
TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 18, SOÁ K4- 2015 

 Page 139 

Implementation and application of Dung’s 
model to analyze ductile fracture of metallic 
material 

 Hao Nguyen Huu 1 
 Trung N. Nguyen 2 
 Hoa Vu Cong 1 
1 Ho Chi Minh city University of Technology, VNU-HCM 
2 Purdue University, West Lafayette, IN 47907, USA 

(Manuscript Received on August 01st, 2015, Manuscript Revised August 27th, 2015) 

 
ABSTRACT:  
In this paper, the Dung’s microscopic 

damage model which depicts void 
growth under plastic deformation is 
applied to predict ductile fractures in high 
strength steel API X65. The model is 
implemented as a vectorized user-
defined material subroutine (VUMAT) in 
the ABAQUS/Explicit commercial finite 
element code. Notched and smooth 
round bars under uniaxial tension 
loading are simulated to show the effect 

of equivalent plastic strain versus the 
void volume fraction growth of the 
material at and after crack initiation. 
Predictions of the ductile behavior from 
void nucleation to final failure stage are 
compared with the built-in Gurson – 
Tvergaard – Needleman (GTN) model in 
ABAQUS. Also, comparison with 
experimental results from the literature is 
discussed. 
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1. INTRODUCTION 

Ductile fracture of metallic material is 
usually due to void nucleation, growth and 
coalescence. To investigate this process, the 
series of experiments are needed to conduct. This 
is necessary, but it is quite expensive and time 
cost. For these reasons, finite element ductile 
failure simulations based on the local approach is 
considered as the most effective method and quite 
useful.  

Fracture mechanic based on mechanism of 
void nucleation, growth and coalescences connect 
between micro structure variables and macro 
crack behavior of metallic materials. The plastic 
failure process due to void nucleation, growth and 

coalescences includes two phases: homogeneous 
deformation including void nucleation and 
growth, local deformation for void nucleation [1]. 
It is usually use a yield function of porous plastic 
metallic material model for plastic fracture 
process analyses. The original yield function is 
proposed by Gurson [2]  based on spherical void 
growth in 2D space. The Gurson model includes 
a damage parameter of void volume fraction (f). 
Tvergaard [3, 4] modified the Gurson model by 
add two adjusted parameters to consider 
interaction of the voids and hardening by 
deformation. Needleman and Tvergaard [5] 
extended Gurson model to simulate rapid loss of 
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loading carrying capacity in the void materials. 
Therefore, Gurson model is also known as GTN 
(Gurson – Tvergaard – Needleman) model. Base 
on McClintock [6] spheroidal void growth model 
in 3D space, Dung NL [7] investigated the 
cylindrical and elipsoidal void growth and then 
proposed a yield function  similar to the yield 
function in GTN model but it includes a 
hardening exponent (n). Recently, R. Schiffmann 
et al [8] used the Dung’s void growth model to 
predict failure development at ductile fracture of 
steel, it exhibited good agreement with 
experiment results. To determine void volume 
fraction growth during matrix material under 
deformation, Chu and Needleman [9] supplied 
the criterions for void nucleation into Gurson 
model. For the first research about void 
coalescence criterion: the void coalescences take 
place only when void volume fraction (f) reaches 
a critical value (fc). In the later studies found that, 
fc strongly depend on initial void volume fraction 
(f0), the size of voids, the space of voids in 
matrix material, stress triaxiality, strain hardening 
of material [10, 11]. Thomason [12, 13] proposed 
a critical loading model that describing of the 
void coalescence. In this model, at start of void 
coalescence is controlled by mechanism of plastic 
localization in the spaces of voids. At these 
positions, the void coalescence can be explained 
by material and stress states dependences. Bao 
[14] conducted the series of experiments and 
finite element analyses in aluminum alloy 2024-
T351 and proposed a criterion of void 
coalescence that based on two parameters of 

critical equivalent plastic strain ( f ) and ratio of 
stress triaxiality (T). When  reaches a critical 
value then void coalescence occurs, mean micro-
crack will form in matrix material.  

In this paper, Dung’s model is implemented 
by a VUMAT subroutine in the finite element 
software (ABAQUS) to consider process of 
ductile fracture in high strength steel API X65. 

The notch round bars and smooth round bar is 
simulated to show the effect of equivalent plastic 
strain on the void volume fraction growth of the 
materials. The predictions of ductile behavior in 
the samples from void nucleation to final failure 
in material are compared with GTN model and 
experiment results of Oh et el [15, 16].  

