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ABSTRACT

This paper proposes a chaotic
biogeography based optimization (CBBO) for
solving optimal reactive power dispatch
(ORPD) problem. Based on biogeography
based optimization (BBO) theory proposed
by Dan Simon in 2008, a new artificial
intelligence with full models and equations
have been used to achieve the best solution
for objective function of ORPD such as total
power loss, voltage deviation and voltage
stability index while satisying various
constraints of power balance, voltage limits,

transformers tap changer limits and
switchable capacitor bank limits. The BBO
has been enhanced its search ability by
adding chaotic theory. Therefore, the
proposed CBBO can obtain better solutiong
quality than BBO for optimization problems.
The proposed method has been tested on the
IEEE-30 and IEEE-118 bus systems and the
obtained results have been verified with other
methods. The result comparison has
indicated that the CBBO can be a promise
method for dealing the ORPD problem

Keywords: Optimal Reactive Power Dispatch, Biogeography Based Optimization, Chaos
Theory, Power loss, Voltage Deviation, Voltage Stability Index

1. INTRODUCTION

The main objective of optimal reactive power
dispatch (ORPD) [1] in electrical power system is
to minimize the objective function via the optimal
adjustment of the power system control variables,
while at the same time satisfying various equality
and inequality constraints. Some objective
functions in ORPD to evaluate the quality of
power system is real power loss, voltage deviation
at load buses [2], voltage stability index [3]. The
equality constraints are the power flow balance
equations, while the inequality constraints are the
limits on the control variables and the operating
limits of the power system dependent variables.

The problem control variables include the
generator bus voltages, the transformer tap
settings, and the reactive power of shunt
compensator, while the problem dependent
variables include the load bus voltages, the
generator reactive powers, and the power line
flows.

There are various techniques ranging were
introduced to solve ORPD, from conventional
methods to artificial intellgence based methods.
These conventional methods have been used for
approaching the ORPD is linear programming
(LP) [4], mixed-integer programming (MIP) [5],
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interior point method (IPM) [6], dynamic
programming (DP) [7] and quadratic
programming (QP) [8]. The convetinal
optimizations are easily to be carried out, the
results is acceptable but can be trapped in local
minima and this optimization can not act on the
discrete variables. Recently, meta-heuristic search
methods become more popular in doing with
ORPD. Several methods, most of them are based
on the biological model like evolutionary and
behavior in species, were wused such as
evolutionary programming (EP) [9], genetic
algorithm (GA) [10], differential evolution (DE)
[11], ant colony optimization (ACO) [12] and
particle swarm optimization (PSO) [13]. These
methods can improve the solutions for ORPD
although it is more complex and slow in
performance.

In this project, we discuss about an
evolutionary algorithm that was found in 2008 by
Dan Simon [14], called Biogeography Based
Optimization. It is based on the migration and
mutation of species in natural and the status of
ecosystem in different time. By supplying the full
theory and model of CBBO, we proved the useful
of this algorithm by testing on IEEE-30 bus
system and IEEE-118 bus system. The results is
compared with the other paper to evaluate the
advantage or disadvantage of this method.

2. FORMULATION OF ORPD
The ORPD problem is built based on the
mathematics concepts
Min F (x,u)
g(x,u)=0
h(x,u) <0
1)
where F (x,u) called the objective function
whose output is the minimum value we want.
g(x,u) is the equality constraints and h(x,u) is
the inequality constraints.

Applied the above to the ORPD problem,
is the containing vector of the controlled
variables: the voltage and phase of load, reactive
power of the generators and real power of slack
bus.

X = (P(Sl’ 92 youny ON ’VLl""’VLNL’le' ---1ang)T (2)

u is the containing vector of the controlling
variables: voltage of generators, tap-setting of

transformers and the reactive power at
compensator.
u= (V@Ii"'vgng ’Ti"'TNT ’Qci"'Qch)T (3)

The objective function is depended on the
target of optimization. Normally, there are three
functions used:

- The total active power loss in transmission:
2 2
F=PL= > 0,V 4V’ -2V cos6,) (4)
keNbr
where 0, is the conductance of branch k,

Vi is the voltage magnitude at bus 1 and 9ij is
the voltage angle different between bus 1 and j.

- Voltage deviation at loaded buses for
voltage profile improygment:

Vo=, V¥ ©

where Vi * s the standard value to evaluate the
deviation, normally set at 1 p.u.

