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ABSTRACT:

In this paper, the Dung’s microscopic
damage model which depicts void
growth under plastic deformation is
applied to predict ductile fractures in high
strength steel API X65. The model is
implemented as a vectorized user-
defined material subroutine (VUMAT) in
the ABAQUS/Explicit commercial finite
element code. Notched and smooth
round bars wunder uniaxial tension
loading are simulated to show the effect

of equivalent plastic strain versus the
void volume fraction growth of the
material at and after crack initiation.
Predictions of the ductile behavior from
void nucleation to final failure stage are
compared with the built-in Gurson -
Tvergaard — Needleman (GTN) model in
ABAQUS. Also, comparison with
experimental results from the literature is
discussed.
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1. INTRODUCTION

Ductile fracture of metallic material is
usually due to void nucleation, growth and
coalescence. To investigate this process, the
series of experiments are needed to conduct. This
is necessary, but it is quite expensive and time
cost. For these reasons, finite element ductile
failure simulations based on the local approach is
considered as the most effective method and quite
useful.

Fracture mechanic based on mechanism of
void nucleation, growth and coalescences connect
between micro structure variables and macro
crack behavior of metallic materials. The plastic
failure process due to void nucleation, growth and

coalescences includes two phases: homogeneous
deformation including void nucleation and
growth, local deformation for void nucleation [1].
It is usually use a yield function of porous plastic
metallic material model for plastic fracture
process analyses. The original yield function is
proposed by Gurson [2] based on spherical void
growth in 2D space. The Gurson model includes
a damage parameter of void volume fraction (f).
Tvergaard [3, 4] modified the Gurson model by
add two adjusted parameters to consider
interaction of the voids and hardening by
deformation. Needleman and Tvergaard [5]
extended Gurson model to simulate rapid loss of
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loading carrying capacity in the void materials.
Therefore, Gurson model is also known as GTN
(Gurson — Tvergaard — Needleman) model. Base
on McClintock [6] spheroidal void growth model
in 3D space, Dung NL [7] investigated the
cylindrical and elipsoidal void growth and then
proposed a yield function similar to the yield
function in GTN model but it includes a
hardening exponent (n). Recently, R. Schiffmann
et al [8] used the Dung’s void growth model to
predict failure development at ductile fracture of
steel, it exhibited good agreement with
experiment results. To determine void volume
fraction growth during matrix material under
deformation, Chu and Needleman [9] supplied
the criterions for void nucleation into Gurson
model. For the first research about void
coalescence criterion: the void coalescences take
place only when void volume fraction (f) reaches
a critical value (fc). In the later studies found that,
fc strongly depend on initial void volume fraction
(f0), the size of voids, the space of voids in
matrix material, stress triaxiality, strain hardening
of material [10, 11]. Thomason [12, 13] proposed
a critical loading model that describing of the
void coalescence. In this model, at start of void
coalescence is controlled by mechanism of plastic
localization in the spaces of voids. At these
positions, the void coalescence can be explained
by material and stress states dependences. Bao
[14] conducted the series of experiments and
finite element analyses in aluminum alloy 2024-
T351 and proposed a criterion of void
coalescence that based on two parameters of

critical equivalent plastic strain ('gf ) and ratio of
stress triaxiality (T). When reaches a critical
value then void coalescence occurs, mean micro-
crack will form in matrix material.

In this paper, Dung’s model is implemented
by a VUMAT subroutine in the finite element
software (ABAQUS) to consider process of
ductile fracture in high strength steel API X65.

The notch round bars and smooth round bar is
simulated to show the effect of equivalent plastic
strain on the void volume fraction growth of the
materials. The predictions of ductile behavior in
the samples from void nucleation to final failure
in material are compared with GTN model and
experiment results of Oh et el [15, 16].

