rejected.

The main different to the algorithm listing
in Listing 1 & 2 is in line 17-26. In rw mode, a
successor state will be selected randomly to put
into the queue of the worker (line 19). A
randomly decision will be made (function
random_decide in line 20) to send another
successor state (function send in line 22) to a
random worker (function rand_select in line 21
return a worker randomly).

At this step, we can only select an inactive
worker that has no state in its queue, to send a
state to. This will make all the workers work as
much as possible. And hence, we can use the
network effectively.

In mode rwnc mode, all successor states
will be dispatched (line 23-26) to all workers,
including itself, randomly (function rand_select
in line 25 picks one worker randomly).

The function send(s, j), that distributes state
around the network, should be synchronized
when there may be more than one other workers
send states to a worker at the same time.

SCIENCE & TECHNOLOGY DEVELOPMENT, Vol.18, No.K5 - 2015

TRANG 114

proc worker(i)

10. while (true)

11. if (queue[i] = Ø) continue /* inactive */

12. s = rand_remove(queue[i])

13. if is_goal(s)

14. goal_found = true

15. return counter-example(s)

16. if (cut_off) continue

17. Sc = successors(s) \ explored

18. if mode=rw

19. queue[i] =
queue[i]⋃(rand_remove(Sc))

20. if random_decide()

21. if (workerj = rand_select(workers))

22. send(rand_remove(Sc), workerj)

23. else if mode=rwnc

24. for all s’ ∈ Sc

25. if (workerj = rand_select(workers))

26. send(s’, workerj)

27. explored = explored ⋃ {s}

28. return 0

proc send(s, j) synchronized

29. queue[j] = queue[j] ⋃ {s}

Listing 4. Parallel random-walk based
algorithm (2)

3.3. Compare to related works

This proposed approach is totally different
with all works discussed in section 2.3 and 2.4.
The work of [8] different with our work in two
manners: the random-walk approach and the
parallelization approach. When applying
randomization, they randomly shuttle the queue

in an exhausted search. When applying the
parallelization, they duplicate one worker
multiply with different random seed. All
workers have no communication with each
other. We also have a feature that allow us to
reduce the coupling if we reduce the frequency
of sending states around (in line 21, 22 and 25).

Our proposed work also different with the
works of [12] and [13]. Their works play around
with sharing the status of states (colors) in
NDFS (or blue-red search). The latter increase
the number of workers by adding some more
colors. Importantly, their algorithms are
complete as in the worst case, they scan the
whole state space. Our approach in general is
incomplete as it is a random-walk based
algorithm. Although we have one mode in our
algorithm to allow the completeness, we
actually do not focus in that case. We work for
`bug-hunting`, so the random, fast and
lightweight features are very important. In
parallelizing the algorithm, we distribute states
around the workers to increase the balance
workload of the whole network. Moreover, as
mentioned earlier in this text, our algorithm has
a very nice feature to reduce the network
workload by not sending states over the network
frequently.

4. EXPERIMENTATION

4.1. Experimentation setup

The system: the whole algorithm has been
built in Spin model checker1.

Benchmarks: we re-uses benchmark using
in previous works published in [1, 6]. They are
`error` versions of leader-election (l3_error,

1 http://spinroot.com

TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 18, SOÁ K5- 2015

 TRANG 115

l4_error, l5_error), peterson (peterson3,
peterson4), and mutual-exclusion (mutex8,
mutex12) protocols. We are not going to use
`correct` versions when our work is not an
exhausted search, then in the worst case, it may
return no counter-example and conclude that
there is no error with a probability [1].

Environment: all experiments are carried
out in a 16-core server 3.27GHz with 16GB of
RAM running CentOS 6.5. All data are
averaged over 10 executions.

4.2. Experimentation result

The experimental results for all case studies
with different modes are shown in Table 1 and
illustrated in Figure 2, Figure 3 and Figure 4.
We use two metrics in measuring the
performances of all the algorithm: running time
in seconds and the length of the counter-
example found by the algorithms. They are
named time (s) and cxl in Table 1, respectively.

The algorithms are as follow:

- Parallel Breadth First Search (BFS_P):
parallel version of the Breadth First Search
provided by Spin.

- Parallel BFS with randomization approach
(BFS_P_RW): an application of random to
the BFS_P, similar to the randomization in
the work of [8].

- Parallel Nested Depth First Search
(NDFS_P): the parallel version of the core
algorithm (NDFS) using in Spin.

