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ABSTRACT 

A numerical study of extremely strong shocks 
was presented. Various types of numerical 
schemes with first-order accuracy and higher- 
order accuracy with adaptive stencils were 
implemented to solve the one and two-
dimensional Euler equations based on the 
explicit finite difference method, including Roe’s 
first-order upwind, Steger-Warming Flux Vector 
splitting (FVS), Sweby’s flux-limited and 
Essentially Non-oscillatory (ENO) scheme. The 

result comparisons were carried out to discuss 
which scheme is the most suitable for strong 
shock problem. The dissipative nature of the first-
order scheme can be easily seen from the 
numerical solutions. High order ENO scheme 
had the best resolution for the case having weak 
discontinuity, but it over- predicted the shock 
wave location for the case of strong 
discontinuity. 

Keywords: numerical schemes, strong shock, Euler equations 

1.  INTRODUCTION 

In physics, shock waves are small transition 
layers of abrupt change of physical states such as 
density, pressure or temperature. For engineering 
problems, shock waves are often observed in dam 
break problem or from an explosion. In order to 
predict and evaluate the effects of strong shocks, 
computational approach is a robust and low cost 
method to investigate the nature of the shock 
waves. This study concerned strong shock, e.g. 
shock from an explosion, which has large 

discontinuities. Many robust, stable and accurate 
numerical methods have been developed for 
shock-capturing problem including some basic 
methods such as Lax-Friedrichs’s method, Lax-
Wendroff’s method, MacCormark’s method 
Godunov’s method and some modern methods 
such as Flux-limited method, Flux-corrected 
method. While the basic methods have the linear 
numerical dissipation and distributed evenly for 
all grid points, which makes it not possible to 
capture strong shock, whereas the modern 
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methods can adaptively distribute the non-linear 
numerical dissipation to each grid point, thus the 
shock waves can be moderately captured. In the 
past, numerical simulation involving strong shock 
has been documented by many researchers. 

Collela and Glaz [16] have performed solution 
of complicated flow field by using the Riemann 
problem for gasdynamics. D. Kh. Ofengeim, D. 
Drikakis [17] have studied the propagation of 
plane blast wave over a cylinder by solving the 
Euler equations and the Navier-Stokes equations 
with an adaptive-grid method and a second-order 
Godunov scheme. Emre Alpman [6] has simulated 
spherical blast wave by using the Euler equations 
and adaptive grid. In [8], the blast wave is also 
simulated by the Runge-Kutta Discontinuous 
Galerkin Method. This study presented the 
implementation of some typical finite difference 
schemes solving the compressible Euler 
equations. As categorized in [1], the numerical 
methods will be studied are the Flux Difference 
scheme, whose Roe’s Approximate Riemann 
Solver [9] is the representative; the Flux Vector 
Splitting scheme, whose Steger-Warming method 
[10] is the representative; the Flux Limited 
Method, whose TVD Sweby’s method [11] is the 
representative and the Flux-Corrected Method 
whose Essentially Non-Oscillatory Scheme [12], 
[13] is the representative. 

2. THEORY BACKGROUND 

The hyperbolic partial differential equations 
describe many physical phenomena such as wave, 
heat, fluid flows, elasticity, etc. In fluid dynamics, 
the compressible flow is governed by the Euler 
equations. These equations are simplified from the 
Navier-Stokes equations by neglecting the effects 
of viscosity. The Euler equations are generally 
presented as a system of hyperbolic conservation 
laws. Due to the mathematical properties of the 

system of hyperbolic conservation laws, the 
solutions consist of waves traveling with the 
characteristic speed. By casting in the 
conservation form, the Euler equations allow 
shock waves or discontinuities be part of the 
solutions. 

2.1. Governing Equations 

The two-dimensional Euler equations can be 
written in conservation form as follows [2] 

,
t x y

  
  

  
u u g u 0f( ) ( )  (1) 

where u are the conserved variables and f(u) 
and g(u) are conservative fluxes in x and y 
direction, respectively given by 
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Here ρ is the density, p is the pressure, u and v 
are the respective velocity components in x and y 
direction and E is the total energy per unit volume 

   
2 21 pE=ρ u +v + ,

2 γ-1 ρ
 
  
 

  (3) 

and the total enthalpy is defined as 

E+pH= .
ρ

  (4) 

2.2 Solution Method 

In order to solve the multidimensional Euler 
equations, we apply the dimensional splitting 
technique [2] by solving two consecutive extended 
one- dimensional problems with extra velocity 
components. The second-order accurate 
dimensional split- ting scheme is defined as 
follows 



TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 18, SOÁ K2- 2015 

Trang 75 
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   u X Y X u   (5) 

where: 

�X : approximate solution operator in x-
direction,  

Y : approximate solution operator in y-

direction,  

∆t : time step. 

