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ABSTRACT:

In this paper, we investigate the
application of the adaptive higher-order Finite
Element Method (hp-FEM) to heat transfer
problems in electrical engineering. The
proposed method is developed based on the
combination of the Delaunay mesh and
higher-order interpolation functions. In which
the Delaunay algorithm based on the
distance function is used for creating the
adaptive mesh in the whole solution domain
and the higher-order polynomials (up to o

order) are applied for increasing the
accuracy of solution. To evaluate the
applicability and effectiveness of this new
approach, we applied the proposed method
to solve a benchmark heat problem and to
calculate the temperature distribution of
some typical models of buried double- and

single -circuit power cables in the
homogenous and multi-layer soils,
respectively.

Keywords: Underground cables, Adaptive higher-order finite element method (hp-FEM),

temperature distribution.

INTRODUCTION

The underground cables system, which is one
of main transmission and distribution systems of
power systems, is used by the power companies
and industry in densely populated cities instead
of overhead lines even its installation and
maintenance are more  expensive and
complicated. Moreover, the stability and safety
operations of buried power cables are the
expectation of power utilities.

The important characteristics in operation and
design of the underground power cables are the
current-carrying capacity and usable working
life. These values very much depend on the
maximum operating temperature and the ability
to transfer the cables-generated heat to the
surrounding soil domain. Therefore, the thermal
field computation of buried power cables is a
very important task of many power engineers,
researchers and manufactures all over the world.
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In general, this problem is solved by using the
analytical and/or numerical methods. In
particular, the results of developments and
applications of the numerical methods to
engineering problems have gained much
attention in recent years.

The numerical methods, such as Finite
Difference  Method  (FDM), Boundary
Element Method (BEM) and Finite Element
Method (FEM) and Meshfree methods, with
their advantage is to provide more accurate
simulating than the analytical method in complex
geometries have been appling to calculate several
practical heat transfer problems in electrical
engineering such as the thermal field
distribution of underground cables [1]-
[4], heat simulation for MEMS design
[5] and thermal field of transformer
[6]- In recent years, the hp- FEM has been
strongly developed [7]-[8] and successfully
applied to many problems of civil, mechanical
and electrical engineering [9] due to this method
has given the very high accurate solutions.
Besides, the adaptive Delaunay mesh that is still
used in the application to FE - [10] creates the
flexible FE mesh in the whole solving region.
Which means that the small-size elements are
much more efficient and distributed in domain
where the solution has important features. Thus
this algorithm can decrease CPU times but still
ensure the high accuracy of numerical solution.

Unfortunately, the application of the hp-FEM
to heat transfer problems is very rare. For this
reason, we have proposed an approach of the hp-
FEM that is the combination of the adaptive
Delaunay mesh and higher-order interpolation
functions. The advantages of this approach are
that it strongly increases the accuracy of solution
and can decrease the CPU times compared with
the uniform mesh and/or lower-order FEM. In
order to demonstrate the advantage and
applicability of this method, we have used it to

test on the benchmark heat problem and to
calculate the steady-state thermal distribution of
some typical power cable systems buried in the
homogenous and multi-layer soils.

THE hp-FEM FOR THERMAL TRANSFER
PROBLEMS

In general, the Poisson equation describes the
steady state heat transfer in homogeneous
medium can be written as

V.(kVT)+Q=0 1)
where k(°Cm/W) is the thermal resistivity of
medium. Q(W/m) is the heat generation rate in

the heat source and T(°C) is the unknown
temperature.

In the two-dimensional medium, the unknown
temperature function T¢(x,y) in (1) can be
approximated in per element by terms of the p"-
order polynomial as follows

T Y) =8 (. y) =a'a(x,y) ()

where n=p+1)(p+2)/2 is the total number
of nodes in per element and
a0t y) =[xy, %y, ¥ ¥ |-

The unknown coefficients of a° in (2) can be
determined by enforcing (2) at n nodes and then
they are substituted back into (2). Thus (2) can be
written as follows

Te(x,y) = 2 @5 (x, V)T )

where @° i$ the interpolation function is given
by
of =R (L5) P (L) e (15),

In which [7] we have

I+J+K=n (4)

|:J”(|_i):ij[pl‘i_m:i H(pLi—m) with a=1,J,K>0

¢ mo a—M  alng (5)

with L, L5, L5 are the area coordinates of e’
element.