2.  MODELING  POROUS PLASTIC 
METALLIC MATERIAL 

 The yield function of Dung’s model [7] 
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Where, the parameters q1, q2  are proposed 
by Tvergaard [5], n is hardening exponent of 

matrix material, hydrostatic stress 1
3m ij ij     

, ij is Kronecker delta, equivalent stress von 

Mises 3 :
2e ij ij    , ij   is deviatoric stress 

tensor, 1
3ij ij ij ij      , ij  is stress tensor, σf 

is the yield stress of matrix material, 
 p

f f e   . 

The equivalent plastic strain rate of matrix 
material p

e  is dominated by equivalent plastic 
work: 

  1 :p p
f e ij ijf      

  
(2) 

 Where, p
e is equivalent plastic strain of 

matrix material, p
ij is plastic strain rate tensor. 

 The void volume fraction growth is computed 
as follow: 

 g nf f f   
 

(3) 

 Here, the void volume fraction growth of the 
presence voids in matrix material: 

  1 p
g ij ijf f    

 
(4) 

 The nucleated volume void fraction growth 
during matrix material under deformation: 

 
p

n ef A 
 (5) 

 The number of nucleated voids  A  is a 
function of equivalent plastic strain of matrix 
material p

e : 
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Where, fn, sN, εN are the parameters relative 
to the void nucleation during matrix material 
under deformation. 
3. NUMERICAL IMPLEMENTATION 

This section describes the implementation of 
the constitutive equations via a VUMAT 
subroutine in ABAQUS/Explicit software. 
Aravas [17] proposed a numerical algorithm, 
based on the Euler backward method, for 
pressure-dependent plasticity models. First, a trial 
state of stress is obtained,  

 
e t
ij ij ij| D      (7) 

 The fourth order tensor D is the elastic 
stiffness matrix. Isotropic elasticity is assumed so 
that 
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Where,  K is the elastic bulk modulus, G is  

the shear modulus and  δij  is the Kronecker delta. 

For metallic materials the yield surface  Φ is 
assumed to be identical to the plastic flow 
potential. The associated flow rule of plasticity is 
defined as: 
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with the standard Kuhn-Tucker conditions: 

 0  0  0, ,         (10) 
 The non-negative scalar λ represents the 
plastic multiplier. 
 Integration of equation (9) yields: 
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  Where, nij is the unit vector in deviatoric 
stress space normal to the yield face 
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 The increment of plastic strain p
ij  can be 

expressed in terms of volumetric and deviatoric 
components as: 
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Figure 1. Schematic presentation of the backward Euler algorithm in stress space  
 

e   (trial stress)

      t  
 (stress at t time) 

t t (stress at t+Δt time) 

yield surface at t time yield surface at t+Δt time
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Elimination of  Δλ gives: 

 0q p
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(15) 

If the yield criterion is violated, the final 
stress at t+Δt is computed through a plastic stress 
correction, as shown in Figure 1. 

 
t t e p
ij ij ijD      (16) 

Using equation (13), the term p
ijD  can be 

expressed in terms of the hydrostatic and 
deviatoric plastic strain components and the 
elastic bulk K and shear G moduli. 

 The updated stress state can be written as: 
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 The stress tensor can be written as: 
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from which the stress correction along the 
hydrostatic and the deviatoric axes becomes 
apparent: 
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Equations (1) and (15), constitute a nonlinear 
algebraic system of Δεp and  Δεq, which are chosen 
as the primary unknowns. Using ∂Δεp and ∂Δεq as 
the corrections, the Newton-Raphson equations 
are 
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where E1 and  E2 are 
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The equations are solved for ∂Δεp and ∂Δεq 

by means of the Newton-Raphson iterative 
procedure set up at local material level. The 
values of Δεp and Δεq are then updated:  
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During the iterative procedure, the stress is 
corrected along the hydrostatic and deviatoric 
axes m  and e  using equation  (19). The void 
volume fraction f and the equivalent plastic strain 

p
e  are considered as two scalar internal variables 

and updated as follows:  
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The algorithm stops iterations when the 
values of |E1| and |E2| are less than a specified 
tolerance    = 1E-08 

4. APPLICATION TO TENSILE TESTING 
SIMULATIONS 
4.1. Identifying the parameters for Dung’s 
model  

The properties of material of API X65 steel: 
Young’s modulus E = 210.7 GPa, hardening 
exponent is chosen n = 0; 0.134; 0.2, Poission 
ratio ν = 0.3, initial yield stress σ0 = 464.5 MPa. 
The experiment data of yield stress and plastic 
strain curve is refer to Oh [15]. 