Based on the dimensional splitting method, all 
numerical methods will be presented in one-
dimensional form for the x-split Euler equations. 
For the calculation of y-split, the role of the two 
velocity components are interchanged. Consider 
the integral form of the x-split Euler equations of 
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By applying Euler first-order time integration, 
the above equation leads to the numerical 
conservation form 

1
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where  
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The equation (7) can be written in the form with 

approximate solution operator �X as 

�  t1
.

n n
i i


u X u   (9) 

2.3 Flux Approximations 

2.3.1 Roe’s Approximate Riemann Solver 

The idea was first introduced by Godunov [4], 
the numerical fluxes at cell interface are evaluated 
by using the solution of the Riemann problem. The 
Roe’s scheme locally linearize the nonlinear flux 
function. In the control volume, the Jacobian 
matrix of the Euler equations is replaced by the 
Roe-averaged matrix, which is based on the left 
and the right states. The inner-cell fluxes for the x-
split two-dimensional Euler equations are 
evaluated as [1,9] 
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Where  , , , T
R R R R Rp u Eu ,

 , , , T
L L L L Lp u Eu are the right and the left 

state variables, respectively, iK is the i-th column 

vector of the right eigenvector of the Roe-
averaged matrix 
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with the Roe-averaged quantities are calculated 
as follows 
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The wavelength iv  were calculated based on 

the jump u  
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with , , , 1..4i i R i L i   u u u  

The eigenvalues iλ of the Roe-averaged matrix 

are given as 

1 2 3 4, , .u c u u c                 (14) 

Due to the linear approximation of the flux, the 
original Roe scheme is not accurate at sonic 
points. In order to overcome this problem, 
Harten’s entropy correction is implemented [1,19] 
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where  /10O c   . 

2.3.2 First-order Upwind Flux Vector Splitting 

Another approach of the upwind method is flux 
vector splitting (FVS), which is based on the 
special property of the Euler equations, namely the 
homogeneity property. The numerical flux is 
decomposed into left-running and right-running 
wave 

   1 1 1
2

ˆ ˆ ˆ .n n n
i i i ii

 
 


 f f u f u  (16) 

The homogeneity property read 
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With the assumption of hyperbolicity, the 
Jacobian matrix 
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may be expressed as 

1,A KΛK   (19) 

where Λ is the diagonal matrix formed by the 
eigenvalues of the Jacobian matrix A. The column 
of matrix K is the right eigenvectors of matrix A. 
For the x-split Euler equations, the eigenvalues 
and the eigenvectors read 
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Therefore, the flux vector splitting can be 
related to the wave splitting by

1 1ˆ ˆ, ,          f A u KΛ K u f A u KΛ K u
               (22) 

where Λ and Λ are the diagonal matrix 
formed by the negative eigenvalues and the non-
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negative eigenvalues of the Jacobian matrix A. 
According to Steger and Warming’s wave 
splitting scheme [10], the eigenvalues are defined 
as follows 

   1 1, .
2 2i i i i i i           (23) 

And the numerical flux is given by [2] 
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with 2 2 2V u v  . 

2.3.3 Flux Limited Method-Sweby’s TVD 
Scheme 

A high resolution scheme with the nonlinear 
stability condition of total variation diminishing 
(TVD) is considered. The idea is using two 
complementary numerical methods, one near 
shock and a different one in the smooth region. For 
a scalar conservation law, the numerical flux at the 
cell interface was evaluated by 
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The above equation can be interpreted as an 
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For the x-split two dimensional Euler 
equations, the numerical flux is given by [1] 
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where 1
2

ˆ Roe

i
f  is the numerical flux calculated by 

Roe scheme as in (10). The right eigenvector the 
and the wave strengths ∆v were evaluated as in 
(11), (13) and (14). The ratio flux difference is 
defined as  

   
1 1
2 2

1 1
2 2

, .

n n
i i

j j
i ij j

n n
i i

j j

v v

r r

v v

 
 

 

   
    
   
   

 
   
    
   
   

  (28) 