In the hp-FE procedure, the whole solving
domain is subdivided by the triangular elements,
where the total number of nodes in per element
depends on the order of interpolation polynomial.
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The hp-FE solution will be obtained by
minimizing the numerical integrations of
piecewise polynomials. Finally, we have the
matrix equation as follows

AT =b (6)

where T is a column vector of temperatures at

finite element nodes, A is the heat conductivity
matrix with

o 6<1>e

-k 2L
(72)

and b is a vector is given by

GCI)ee
35'3)/

]dxdy i,j=12..n

= [[Q@tdxdy i=12,..n (7b)
NUMERICAL RESULTS

Benchmark heat problem

In order to demonstrate the advantage of the
the hp-FEM, we now apply it to the benchmark
heat problem which has the following equation

kV?T (x,y)+Q=0, x,yeQ=[01 (8)
where one assumes that k=1 and without

internal heat source - [5], and the function values
on boundaries are as

T(xy)=0 x,yel},
M:0 X, yel,, C))
X
T(x,y)=sin(7x) X,y el
ar(xy
—%:0 X, yerl,

Where
I :{(x y):0<x<1y=0}I,={(xy):0<y<lx=1},
[y ={(xy):0<x<1y=1} T, ={(xy):0<y<1x=0}
The analytical solution of this benchmark
problem is given by

Z cos(2nzx)sinh(2nzy)  (10)

Tuy)-2y-43

T (4n ~1)sinh(2nr)

Fig. 1. Contour plot of benchmark problem.

In this section, we have used the higher-order
(up to 6™-order) FEM to solve this benchmark
problem. The contour plot of isothermal lines and
the error comparison between the higher-order
FE solutions are illustrated in Fig.1. and
TABLE.l., respectively. It has shown that the
solutions of the higher-order FEM are much
more accurate than the one of the 1%-order FEM.

Table I. Error of HP-FE Solutions Of Benchmark Problem

Methods Number of nodes Number of elements LOO
1%-order FEM 400 722 2.1465e-004
2" order FEM 1521 722 1.3601e-007
3" order FEM 3364 722 2.6232e-008
"_order FEM 5929 722 8.8536€-012
" order FEM 9216 722 3.9838¢-013
" order FEM 13225 722 3.4861e-014
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Temperature distribution of three-phase
cable system buried in homogenous soil

In this section, we present the application of
the hp-FEM to calculate the temperature
distribution of high voltage underground cables
buried in rectangular homogenous soil as in

Fig.2. Besides, the following assumptions are
also given as

The effect of radiation and convection at the
ground surface are neglected, Thermal resistivity
of soil is constant, The length of cable is more
larger than its buried depth.

Table 1. Parameters specification — [1]

Thermal conductivity of soil

Heat source generated by each cable

Diameter of cables
Distance between two phases
The depth of cables buried in soil

Temperature of soil surface

1.05 W/°Cm
435 W/m
0.03155 m
0.15 m
1 m
10 °Cc

0.15m| 0.15m

122m

Fig. 2. Model of the buried three-phase cable system in rectangular soil.

As above introduced, the first step of the
adaptive hp-FE procedure is to subdivide the
solving domain by mean of adaptive triangular
elements corresponding to nodes. In this work,
we use the adaptive Delaunay algorithm [10] to
create the adaptive elements in the whole solving
domain, and then we apply the higher-order
interpolation polynomial to each element.

Finally, the hp-FE solutions are obtained by
solving (6). In this approach, each conductor of
cable system is assumed to be a heat source and
data of this problem given by TABLE.Il. The
results are illustrated in Figs. 3.-7. The
comparison between the hp-FE solutions and
those of FDM, BEM and COMSOL software is
presented in TABLE.III.