2. MODELING POROUS PLASTIC
METALLIC MATERIAL

The yield function of Dung’s model [7]
@ :[G"‘J +2fq, cosh{—\/g(l—n)a'“}—l—(qu )2 =0 )
Oy O
Where, the parameters qi, ¢ are proposed
by Tvergaard [5], n is hardening exponent of
matrix material, hydrostatic stress o, = —%aijéij

, 0;is Kronecker delta, equivalent stress von
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is the yield stress of matrix material,

o, =0, (Eep)

The equivalent plastic strain rate of matrix
material & is dominated by equivalent plastic
work:

(1— f)Ufg;ep =0y & (2)
Where, gis equivalent plastic strain of
matrix material, £? is plastic strain rate tensor.

The void volume fraction growth is computed
as follow:

f=f +f 3)

Here, the void volume fraction growth of the
presence voids in matrix material:

f,=(1-1)&rs; (4)

ij “ij
The nucleated volume void fraction growth
during matrix material under deformation:
i - Agr 5
The number of nucleated voids A is a
function of equivalent plastic strain of matrix
material & :
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2
f g —¢
A=—"—exp|-0.5| =—N (6)
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Where, f,, Sy, en are the parameters relative
to the void nucleation during matrix material
under deformation.

3. NUMERICAL IMPLEMENTATION

This section describes the implementation of
the constitutive equations via a VUMAT
subroutine in  ABAQUS/Explicit  software.
Aravas [17] proposed a numerical algorithm,
based on the Euler backward method, for
pressure-dependent plasticity models. First, a trial
state of stress is obtained,

05 =0 [ +D-Ag; )

The fourth order tensor D is the elastic
stiffness matrix. Isotropic elasticity is assumed so
that

2
D, (K56 )(0,0,)+6(4,0, +0,5,) @

Where, K is the elastic bulk modulus, G is
the shear modulus and ¢ is the Kronecker delta.

For metallic materials the yield surface @ is
assumed to be identical to the plastic flow
potential. The associated flow rule of plasticity is
defined as:

(stress at t time)

yield surface at t time®

gu" = /1-6_61) 9)
60'”
with the standard Kuhn-Tucker conditions:
120, ®<0,1-®=0 (10)

The non-negative scalar 1 represents the
plastic multiplier.

Integration of equation (9) yields:
Agif = AL (G_CDJ
0

op!

=AA _16_@ 5i'+ aﬂ ni_
300, )" \oo, )"

Where, njj is the unit vector in deviatoric
stress space normal to the yield face

3

ij 209 ij

(11)

(12)

The increment of plastic strain Ag; can be

expressed in terms of volumetric and deviatoric
components as:

e = % Ae,| + Ae,n, (13)
Where,
Ag, =-AL [6_@}
oo,
and Ae. = AL o (14)
g oo

e Y (trial stress)

At .
* (stress at t+At time)

yield surface at t+At time

Figure 1. Schematic presentation of the backward Euler algorithm in stress space
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Elimination of 44 gives:

oD oD
Ag, | — |+4e,| — [=0 15
q(@o'm} "(aaj (15)

If the yield criterion is violated, the final

stress at ¢+4¢ is computed through a plastic stress
correction, as shown in Figure 1.

o =0o; —DAg! (16)

Using equation (13), the term DAg;” can be
expressed in terms of the hydrostatic and
deviatoric plastic strain components and the
elastic bulk K and shear G moduli.

The updated stress state can be written as:
t+At
o; " =o; —KAg 5, —2GAg n; (17)

The stress tensor can be written as:

t+At

2
_ t+At t+At
i =—On 5ij+—cre n.