In order to simulate failure process of 
metallic materials base on void growth and 
coalescence model, eight parameters have to 
indentify: two adjustment factors (q1, q2), six 
parameters relative to void growth and 
coalescence (f0, fc, fF, εN, sN, fN). 

The values q1 = 1.5; q2 = 1 are suggested by 
Tvergaard [4], these values are considered as 
classical values of GTN model. Koplik and 
Needleman [18] investigated the void growth and 
coalescence and found that q1 = 1.25 and q2 = 1 
are also good agreement between GTN model and 
finite element analysis of voided unit cell element. 
Faleskog et al [19] show that qi (i = 1,2,3) there 
are not dependence on strain hardening exponent 
(n) and ratio of initial yield stress and elastic 
modulus (σ0/E). Kim et al [20] found that, for the 
given material, the parameters qi should be 
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changed with ratio of stress triaxiality. For the 
Dung’s model, Dung [7] proposed q1 = q2 = 1.5.  

The void nucleation parameters εN = 0.3; sN = 
0.1; fN = 0.04 are proposed by Chu and 
Needleman [9] and widely used by many 
researchers. For the high strength API X65 steel is 
the pure steel, during plastic strain process, void 
nucleation by inclusions and second phase 
particles is not significant and slow. Therefore, 
the value fN is chosen 0.0008. 

The initial void volume fraction is calculated 
based on equation of Franklin [21] as follow: 

 
0

0.0010.054 %
%

f S
Mn

   
 

  (24) 

Where, S% and Mn% are weight (%) of S 
and Mn respectively. The content of these 
chemical elements is referred to Oh [15]. 

The void volume fraction at fracture fF is 
determined from f0 and based on empirical 
equation of Zhang [1]: 

 00.15 2Ff f    (25) 

The critical void volume fraction fc is usually 
determined by the void coalescence criterions and 
experiments. In this work, for the API X65 steel,  
fc is referred to Oh et al [16]. 

Summary, the parameters is chosen and 
calculated as table 1: 

 Table 1. The parameters for Dung’s model 

 εN   sN fN f0   fc     fF   q1 q2 

0.3  0.1 8.0E-4  1.25E-4 0.015 0.15025  1.5 1.5 

4.2. Testing on single element 

 The subroutine is verified using a single 8-
node brick element (C3D8R) to simulate uniaxial 
tension. The boundary conditions and loading as 
shown in figure 2. The initial size of each element 
edge is 1 mm. The loading velocity v2 for tension 
is set to 15 mm/s. 

The Figure 3 shows void volume fraction 
versus equivalent plastic strain for the uniaxial 

tensile test to single element. For hardening 
exponent n = 0.134, the Dung’s model coincides 
with the classical model GTN. Therefore, n = 
0.134 is chosen to simulate the notched and round 
bars in section 4.3. 

 

 

 

 

 

 

 
Figure 2. The single element used to verify subroutine 

 

 

Figure 3. The void volume fraction versus equivalent 
plastic strain with hardening exponents in yield 

function of Dung’s model 
4.3. Application to the simulation of the 
notched bar and round bars 

The geometries of tensile specimens as figure 
4. Using biaxial symmetry four-node element type 
with reduce integration (CAX4R). The size of the 
elements at minimum section are 0.15x0.15 mm, 
the size of the other elements are 0.15x0.5 mm. 
Only 1/4 of bar is used to simulate tensile test. 
The finite element meshes are presented as figure 
5. 

The velocity loading is applied on top 
boundary. For each specimen, magnitude of load 
is chosen and controlled via the critical void 
volume fraction (fc) or void volume fraction at 
fracture (fF), mean the void volume fraction 

y 

z 

x 
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reaches these values, in the matrix material appear 
initial crack or damage, respectively. 