- Parallel NFDS with our nearly-complete
random-walk approach (NDFS_P_RW): the
main contribution in this work.

Table 1. Experimental results

It is easy to see that, the randomization
applied to Breadth First Search (BFS) slows
down the system (around 7~13%). It is
reasonable when the randomization takes time in
shuttling the states in the queue. Of course, we
can believe that the randomization may
overcome the `bias` of the system-under-test. In
this experiment, it is not that case. We suggest
that, the work of [8] may have no advantage in
applying into BFS.

Another observable issue in this experiment
is that the NDFS_P takes advantages to that of
BFS_P in some cases, but some others. For
example, it reduces the execution time in
checking the leader-election protocol (l4_error)
and peterson protocol (peterson4) around ~90%.
However, it takes 70% more in the mutual-
exclusion (mutex12) protocol. It is illustrated in
Figure 2, Figure 3 and Figure 4 (BFS_P and
NDFS_P).

As expected, our algorithm (NDFS_P_RW)
overcomes NDFS_P in all the cases. It reduces
the running time in checking the peterson3
protocol to 100% (0.0040s down to 0.0020s).
We believe that, when the random-walk is
applied, the system has chances to avoid the
`bias` of the system-under-test then it may reach
the `error` faster in some case. Moreover, the
randomization makes the checking stable, no
matter how `bias` the system-under-test is. Of
course, naturally, the NDFS_P_RW, a version

SCIENCE & TECHNOLOGY DEVELOPMENT, Vol.18, No.K5 - 2015

TRANG 116

of NDFS, cannot guarantee about the optimal
counter-example, if any, as in BFS.

Figure 2. Running times for leader-election
protocol

Figure 3. Running times for mutual-
exclusion protocols

Figure 4. Running times for peterson
protocols

4.3. Thread to validity

In this work, we propose an algorithm with
two execution modes: random-walk and nearly-
complete random-walk. The experimentation is
for the nearly-complete mode only. The `purely`
random-walk has not be experimented yet and
may has a better or worse performance. That
experimentation will be carried out in the near
future.

We also mentioned that, our algorithm can
work on the real distributed system over a
network of separated computers using separated
memory. That experimentation will also be
carried in the future.

The implementation of our algorithm is in
the Spin tool, then the correctness of the related
features such as analysing the source models,
the kernel of the model checking, etc. is
trustable.

5. SUMMARY AND FUTURE WORK

In this work, we have proposed a new
approach in parallelizing the random-walk based
model checking. This approach allows a
network of workers work simultaneously to
explore the state space. It has a feature to share
state around the network to increase the chance
in finding error in the system-under-test and
increase the overall performance. It also has a
mode to consider the complete search through
the state space by maintaining the explored
states. Our proposed approach is shown to be
different with related works.

The performance of the proposed method is
quite extremely good compare to the parallel
version of NDFS algorithm in the Spin itself.
That is expected when we do not suffer from the
`bias` of the system-under-test as in Spin. Of
course, in some circumstance, Spin will be best

TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 18, SOÁ K5- 2015

 TRANG 117

as it may luckily reach the goal on it first few
attempt.

There are still works to do with our
approach: (1) install it into a distributed system
(and distributed memory) to find out the

configuration of dispatching states around the
network; (2) study about the cut off points as it
may affect the completeness of the algorithm;
(3) applying heuristic into random-walk as it has
been research years ago in [6].

Song song hóa kiểm tra mô hình dựa trên
đường đi ngẫu nhiên

 Bùi Hoài Thắng

Trường Đại học Bách Khoa, ĐHQG-HCM

TÓM TẮT

Phương pháp kiểm tra mô hình là một
phương pháp hình thức được dùng rộng rãi
trong thời gian gần đây để kiểm định tính
đúng đắn của các hệ thống phần mềm và
phần cứng. Các kỹ thuật dẫn hướng dùng
heuristic đã được sử dụng trong một thời
gian dài để dẫn hướng việc tìm kiếm vào
trong các vùng có khả năng có sai sót. Một
kỹ thuật khác là dùng đường đi ngẫu nhiên,
nghĩa là chọn các trạng thái đi kiểm tra một
cách ngẫu nhiên, để tránh việc dẫn hướng
sai lầm. Kỹ thuật này là một kỹ thuật không
phải vét cạn nên nó không (thực sự) cần bộ
nhớ lớn và như vậy có thể tránh né sự bùng