- Voltage stability index for voltage stability
enhancement:

Fu) =L, =MLY =L N, 0

where g(x,u) is the equality constraints, it follow
the power conservation law:

Po =P, + P, ()
This equation can be spread:
P -P —viZ:vj (g, cos0 +B, sing)=0
{Qgi -Q, —vinj (9,sing, +B, cos6)=0
(8)
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where @i, Bii are the transfer conductance and
susceptance between bus i and bus j; Fﬁi,Qdi
are the real and reactive power outputs of
generating at bus 1 ; Pgi,Qgi are the real and
reactive power outputs of generating unit 1.

This equality constraints is checked by
running Power Flow by Newton-Raphson method
in Matlab.

h(x,u) is the
represented as follows:

inequality  constraints

a) The power limitations:

{Pgr;g]ck‘ < Pgslack < Pgrsrli)ék (9)
Qr<Qu < Q"
b) The voltage limitations:

Vimin SVi Svimax (10)

c) Transformers tap-settings constraints:
Timin < Ti < Timax (11)

d) The compensator capacitor limitations:

Qg\in < (?C < Qcmax (12)
e) The power flow limitations:
S, <§™ (13)

where Si is the maximum power flow between
bus 1 and bus j.

S = max{| S; IS I} (14)
To check the inequality constraint, we use the
Static Square method. The objective function F
not only have the output value but also adding the

penalty function k ¥ (f(X))* with:
0 X < X <X

F(x) =3 (% = Xpa)*

(Xmin - Xi)2

Xi > Xmax (15)

Xi < Xmin
So with the penalty function, the objective

function will be rewritten as:

NPQ NI

F=FrkQ Q) +kQF(V)+kDF(S) (16)

i=1 i=1 i=1

3. CHAOTIC BIOGEOGRAPHY BASED
OPTIMIZATION

3.1 Migration [14]

Mathematical models of biogeography
describe how species migrate from one island to
another, how new species arise, and how species
become extinct. Geographical areas that are well
suited as residences for biological species are said
to have a high habitat suitability index (HSI) [14].
The variables that characterize habitability are
called suitability index variables (SIVs) [14].
SIVs can be considered the independent variables
of the habitat, and HSI can be considered the
dependent variable. Habitats with a high HSI tend
to have a large number of species, while those
with a low HSI have a small number of species.
Habitats with a high HSI have many species that
emigrate to nearby habitats, simply by virtue of
the large number of species that they host.
Habitats with a high HSI have a low species
immigration rate because they are already nearly
saturated with species. Therefore, high HSI
habitats are more static in their species
distribution than low HSI habitats. By the same
token, high HSI habitats have a high emigration
rate; the large number of species on high HSI
islands have many opportunities to emigrate to
neighboring habitats.

The parameters below is used for BBO
investigation:

- Habitat suitability index (HSI): to evaluate
the capability of the island for the creatures.

- Suitability index variables (SIVs): the
independent  variables such as rainfall,
temperature, humidity...

- Immigration rate: A

- Emigration rate: U
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Figure 1. Linear curve of fitness — migration

Considering the immigration curve. The
maximum possible immigration rate to the habitat
is which occurs when there are zero species in the
habitat. As the number of species increases, the
habitat becomes more crowded, fewer species are
able to successfully survive immigration to the
habitat, and the immigration rate decreases. The
largest possible number of species that the habitat
can support is at which point the immigration rate
becomes zero.

Now considering the emigration curve. If
there are no species in the habitat then the
emigration rate must be zero. As the number of
species increases, the habitat becomes more
crowded, more species are able to leave the
habitat to explore other possible residences, and
the emigration rate increases. The maximum
emigration rate is which occurs when the habitat
contains the largest number of species that it can
support.

The equilibrium number of species is, at
which point the immigration and emigration rates
are equal. However, there may be occasional
excursions from due to temporal effects. Positive
excursions could be due to a sudden spurt of
immigration, or a sudden burst of speciation.
Negative excursions from could be due to disease,
the introduction of an especially ravenous
predator, or some other natural catastrophe. It can
take a long time in nature for species counts to
reach equilibrium after a major perturbation.

With the linear curves, the value of A, u
whether there are s species in habitat can be
written as:

b= 2 A=10-2) )
where:
- E is the highest emigration rate
- | is the highest immigration rate
- n is the maximum species in habitat

We use the emigration and immigration rates
of each solution to probabilistically share
information between habitats. If a given solution
is selected to be modified, then we use its
immigration rate A to probabilistically decide
whether or not to modify each suitability index
variable (SIV) in that solution. If a given SIV in a

given solution S; is selected to be modified, then
we use the emigration rates 4 of the other

solutions to probabilistically decide which of the
solutions should migrate a randomly selected SIV

to solution S; .