 

 

 

 

 

 

 

Figure 4. Geometries of tensile specimens; a) notched 
bars; b) smooth bar 

 

 

 

 

Figure 5. The finite element meshes; a) smooth 
bar, b) R6 bar; c) R3 bar; d) R1.5 bar 

 For all the specimens, void volume fraction 
reachs critical value (fc) at center of bar earlier 
than other positions, mean crack initiation  occur 
at these positions before. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Contour of void volume fraction of R6 bar: a) 
crack initiation; b) failed elements 

 The figure 6 shows contour of void volume 
fraction at and after crack initiation of R6 bar. 
Figure 7 presents void volume fraction growth 
(from f0 to fc) versus equivalent plastic strain of 
element at center of bars for the Dung’s model. 
For the smooth bar, void volume fraction growth 
reachs critical void volume fraction (fc) slower the 
notched bars. Material failes earlier the R1.5 bar 
than R3 and R6 bar. 

 

 

 

 

 

 

 

 

Figure7. Void volume fraction growth versus 
equivalent plastic strain 

 Figure 8 shows stress triaxiality versus 
equivalent plastic strain of center element of bars, 
the end point of average lines is compared with 
fracture criterion of Oh [15] 

 

 

 

 

 

 

 

Figure 8. Ratio of stress triaxiality (-σm/σe) versus 
equivalent plastic strain 

 Figure 9 shows comparison between present 
results and criterion of crack initiation. The 
fracture strain depend on the stress triaxiality in 
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exponential function [22]. For API-X65 steel, Oh 
et al [15] proposed a critical location criterion that 
equivalent plastic strain as a function  stress 
triaxiality: 

 3.29exp 1.54 0.1m
f

e





 

   
 

  (26) 

The analysis results of four bars by Dung’s model 
is able to predict the fracture initiation with an 
acceptable accuracy. 

 

 

 

 

 

 

 

 

 

Figure 9. Comparison crack initiation, true fracture 
strain as a function of stress triaxiality, between Dung’s 

model and fracture criterion of Oh et al [15] 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Comparison between simulated results and 
experiments of Oh et al [15]: a) R6 bar; b) R3 bar; c) 

R1.5 bar; d) smooth bar 

crack initiation points 
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crack initiation points 
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crack initiation 
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 In the figure 10 shows engineering stress 
versus engineering strain of bars. For all the 
specimens, the results of Dung’s model are good 
agreement with GTN model in Abaqus and 
experiment results of Oh et al [15]. 

5. CONCLUSIONS 

  By implemented approach that based on 
backward Euler method of stress integration for 
Dung’s model succeed in simulating fractured 

prediction of the notched and round bars. The 
results provided the predictions of Dung’s model 
are very close to experiment results of Oh et al 
[15, 16] and GTN model in Abaqus. This work is 
also show the fractured predictions as follow: for 
all the specimens, the crack initializes at center 
and propagates along minimum section of bars; 
the different geometries crack initializes at 
different moment. 
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Lập trình và ứng dụng mô hình của Dũng 
để phân tích nứt dẻo vật liệu kim loại 

 Nguyễn Hữu Hào 1 
 Trung N. Nguyen 2 
 Vũ Công Hòa 1 

1 Trường Đại học Bách Khoa, ĐHQG-HCM 
2 Trường Cơ khí, Đại học Purdue, West Lafayette, IN 47.907, USA 

TÓM TẮT: 
Bài báo sử dụng mô hình tăng 

trưởng lỗ hổng vi mô của Nguyễn Lương 
Dũng để dự đoán nứt dẻo trong thép độ 
bền cao API X65. Mô hình của Nguyễn 
Lương Dũng sẽ được lập trình thông qua 
một chương trình vật liệu do người dùng 
tự định nghĩa tích hợp trong gói phần 
mềm phần tử hữu hạn ABAQUS/Explicit. 
Cụ thể, các thanh tròn có khuyết và 
thanh tròn trơn sẽ được mô phỏng trong 
trường hợp chịu kéo đơn trục. Thời điểm 

hình thành nứt vi mô và thời điểm phá 
hủy sẽ được dự đoán thông qua các giá 
trị biến dạng dẻo tương đương tương 
ứng với sự tăng trưởng tỷ lệ thể tích lỗ 
hổng vi mô của vật liệu. Kết quả của bài 
báo cũng sẽ được so sánh với mô hình 
Gurson – Tvergaard – Needleman (GTN) 
trong phần mềm thương mại ABAQUS 
và các kết quả thực nghiệm tham khảo 
từ các công bố quốc tế của các tác giả 
khác. 

Từ khóa: Nứt dẻo, Tăng trưởng lỗ hổng, Mô hình của Dũng, Cơ chế nứt vi mô.  
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