3 !
from which the stress correction along the
hydrostatic and the deviatoric axes becomes
apparent:

(18)

t+At
m

t+At e
o, =0, -3G-4¢,

o, " =0, +K-Ag,

(19)

Equations (1) and (15), constitute a nonlinear
algebraic system of Agyand Aeq, which are chosen
as the primary unknowns. Using d4ep and d4eq as
the corrections, the Newton-Raphson equations
are

OE, OE,
0Ac.  0Aeg. |[(oAe -
p q p — El (20)
OE, OE, ||04¢, -E,
aAgp 0Ag

q

where E; and Ejare

! (21)

The equations are solved for d4ep, and 04eq
by means of the Newton-Raphson iterative
procedure set up at local material level. The
values of g, and Aeq are then updated:

{Agp — Ag, + 04¢, 22)

Ag, —> Ag, + aqu

During the iterative procedure, the stress is
corrected along the hydrostatic and deviatoric
axes o, and o, using equation (19). The void
volume fraction f and the equivalent plastic strain
g are considered as two scalar internal variables
and updated as follows:

Af =(1-f)As, + Adg;
AZT = —o,4¢, +0,4¢g, (23)
) (1-f)o,

The algorithm stops iterations when the
values of |Ei| and |E;| are less than a specified
tolerance § = 1E-08
4. APPLICATION TO TENSILE TESTING
SIMULATIONS

4.1. ldentifying the parameters for Dung’s
model

The properties of material of APl X65 steel:
Young’s modulus E 210.7 GPa, hardening
exponent is chosen n = 0; 0.134; 0.2, Poission
ratio v = 0.3, initial yield stress oo = 464.5 MPa.
The experiment data of yield stress and plastic
strain curve is refer to Oh [15].

In order to simulate failure process of
metallic materials base on wvoid growth and
coalescence model, eight parameters have to
indentify: two adjustment factors (qi, 02), SiX
parameters relative to void growth and
coalescence (fo, fc, fr, en, Sn, fn).

The values g1 = 1.5; g2 = 1 are suggested by
Tvergaard [4], these values are considered as
classical values of GTN model. Koplik and
Needleman [18] investigated the void growth and
coalescence and found that g1 = 1.25and g2 = 1
are also good agreement between GTN model and
finite element analysis of voided unit cell element.
Faleskog et al [19] show that q; (i = 1,2,3) there
are not dependence on strain hardening exponent
(n) and ratio of initial yield stress and elastic
modulus (6o/E). Kim et al [20] found that, for the
given material, the parameters @i should be
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changed with ratio of stress triaxiality. For the
Dung’s model, Dung [7] proposed q: = g2 = 1.5.

The void nucleation parameters ey = 0.3; sy =
0.1; fv = 0.04 are proposed by Chu and
Needleman [9] and widely used by many
researchers. For the high strength AP1 X65 steel is
the pure steel, during plastic strain process, void
nucleation by inclusions and second phase
particles is not significant and slow. Therefore,
the value fy is chosen 0.0008.

The initial void volume fraction is calculated
based on equation of Franklin [21] as follow:

g:ooa{S%—oomj
M

24
% (24)

Where, S% and Mn% are weight (%) of S
and Mn respectively. The content of these
chemical elements is referred to Oh [15].

The void volume fraction at fracture fg is
determined from f, and based on empirical
equation of Zhang [1]:

f. =0.15+2f, (25)

The critical void volume fraction f; is usually
determined by the void coalescence criterions and
experiments. In this work, for the APl X65 steel,
fc is referred to Oh et al [16].

Summary, the parameters is chosen and
calculated as table 1:

Table 1. The parameters for Dung’s model

&N | SN fn fo fe fr g1 | 02

0.30.1 [8.0E-4|1.25E-4]0.015 |0.15025|1.5 | 1.5

4.2. Testing on single element

The subroutine is verified using a single 8-
node brick element (C3D8R) to simulate uniaxial
tension. The boundary conditions and loading as
shown in figure 2. The initial size of each element
edge is 1 mm. The loading velocity v, for tension
is set to 15 mm/s.

The Figure 3 shows void volume fraction
versus equivalent plastic strain for the uniaxial

tensile test to single element. For hardening
exponent n = 0.134, the Dung’s model coincides
with the classical model GTN. Therefore, n =
0.134 is chosen to simulate the notched and round
bars in section 4.3.