In this study, the superbee limiter function 
[1,11] is employed. The role of limiter function is 
to limit the gradients and distribute a certain 
amount of dissipation to the scheme 
corresponding to the ratio flux difference r in 
Equation 

      0, 2 ,1 , , 2 .r max min r min r   (29) 

2.3.4 Essentially Non-oscillatory Scheme 

Consider the semi-discrete equation 
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The numerical flux f̂  that is k−th order 
accuracy approximate the physical flux f has to be 
satisfied the relation 
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The approximated flux of a cell is reconstructed 
as a polynomial of a degree at most k − 1 via the 

primitive function F̂  by using the appropriate 

chosen stencils (e.g.  1
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ˆ ˆ , ,i r i si  

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where r and s are the number of the chosen stencils 
on the right and the left of cell i ). For the uniform 
grid, the numerical flux at cell interface is given 
by [13] 
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where the constants rjc  and rjc  for uniform 

grid were evaluated depends on the order of 
accuracy k and the number of ’smoother’ stencil r 
as in [13]. The procedure for choosing appropriate 
stencil requires the divided differences. The large 
divided difference indicates large or discontinuous 
derivatives, therefore the ’smoother’ stencil is the 
stencil having less divided difference in absolute 
value. The divided difference is defined as follow 
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The first-order accurate ENO scheme is 
identical with the first-order upwind scheme 
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The numerical flux of the second-order 
accurate ENO scheme is given by [13] 
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The ENO-Roe approach is used to ensure the 
upwinding by using the eigenvalues and 
eigenvectors of the Roe-averaged matrix to locally 
form the characteristic form [13]. Besides, the 
Lax-Friedrichs splitting is also considered for the 
sonic points [13] 

 1( ) ( )
2

f u f u u     (36) 

where ( )umax f u   over the relevant range 

of u. 

3. NUMERICAL EXPERIMENTS 

This section contains the results obtained by the 
developed code written in Fortran based on [3]. 

3.1 Planar Shock Tube Problem 

The first numerical experiment was to validate 
the code by solving the classical shock tube 
problem, in which the driver section with high 
pressure is separated from the driven section with 
low pressure by a barrier. When the barrier is 
removed the shock wave and the contact 
discontinuity propagate to the lower pressure 
section and the expansion wave propagates to the 
higher pressure section. The initial conditions are 
given as in [2] 

3

3

1.0 / , 0.75 / , 1.0 , 2

0.125 / , 0 / , 0.1 , 2 .

kg m u m s p Pa x m

kg m u m s p Pa x m





   

   
 

The initial conditions are modified from the 
original initial conditions studied by Sod [5] 

which is a very common test case for numerical 
methods in gas dynamics . The problem was 
solved in Cartesian coordinate with the number of 
cells is 100, makes the grid width to be ∆x = 0.01. 
The CFL coefficient for all four numerical 
methods was chosen as λ = 0.9 to satisfy the CFL 
condition. The fluid is assumed to be a calorically 
perfect gas with ratio of specific heat γ = 1.4. The 
exact solution obtained from [2], which consists of 
left rarefaction, contact discontinuity and right 
shock wave, is also presented for comparison. The 
density and the pressure distribution at time t = 
0.2sec are shown in Figure 1 and Figure 2. All four 
numerical schemes yielded similar results in the 
smooth regions. High order schemes, i.e. Sweby’s 
and ENO scheme, which satisfy the TVD 
condition, exhibit oscillation-free in the vicinity of 
flow discontinuities. Whereas the first-order 
schemes expressed the dissipative nature over the 
flow discontinuities. Figure 3 shows the density 
distribution in the vicinity of left rarefaction wave, 
the solution of FVS method was smeared the most 
and even had unphysical expansion shock at the 
expansive sonic point. By applying Harten’s 
entropy correction, the Roe scheme has overcome 
this error. Density distribution in the vicinity of 
contact discontinuity are presented in Figure 4 , 
the numerical solution of FVS scheme was 
dissipated the most, smeared out over 20 
numerical cells, while the Third-order accuracy 
ENO scheme had the least dissipative solution, 
was spread over 14 numerical cells. The numerical 
results in the vicinity of shock wave is presented 
in Figure 5, the shock wave is more sharply 
resolved by the FVS and Sweby’s scheme than 
Roe’s and ENO scheme.
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Figure 1. Density distribution at 30.2  ( 100,  1.0 / )ot sec N kg m    

 