Table I11. Comparison of Numerical Solutions of Cable Temperatures

Average Temperature (°C)
Methods Nodes | Elements
Cable2 | Cablel Cable 3
1%-order FEM 259 465 68.0953 | 72.7356 | 68.1626
2" order FEM 985 465 70.7892 75.4573 70.7851
3% order FEM 2176 465 70.8615 | 75.5333 70.8616
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4"-order FEM| 3832 465 70.8775 | 755491 | 70.8776
5" order FEM| 5953 465 70.8780 | 755499 | 70.8781
6"- order FEM| 8539 465 70.8810 | 75.5528 | 70.8810

7"- order FEM| 11590 465 70.8809 | 75.5528 | 70.8810

8"- order FEM| 15106 465 70.8814 | 755534 | 70.8815

9"- order FEM| 19087 465 70.8812 | 755532 | 70.8813

COMSOL 1683 3237 70.7690 | 75.4940 | 70.9480

FDM - - 68.7690 | 72.3170 | 68.7690

BEM - [1] - - 67.0400 | 715500 | 67.0400

T
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Fig. 5. Zoom solving domain surrounding cables is discretised by using the adaptive 9"-order elements.
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Fig. 6. Contour plot of isothermal lines surrounding cables obtained by using the adaptive 9"-oder FEM.

¥ (]

= (rmy

Fig. 6. Temperature of underground cable system is obtained by using the adaptive 9"-oder FEM.

T00)

Fig. 7. Comparison of temperature solutions of underground cable system are solved by the adaptive hp-FEM.

Temperature distribution of three-phase cable
system buried in two-layer soil

In this case, we study the thermal behavior of
cables in two-layer medium. We use the cables in
the case of double circuit and cables are directly
buried at the depth of 1.9m in native soil. The
boundary beetwen two layer at the depth of 3.0m.

The values of thermal conductivity of upper and
under layer are 1.00 (W/°Cm), 1.30 (W/°Cm),
respectively. The ground surface is represented
by convective boundary (Cauchy condition) with
convection loss coefficient of 5 (W/°Cm?). The
phase spacing of each cable circuit is 0.25m and
cables still loaded 662A and generate heat rate of
32.029 (W/m).
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Fig. 10. Temperature of underground cable system buried in two-layer soil is obtained by using the adaptive 1%-
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Fig. 11. Temperature of underground cable system buried in two-layer soil is obtained by using the adaptive 9"-
oder FEM.

Fig. 12. Comparison of temperature solutions of underground cable system buried in two-layer soil are solved by
the adaptive hp-FEM.

Temperature distribution of double-circuit
three-phase cable system buried in multi-layer
soil

In this case, we test the double-circuit three-
phase underground cables system buried at the
depth of 1.9m in cable bedding in multi-layer
soil. The upper layer is trench backfill and
surrounding medium is native soil. The values of
thermal conductivity of cable bedding, trench
backfill and native soil are 1.00 (W/°Cm), 1.25

(W/°Cm) and 0.80 (W/°Cm), respectively. The
width and height of cable bedding are 1.80m and
0.6m, respectively. The ground surface
represented by convective boundary (Cauchy
condition) with convection loss coefficient of 5
(W/°Cm?). The phase spacing of each cable
circuit is 0.25(m) and the nearest distance
between two circuits is 0.35(m). Cables still
loaded 662A and generated heat rate of 32.029
(W/m). The results are illustrated in Figs. 14.-.16.
and TABLE IV.
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Table IVV. Comparison between HP-FE Solutions of Buried Power cables in Multi-Layer Soil

order Number of Average Temperature (°C)

Nodes Elements Cable 1 Cable 2 Cable 3 Cable 4 Cable 5 Cable 6
1% 654 1190 50.3528 52.8046 53.4084 53.4137 52.8085 50.3554
2m 2503 1190 50.8008 53.2756 53.8869 53.8875 53.2762 50.8013
31 5542 1190 50.8052 53.2803 53.8917 53.8919 53.2805 50.8054
4" 9771 1190 50.8080 53.2832 53.8946 53.8947 53.2835 50.8083
5t 15190 1190 50.8078 53.2830 53.8944 53.8946 53.2832 50.8080
6" 21779 1190 50.8083 53.2836 53.8950 53.8951 53.2838 50.8085
" 29598 1190 50.8258 53.3010 53.9132 53.9118 53.2998 50.8245
8" 38587 1190 50.8127 53.2879 53.8994 53.8993 53.2878 50.8126
gt 48766 1190 50.8098 53.2851 53.8966 53.8967 53.2852 50.8098

E Trench Backfill Native Soil

OO0 OO0

Gable Beddng

1.8m
—

Fig. 13. Double-circuit three-phase cables model in multi-layer soil.