nổ tổ hợp trong bài toán kiểm tra mô hình.
Để nâng cao hiệu quả của hướng nghiên
cứu này và tận dụng sức mạnh của các hệ
thống song song/đa nhân gần đây, việc áp
dụng giải pháp song song hóa là rất cần
thiết. Nghiên cứu này đề xuất một phương
pháp song song hóa giải thuật đường đi
ngẫu nhiên để nâng cao hiệu suất kiểm tra.
Ngoài ra, nghiên cứu này cũng quan tâm
đến việc tăng cường tính đầy đủ của giải
thuật kiểu không vét cạn như thế này. Thực
nghiệm cho thấy, giải pháp đề ra rất hiệu
quả.

Từ khóa: Kiểm tra mô hình, đường đi ngẫu nhiên, song song hoá, đa-nhân.

SCIENCE & TECHNOLOGY DEVELOPMENT, Vol.18, No.K5 - 2015

TRANG 118

REFERENCES

[1]. T.H. Bui and A. Nymeyer, ranSPIN: a
random-walk based model checker,
Workshop on Advanced Computing and
Applications (ACOMP’08), HoChiMinh
City, Vietnam, pp. 38-48, 2008.

[2]. T.H. Bui and A. Nymeyer, The spin on
guided random search in verification,
ICSTW 2008, pp. 170-177, 2008.

[3]. T.H. Bui and A. Nymeyer, Formal
verification based on guided random walks,
iFM'09, vol. 5423 of LNCS, pp. 72-87,
Springer-Verlag, 2009.

[4]. T.H. Bui and A. Nymeyer, Formal model
simulation: Can it be guided?, SSBSE'09,
pp. 93-96, IEEE CS, 2009.

[5]. T.H. Bui and A. Nymeyer, Integrated
guided model checking and model
simulation, Submitted, 2009.

[6]. T.H. Bui and A. Nymeyer, Heuristic
sensitivity in guided random-walk based
model checking, SEFM'09, IEEE, 2009.

[7]. C. Courcoubetis and M. Y. Vardi and P.
Wolper and M. Yannakakis, Memory-
Efficient Algorithms for the Verification of
Temporal Properties, Formal Methods in
System Design 92, vol. 1(2/3), pp. 275-288,
1992.

[8]. M.B. Dwyer, S. Elbaum, S. Person, and R.
Purandare, Parallel randomized state-space
search, ICSE '07, pp. 3-12, IEEE CS, 2007.

[9]. H. Garavel, R. Mateescu, and I.
Smarandache, Parallel state space
construction for model-checking, SPIN '01,
Springer-Verlag New York, Inc., USA, pp.
217-234, 2001.

[10]. R. Grosu and S.A. Smolka, Monte Carlo
model checking, TACAS’05, vol. 3440 of
LNCS, pp. 271-286, Springer, 2005.

[11]. R. Grosu, X. Huang, S.A. Smolka, W. Tan,
and S. Tripakis, Deep random search for
efficient model checking of timed automata,
vol. 4888 of LNCS, pp. 111-124, Springer,
2006.

[12]. G.J. Holzmann, D. Bosnacki, Multi-Core
Model Checking with SPIN, Parallel and
Distributed Processing Symposium 2007 -
IPDPS 2007. IEEE International, pp.1-8,
March 2007.

[13]. A. Laarman, R. Langerak, J.V.D. Pol, M.
Weber, and A. Wijs, Multi-core nested
depth-first search, ATVA'11, Springer-
Verlag, Berlin, Heidelberg, pp. 321-335,
2011.

[14]. M. Mihail and C.H. Papadimitriou, On the
random walk method for protocol testing,
CAV’94, vol. 818 of LNCS, pp. 132-141,
Springer-Verlag, 1994.

[15]. D. Owen and T. Menzies, Lurch: a
lightweight alternative to model checking,
SEKE'03, pp. 158-165, 2003.

[16]. N. Rungta and E. G. Mercer, Generating
Counter-Examples Through Randomized
Guided Search, SPIN’07, vol. 4595 of
LNCS, pp. 39-57, Springer-Verlag, 2007.

[17]. H. Sivaraj and G. Gopalakrishnan, Random
walk based heuristic algorithms for
distributed memory model checking,
PDMC'03, vol. 89(1) of ENTCS, pp. 51-67,
Elsevier, 2003.