Figure 2. Pressure distribution at 30.2  ( 100,  1.0 / )ot sec N kg m    

 

Figure 3. Density distribution in the vicinity of left rarefaction at 30.2  ( 100,  1.0 / )ot sec N kg m    
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Figure 4. Density distribution in the vicinity of contact discontinuity at 30.2  ( 100,  1.0 / )ot sec N kg m    

 

Figure 5. Density distribution in the vicinity of right shock wave at 30.2  ( 100,  1.0 / )ot sec N kg m    

 

 

Figure 6. Density distribution at 30.2  ( 100,  0.0001 / )ot sec N kg m    
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Figure 7. Pressure distribution at 30.2  ( 100,  0.0001 / )ot sec N kg m    

Next, another Riemann problem with 
extremely strong discontinuity is investigated. 
This problem is chosen to examined due to is 
resemble with the blast wave problem that would 
be investigated in the next section. The initial 
conditions is taken as in [8] 

3 5

3

1 / , 0 / , 10 , 2

0.0001 / , 0 / , 10 , 2 .

kg m u m s p Pa x m

kg m u m s p Pa x m





   

   

This problem was also solved in Cartesian 
coordinate with the same grid width as well as 
other assumptions in the above problem ∆x = 0.01. 
In this problem there are two computing cells 
between the tail of the left rarefaction wave and 
the con- tact discontinuity and between the contact 
discontinuity and the shock wave there are three 
computing cells, therefore it was difficult for the 
numerical schemes to capture correctly the 
location of contact discontinuity and shock wave. 
In order to see the difficulties of numerical 
schemes when resolving extremely strong shock, 
the density and pressure distribution in the vicinity 
of the contact discontinuity and the shock wave is 
presented in Figure 6 and Figure 7. Although the 
predictions from all four numerical methods 
preserved monotonicity near the shock, the 
numerical solutions were strongly dissipated and 
overestimated the location of contact discontinuity 

and the shock wave. As expected, the ENO 
scheme was the least dissipative scheme, however 
it over- estimated shock wave location more than 
the other methods. The Sweby’s scheme 
dissipated as much as the two first-order scheme 
but had the best pre- diction of shock wave 
location of the four schemes. 

3.2 Blast Wave Simulation 

In this section, the blast wave from a spherical 
explosion of 1kg charge TNT as in [8] was 
simulated by solving the Euler equations in the 
spherical co- ordinate system. This problem could 
be considered as a Riemann problem by assuming 
the charge had spherical shape with the radius 

TNTr  calculated from the specified charge weight 

and the charge density, taken as 31600 /kg m . 

Inside this radius was the high pressure region 
obtained by assuming the explosive material TNT 
transformed instantly into gas phase when 
detonated, the pressure was taken as 8.381GPa, 
obtained using the blast energy of TNT. The 
temperature effect was not taken into account, the 
ambient air outside the sphere was treated as a 
calorically perfect gas with density and pressure of 

31.225 /kg m and 101320 Pa respectively. For 

simplicity the presence of charge product was also 
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omitted. The calculation domain was r = 10m with 
grid width ∆r = 5mm, which was sufficient to 
model the explosive charge by approximately 10 
computing cells. Figure 8 presents the variation of 
over- pressure, the pressure above (or below) 
ambient atmospheric pressure, measured from the 
center of the explosive. The numerical results are 
compared with the incident pressure of spherical 
free-air burst obtained from the Conventional 
Weapons Effects pro- gram ConWep [18] and the 
numerical solutions of the Runge-Kutta 

Discontinuous Galerkin Method (RKDG) 
obtained from [8]. All numerical results agree well 
with numerical results in [8], however the over-
pressure was overestimated compared to data from 
ConWep. Figure 9 presents the pressure 
distribution at different times obtained by different 
numerical methods. It was well agreed with [8] 
that the formation of secondary shock wave 
following the primary shock wave then it 
propagated inward and being swept out by the 
rarefaction wave. 