Y%

z

Figure 2. The single element used to verify subroutine

30E-03

Dung's model (n=0)

2.3E-03
5 603 Dung's model (n=0.134)
1.5E-03 - Abaqus

LOE-G3

Void volume fraction

Dung's model (n=0.2)
SO0E-04 -

0.0E+00 g T T T
0.0 0.2 04 0.6 0.8 1.0

Equivalent plastic strain

Figure 3. The void volume fraction versus equivalent
plastic strain with hardening exponents in yield
function of Dung’s model

4.3. Application to the simulation of the
notched bar and round bars

The geometries of tensile specimens as figure
4. Using biaxial symmetry four-node element type
with reduce integration (CAX4R). The size of the
elements at minimum section are 0.15x0.15 mm,
the size of the other elements are 0.15x0.5 mm.
Only 1/4 of bar is used to simulate tensile test.
The finite element meshes are presented as figure
5.

The wvelocity loading is applied on top
boundary. For each specimen, magnitude of load
is chosen and controlled via the critical void
volume fraction (f¢) or void volume fraction at
fracture (fg), mean the void volume fraction
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reaches these values, in the matrix material appear
initial crack or damage, respectively.

R1.5; R3; R6
&l

130

< ) >
R6

o (E O (®)

le 40 36
b)

Figure 4. Geometries of tensile specimens; a) notched
bars; b) smooth bar

a) ‘
Figure 5. The finite element meshes; a) smooth
bar, b) R6 bar; ¢) R3 bar; d) R1.5 bar

For all the specimens, void volume fraction

reachs critical value (f;) at center of bar earlier
than other positions, mean crack initiation occur

at these positions before.

SDVE
(Avg: 75%)
+1.491e-02

+1.367e-02
+1.243e-02
+1,11%9e-02
+0.,943e-03
+8.700e-032
+7.457e-03
+6.214e-03
+4.9728-03
+3.720e-03

+2.486e-032
+1.243e-03
+El 0o00e+00

SDVE
(Avg: TE9)
+1,603e-01

+1.,378e-01
+1.253e-01
+1.127e-01
+1.002e-01
+8.769e-02
+7.516e-02
+6.263e-02
+5.011e-02
+3.758e-02
+2.505e-02

+1.253e-02
+El 000e+00

C) d)

Figure 6. Contour of void volume fraction of R6 bar: a)

crack initiation; b) failed elements

The figure 6 shows contour of void volume
fraction at and after crack initiation of R6 bar.
Figure 7 presents void volume fraction growth
(from fo to f¢) versus equivalent plastic strain of
element at center of bars for the Dung’s model.
For the smooth bar, void volume fraction growth
reachs critical void volume fraction (f;) slower the
notched bars. Material failes earlier the R1.5 bar

than R3 and R6 bar.

0.016
= | ool
E [ P
g 0012 Pl /I ------- R15Bar
g [ .
b= ! I
f‘é [ oo — — R3Bar
2 0.008 | P/ , o
s [ / R6 Bar
5 ! 1/ )
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> [ Iy
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0.0 0.3 0.6 0.9 1.2 15
Equivalent plastic strain

Figure7. VVoid volume fraction growth versus
equivalent plastic strain

Figure 8 shows stress triaxiality versus
equivalent plastic strain of center element of bars,
the end point of average lines is compared with
fracture criterion of Oh [15]