The BBO migration strategy is similar to the
global recombination approach of the breeder GA
and evolutionary strategies in which many parents
can contribute to a single off-spring, but it differs
in at least one important aspect. In evolutionary
strategies, global recombination is used to create
new solutions, while BBO migration is used to
change existing solutions. Global recombination
in evolutionary strategy is a reproductive process,
while migration in BBO is an adaptive process; it
is used to modify existing islands.

As with other population-based optimization
algorithms, we typically incorporate some sort of
elitism in order to retain the best solutions in the
population. This prevents the best solutions from
being corrupted by immigration.

3.2 Mutation [14]
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Now, consider the probability Ps that the
habitat contains exactly S species. By calculate
the limit of the changing time of habitat, At — 0

, We have the probability equation:

~(A, +u )P +p P $=0
PS = _(}‘5 + ’Lls)Ps + j'Sflpsfl + ‘L[s+lps+1 1 S S S Snmx 71 (18)
—(}Ls + ﬂs)Ps +A P S=5_

s-1 s-1

If a given solution S has a low probability P,
, then it is surprising that it exists as a solution. It
is likely to mutate to some other solution. This can
be implemented as a mutation rate m that is
inversely proportionfl_t?:)the solution probability:
S

M(s) = My ( 5 ) (19)

max
where My, is the user-defined parameters.

This mutation scheme tends to increase diversity
among the population. Without this modification,
the highly probable solutions will tend to be more
dominant in the population. This mutation
approach makes low HSI solutions likely to
mutate, which gives them a chance of improving.
It also makes high HSI solutions likely to mutate,
which gives them a chance of improving even
more than they already have.

3.3 Application BBO to ORPD problem

Step 1. Set the initial value for the BBO
variables. The i-th species in BBO is a vector of
controlling variables:

X, =V Voo Qo Que T T 1 (20)
The starting value of X, is defined by:
X, = X" +rand(x™-x"") rand €[0;]]  (21)
Step 2: Set the value of BBO algorithm.

Step 3: Run the Power-flow by Newton-
Raphson method and check the constraint of
controlling variables.

Step 4: Calculate the fitness value and
compute A, u .

Step 5: Do the migration step
Step 6: Do the mutation step

Step 7: Back to the step 3 for the next
iteration.

If the variables after step 5 and 6 is not
satisfied the constraints, we optimize them by set
the threshold for the variables:

{X = Xmax

X = Xmin (22)
3.4 Chaos theory and application in BBO
algorithm

X > Xnax
X < Xmin

In BBO algorithm, we used the random value
to define whether migration, mutation or not. It is
absolutely incidental process. Various researches
before and my results have pointed that this
process complied with Normal (Gaussian
Distribution) [15]. The solutions complied with
this distribution have very high probability near
average point, means that the solutions is
concentrated at a specific value which is not the
minimum value. (see the Figure 2)

To demolish this disadvantage of BBO, chaos
theory was used to supply the comparing value in
migration or mutation step. Chaos theory is used
to research about systems that seem to be chaotic
but can be predicted. This is applied in dynamic
systems that is sensitive with initial conditions
and have unlimited dimensions. This is popular
applied in Soil Mechanics, Solar-system, Liquid
convection, Geography and Economics.

A chaotic map in this paper is a reflect:
[0,1]—[0,1] by the recursive function:
x(n+1) =F(x(n)) with X(n) is the value of
chaotic map at n-th iteration. The orbit of function
can be easily predict by the characteristics of
value and convergence. Each chaotic map has
unique characteristics and with the different initial
values, we have the different displays of the graph
of function. The chaotic maps used in this project
are list below [16].

— Chebyshev:
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%, =cos(i.acos(x(i)) (23)
— Circle:

X, =mod(x +Q - Lsin(zﬁx(i)),l) (24)
2

P
— Gauss:
x,=e"" - p (25)
— lterative:
ar
— Logistic:

x,=ax(1-X%) a<4 (27)
— Piecewise:
0.4-x(i)
0.4

05-x(i) .
o1 x(i)(0.4,0.5) 8)

0.6-x(i)
0.1

1-x(i) x(i) e(0.6,1)

0.4

x(i)<(0,0.4)

x(i)€(0.5,0.6)

— Sine:

X, =asin(z.x(i)) (29)
— Sinusoid:

X =ax(i)" sin(z.x()) (30)

—  Saw:

(31)

4. RESULTS

We use the CBBO algorithm to apply in the
IEEE-30 bus and IEEE-118 bus system to
calculate and evaluate with the other recent
project. With a chaotic map, we run with the
initial value in {0.1, 0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8,
0.9}.The algorithm is simulated on MATLAB

2012 R2012b and the CPU: Intel core i5, 2.4 Ghz,
2.00 GB RAM.

4.1 IEEE-30 bus System

The IEEE-30 bus system is available in [17]
with the data in the two following tables.