Fig. 14. Contour plot of isothermal lines surrounding double-circuit cable system solved by the 9"-oder FEM.
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Fig. 16. Comparison of temperature solutions of double-circuit cable system buried in multi-layer soil solved by the hp-FEM.

REMARK

In three tested cases of A, B, C and D of
Section .111., we have firstly created the adaptive
triangular mesh in the whole solving domain, we
have then applied the higher-order interpolation
and shape functions (up to 9" order) [7]-[8] to
each triangular element. Thus the total numbers
of triangles were 722 in case A, 465 of case B,
866 of case C and 1190 of case D corresponding
to the total numbers of nodes have increased
from 400 to 13225 in case A, from 259 to 19087
in case B, from 474 to 35458 in case C, and from
654 to 48766 in case D. The calculated results
have been presented in many Figures and

TABLES. They can give some remarks as
follows

TABLE.I. of the benchmark problem has been
shown that the hp-FE solutions are in good
agreement with the analytical one. Thus the
proposed method is very strong and efficient for
solving the engineering problems defined by the
Poisson equation, including the heat transfer and
electromagnetic problems, etc.

Due to the mutual effect of adjacent
conductors, the temperature of the mid conductor
of any cable system is always highest. Besides,
due to the characteristic of adaptive mesh, the
total number of nodes on per circle modeled
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conductor is equal but their distributed location
compared between circles is different, we can see
the maximum temperatures of conductor 2 and 3
of case B are different while those of FDM and
BEM are equal (see TABLE. .111.). This also
appears in case D (see TABLE.IV.).

The hp-FEM is successfully applied to the
buried cables in multi-layer soil with the
convective boundary. It shows the high
applicability and effectiveness of the proposed
method in complex engineering problems.

The temperature results obtained by the
adaptive hp-FEM are more accurate than those of
BEM, FDM and COMSOL. Thus they are the

very good datum for design and operation of
underground power cables.

CONCLUSION

This paper has applied for the first time the
hp-FEM to calculating the benchmark heat
problem and the temperature distribution of
underground cable systems in homogeneous and
multi-layer soils. The results of the proposed
method are compared to those of other methods,
it has been seen that the hp-FE solutions are
much more accurate and the hp-FEM is
efficiently applied to complex geometrical
problems.

Ap dung phwong phap phan t& hiru han
bac cao thich nghi cho mé phong trvong
nhiét cua cap ngam cao thé trong dat

nhiéu 1&p
e ViuPhanTu
PHQG-HCM

e V0 Van Hoang Long
Trudng cao dang nghé Lilama 2, Dong Nai

TOM TAT:

Trong bai bdo nay, ching téi nghién cteu
viéc &p dung phuong phap Phén ti hitu han
béc cao thich nghi cho céc bai toan truyén
nhiét trong nganh ky thuét dién. Phuwong
phap dé nghj duoc phét trién dwa trén mot
sw két hop gitra Iwéi Delaunay va ham noi
suy béac cao. Trong do, thuat toan Delaunay
ddc co sé& trén ham khéang cach duwoc str
dung cho viéc tao nén Iwdi thich nghi trong
toan bé mién I0i gidi va céc da thirc bac cao

(dén bac 9) duoc &p dung cho viéc lam ting
do chinh xéc cua Ioi gidi. Nhdm danh gia kha
ndng &p dung va hiéu qué cua tiép can méi
nay, chung téi da ap dung phuwong phép dé
Xuét cho viéc gidi bai toan nhiét chudn va
tinh téan phan bd nhiét do ctia mét sé mé
hinh déc tring cuda cap dién lirc mét mach va
hai mach dwoc chén trong dat déng nhét va
nhiéu I6p.
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