 

Figure 8. Variation of over-pressure 

 

Figure 9. Variation of pressure profiles 

 

Figure 10. Initial conditions of cylindrical 
blast wave [2] 
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3.3 Two Dimensional Blast Wave 

The performance of different numerical schemes 
in two dimensional using the dimensional splitting 
method is assessed for the cylindrical blast wave. 
The two dimensional Euler equations were solved 
on a Cartesian coordinate system. The 
computational domain was a 2 × 2 square domain 
consists of two regions separated by a circle at 
center with radius r = 0.5. The initial flow 

variables were constant in each of the two regions 
and had a circular discontinuity at time t = 0. 
These initial values of computing cells cutting the 
circular discontinuity were modified area-
weighted in order to avoid the staircase 
configuration of the data. The initial conditions are 
depicted as in Figure 10 

   
   

, , , 1.0,0.0,0.0,1.0 , 0.5

, , , 0.125,0.0,0.0,0.1 , 0.5
inside

outside

u v p r

u v p r





  

  

u

u
 

Figure 11 presents the density distribution results 
of numerical methods at the time t = 0.25. Similar 
as in the one dimensional problem, the circular 
shock wave and the circular contact discontinuity 
propagate outwards from the center and the 
rarefaction wave travels inwards to the center. 
Figure 12 shows the corresponding pressure 

distribution. Since the pressure is continuous 
across the contact discontinuity, the solutions 
exhibit a circular shock and circular rarefaction 
wave. The density distribution and the pressure 
distribution along the radial line are also compared 
with the solution obtained from [2] in Figure 13 
and Figure 14 

(a) Roe’s First-order Upwind Method 

 

(b) Steger-Warming Flux Vector Splitting Method 

 

(c) Sweby’s TVD Method 
 

(d) Second-order ENO Method 

Figure 11. Density Distribution of Cylindrical Blast Wave at 0.25t   
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(a) Roe’s First-order Upwind Method 
 

(b) Steger-Warming Flux Vector Splitting Method 

 

(c) Sweby’s TVD Method 

 

(d) Second-order ENO Method 

Figure 12. Density Distribution of Cylindrical Blast Wave at 0.25t   

 

Figure 13. Radial density distribution at time 0.25t   

 

Figure 14. Radial pressure distribution at time 0.25t   
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4. CONCLUSION 

The moving shock wave problem was 
simulated with finite difference method. The 
fluxes at cell interfaces were calculated by four 
different schemes. The linearization of the 
Jacobian matrix, i.e. utilizing the Roe-averaged 
matrix, plays an important role in the Roe’s First-
order Upwind scheme, the Sweby’s TVD scheme 
and the ENO scheme. While the presence shocks 
in the two first-order upwind schemes and ENO 
scheme is determined by the sign of wave speed, 
in the Sweby’s TVD scheme it is the ratio of 
solution differences that indicates the shocks. 

The adapted code was first tested in the 
modified planar shock tube problem with weak 
discontinuities and then solved for another one-
dimensional Riemann problem with extremely 
strong discontinuities which resembles the 
explosion problem. The obtained solution showed 
the disadvantages of two first-order schemes. The 
Sweby’s TVD scheme although had less 
computational cost than the ENO scheme but had 
better resolved shock solution for the extremely 
strong shock problem. The simulation of the 
explosion from 1kg TNT was well agreed with 
other author but still overpredicted compared to 
empirical results. 

 

Nghiên cứu so sánh các sơ đồ tính mô phỏng 
sóng xung kích theo phương trình Euler 

 Nguyễnn Huy Bình1,2 
 Lê Song Giang1 

1 Trường Đại học Bách khoa, ĐHQG-HCM 
2 Đại học Việt Đức 

TÓM TẮT 

Bài báo trình bày nghiên cứu sóng xung kích 
bằng phương pháp số. Một số sơ đồ tính có độ 
chính xác bậc nhất và bậc cao được áp dụng giải 
phương trình Euler một chiều và hai chiều dựa 
trên phương pháp sai phân hữu hạn, bao gồm các 
sơ đồ Roe's first-order upwind, Steger-Warming 
Flux Vector splitting (FVS), Sweby's flux-limited 
và Essentially Non-oscillatory (ENO). Kết quả 
tính toán được so sánh và bàn luận để tìm ra sơ 

đồ tính thích hợp nhất cho bài toán mô phỏng 
sóng xung kích. Từ kết quả tính toán có thể dễ 
dàng nhận thấy đặc tính tiêu tán của các sơ đồ 
tính bậc nhất. Mặt khác, sơ đồ bậc cao ENO cho 
kết quả tính tốt nhất đối với trường hợp sóng xung 
kích yếu, tuy nhiên kết quả vị trí sóng xung kích bị 
đánh giá quá mức trong trường hợp sóng xung 
kích mạnh.

Từ khóa:  sơ đồ số, song xung kích mạnh, phương trình Euler.
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