Table 2. The structure of the experimented IEEE-30

bus system
Branches | Genera- | Transfo- | Capacitors | Controlling
tors rmers variables
4l 6 4 9 19

Table 3. Basic values in IEEE-30 bus test system

ZPUI ZQUI ZPQI ZQQI
(Mw) (MVAr) (Mw) (MVAr)
283.4 126.2 287.92 89.2

Min = 59427, Max = 7.3243
50 T T T

W re =
=2 =] o

X
=

Frequency of appearance
&

o

6 6.2 6.4 66 68 7 72 74
Value of fitness function

Figure 2 Values of Pmsmin with multi running time in
random BBO

In this paper, the power flow solutions for the
systems are obatined from Matpower toolbox
[18]. In test system, the generators are located at
buses 1, 2, 5, 8, 11, 13 and the available
transformers are located on lines 6-9, 6-10, 4-12
and 27-28. The switchable capacitor banks will be
installed at buses 10, 12, 15, 17, 20, 21, 23, 24 and
29 with the minimum and maximum values of 0
and 5 MVATr, respectively. The limits for controls
variables are given in [20], generation active
power in [21], and power flow transmisson lines
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in [22]. The number of population is set to 10, the
maximum iterations is 200 and the results were
got by 50 independent runs. The comparion
results were from [19].

Min = 50918, Max = 7.5016

9

= o o

Frequency of appearance

w

6 65 8
Value of fitness function

Figure 3 Values of B, With multi running time in
a random CBBO

Two following figures shows the results of 50
independent runs of “random” BBO and a random
CBBO in optimal total power loss, respectively,
to clear the optimization of chaos theory to BBO.

Clearly, only 6% of solutions in BBO is far
away the average point but the CBBO have high
probability (18%) of values near the minimum
value of computing. The minimum value in
CBBO is better a lot than the BBO’s.

Table 4. Result by CBBO methods for the IEEE-30
bus system with power loss objective and comparison

R | Voltage | Voltage i
Method 39¢ 1 sqability | Rumming
(MW) Deviation Index time (s)
CBBO 4.94 0.31 0.14 30.37
PSO- 451 2.05 0.13 10.98
TVIW
PSO- 453 1.98 0.13 10.85
TVAC
HPSO- 453 1.93 0.13 10.38
TVAC
PSO-CF 451 2.06 0.13 10.65
PGPSO 451 2.06 0.13 12.21

Table 5. Result by CBBO methods for the IEEE-30
bus system with voltage deviation objective and

comparison

Voltage Ressrmin Voltage i
Method g Stability | Running

Deviation | (MW) | Index time (s)
CBBO 0.19 6.07 0.15 18.06
PSO- 0.09 5.84 0.15 9.97
TVIW
PSO- 0.12 5.38 0.15 9.88
TVAC
HPSO- 0.11 5.73 0.15 9.59
TVAC
PSO-CF 0.09 5.82 0.15 9.89
PGPSO 0.09 5.80 0.15 11.11

Table 6. Result by CBBO methods for the IEEE-30
bus system with voltage stability index objective and

comparison

Voltage .

Method | Stability Pwemn | Voltage tFiQrL:]nn(m)g
iati e (s

Index (Mw) | Deviation
CBBO 0.13 5.28 1.32 15.47
PSO- 0.12 491 1.94 13.42
TVIW
PSO- 0.12 4.86 1.91 13.39
TVAC
HPSO- 0.13 5.26 1.68 13.05
TVAC
PSO-CF 0.12 5.00 1.94 13.39
PGPSO 0.12 481 2.04 14.57

The results in CBBO is presented in below
table with comparing results by three criteria: total
power loss, voltage deviation and voltage stability
index, respectively.