L5

» 1.2

= —-—RL5Bar

%

é 0.9 R3 Bar
7 —R6Bar
o
z’ 0.6 —— Smooth Bar
; ------- Average
g 03

00 L IR N ST T I T S B B L 1 11
0.0 0.3 0.6 0.9 1.2 L5
Equivalent plastic strain

Figure 8. Ratio of stress triaxiality (-om/ce) versus
equivalent plastic strain

Figure 9 shows comparison between present

results and criterion of crack initiation. The

fracture strain depend on the stress triaxiality in
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exponential function [22]. For API-X65 steel, Oh
et al [15] proposed a critical location criterion that

equivalent plastic strain as a function stress
triaxiality:
o < .
&, =3.29exp [—1.54—'"}0.1 (26) § >~ Dugsmode
o, ?n —+—Experiment of
S Ohetal
- ) g ——GTNin Abaqus
The analysis results of four bars by Dung’s model £ crack initiation points
. . S . & 200
is able to predict the fracture initiation with an
100
acceptable accuracy.
0 T T T T
0 002 004 006 008 01
Engineering strain (mm/mm)
2.0 b)
——Crack initiation criterion
215 F ® Dung's model
E
-‘E: 900
w 1.0 ]
é 800
= E 700 A
E 05 %600 1 —e—Dung's model
= % 500 1 —+—Experiment of
~ 20 400 Ohetal
0.0 1 I N g 300 4 —+—GTN in Abaqus
0.0 0.5 1.0 1.5 2.0 Do ||  crack initiation
True fracture strain wd T
0 T T T
. . D e - 0.00 0.02 0.04 0.06 0.08
Figure 9. Comparison crack initiation, true fracture Engineering strain (mm/mm)
strain as a function of stress triaxiality, between Dung’s
model and fracture criterion of Oh et al [15] C)
800 600
700 500 { 5%
E s ——Dung's model
:z_? 600 % 400 - —e—Experiment of Oh et al
S 500 >~ Dusg’s model g ——GTN in Abaqus
$ % 300 1
. —s—Experiment of é
%" 400 Ohetal £ 200 1
§ 0 —+—GTNin Abaqus S 00 crack initiation points
h 200 O .
crack initiation points o g

100

T
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d)

Figure 10. Comparison between simulated results and
experiments of Oh et al [15]: a) R6 bar; b) R3 bar; c)
R1.5 bar; d) smooth bar

Page 145



SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 18, No.K4- 2015

In the figure 10 shows engineering stress
versus engineering strain of bars. For all the
specimens, the results of Dung’s model are good
agreement with GTN model in Abaqus and
experiment results of Oh et al [15].

5. CONCLUSIONS

By implemented approach that based on
backward Euler method of stress integration for
Dung’s model succeed in simulating fractured

prediction of the notched and round bars. The
results provided the predictions of Dung’s model
are very close to experiment results of Oh et al
[15, 16] and GTN model in Abaqus. This work is
also show the fractured predictions as follow: for
all the specimens, the crack initializes at center
and propagates along minimum section of bars;
the different geometries crack initializes at
different moment.
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Lap trinh va &rng dung mo hinh cua Diing
dé phan tich nut déo vat liéu kim loai
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TOM TAT:

Bai bdo st dung mé hinh tdng
truéng 16 héng vi mé ctia Nguyén Luong
Diing dé dw doén niit déo trong thép d6
bén cao API X65. M6 hinh cia Nguyén
Lwong Diing sé duworc I4p trinh thdng qua
mot chwong trinh vat liéu do ngudi dung
tw dinh nghia tich hop trong géi phéan
mém phan t hitu han ABAQUS/Explicit.
Cu thé, cac thanh tron c6 khuyét va
thanh tron tron sé dwoc mé phdong trong
trivong hop chiu kéo don truc. Thoi diém

hinh thanh ndt vi mé va thoi diém phé
hdy sé duwoc dw doan théng qua cac gia
tri bién dang déo tuong duong tuong
(g véi sw téng trudng ty 1é thé tich 16
héng vi mé clda vét liéu. Két qua cta bai
bao ciing sé dwoc so sanh véi mé hinh
Gurson — Tvergaard — Needleman (GTN)
trong phdn mém thuong mai ABAQUS
va cac két qua thuc nghiém tham khao
tir cac céng bd quéc té cua cac tac gid
khac.

Ttr khéa: Nt déo, Tang truéng 16 héng, Mé hinh cia Diing, Co' ché nirt vi mé.
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