4.2 IEEE-118 bus System

The IEEE-118 bus system is available in [17]
with the data in the two following table
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Table 7. The structure of the experimented IEEE-118

bus system
Branches | Genera- | Transfo- | Capacitors | Controlling
tors rmers variables
186 54 9 14 77

Table 8. Basic values in IEEE-118 bus test system

PSO- 0.39 179.80 0.07 78.70
TVAC
HPSO- 0.21 146.81 0.07 74.90
TVAC
PSO-CF 0.18 164.97 0.07 78.13

Table 11. Result by CBBO methods for the IEEE-118
bus system with voltage stability index objective and

comparison
R N P et | Sy | | Voo | i
(Mw) (MVAr) (Mw) (MVAr) x| (vw) | Deviation | time (s)
4242 1438 4357.28 650.7 CBBO | 0.07 125.71 | 1.06 146.57
PSO- 0.06 183.87 | 1.38 119.66
Table 9. Result by CBBO methods for the IEEE-118 TVIW
bus system with power loss objective and comparison
PSO- 0.06 18456 | 1.21 119.22
Ploss min Voltage Voltage | Runnin TVAC
Metho iatio | Stabilit | g time
d (Mw) | Deviatio p HPSO- | 0.06 15539 | 1.34 1119.16
n yIndex | (s)
TVAC
CBBO | 113.93 0.53 0.07 143.45 PSO- 0.06 20372 | 1.54 119.86
F
PSO- 116.65 2.07 0.06 91.72 ¢
TVIW . . .
The results in CBBO is presented in below
$§/0A-0 124.33 1.43 0.07 85.32 table with comparing results by three criteria: total
power loss, voltage deviation and voltage stability
HPSO- | 116.20 1.86 0.07 85.25 . .
TVAC index, respectively.
PSO- 115.65 213 0.06 91.86 5. CONCLUSIONS
CF . I,
In this paper, a new artificial intelligence

The limits of variables is similar with 1V.a.
The limits for controls variables are given in [20],
generation active power in [21], and power flow
transmisson lines in [22]. The number of
population is set to 30, the maximum iterations is
200 and the results were got by 50 independent
runs. The comparion results were from [19].

Table 10. Result by CBBO methods for the IEEE-118
bus system with voltage deviation objective and

comparison
Voltage Ressrmin Voltage i
Method g Stability |Running
Deviation | (Mw) Index time (s)
CBBO 0.48 130.02 0.07 74.22
PSO-TVIW 0.19 176.46 0.07 78.49

based method BBO has been presented with full
overview and results. With the optimization by
chaos theory, CBBO have high probability for
searching and approach the minimum value of
objective function of the ORD probem better than
BBO algorithm. For the result comparison, the
method is shown more useful with the large
searching space with more variables althoungh the
CBBO is not effective in searching voltage
deviation and voltage stability index value. By
testing on the IEEE-30 bus and IEEE-118 bus
systems, the proposed method has shown that it is
more effective for large scale systems. Therefore,
the proposed CBBO is very favoable for solving
the large-scale ORPD problem.
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bieu do toi wu cong suat khang st dung
phwong phap toi wu hoa dwa trén dia sinh
hoc va ly thuyét hén loan

*  Trwong Xuan Quy
= V6 Ngoc Diéu

Trwdng Dai hoc Bach Khoa — DHQG-HCM, Viét Nam

TOM TAT

Bai bao dé xuat phuong phép téi wu héa
dwa trén dia sinh hoc hén loan (CBBO) dé
gidi bai toan diéu dé téi wu céng suét khang
(ORPD). Trén co sé ly thuyét tbi vu dura trén
dia sinh hoc (BBO) do Dan Simon dé xuét
nam 2008, mét phwong phép théng minh
nhan tao méi véi ddy di mé hinh va céc
phuong trinh duoc ép dung dé dat duoc 10i
gidi tét nhat cho ham muc cda bai toan ORPD
nhuw téng tén that cong suét, dé léch dién ap
va chi s6 6n dinh dién &p théa man céc rang
budc khac nhau cén bang cong suét, giéi han
dién ép, gi6i han céc bo déi ndc may bién ap,

va giéi han céng suét cac tu bl ngang.
Phwong phap BBO dwoc tdng cuwong kha
n&ng fim kiém béng cach thém ly thuyét hén
doén. Vi vay, phuong phap CBBO cé thé dat
duroc chét lwong 161 gidi tét hon phuong phéap
BBO cho céac bai toan téi wu. Phuong phap
dé xuét CBBO duwoc &p dung tinh toédn cho
cac hé théng chuén IEEE 30 nut va IEEE 118
nat va két qua dat duoc da duoc ching véi
céc phuong phap khéac. Tir két qué so sanh
cho thdy rang CBBO a mét phurong phép day
hira hen dé gidi bai toan ORDP.

Tur khoa: Diéu do toi uu cong sudt khang, Toi wu hoa dwa trén dia sinh hoc, Ly thuyét hdn
loan, Tén that cong suét, Do lech dién ap, Chi sé én dinh dién ap.
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