Đánh giá tính chuẩn xác của chương trình VGSpec thông qua khả năng tính toán diện tích đỉnh, tìm đỉnh tự động, nhận diện đồng vị, xác định hoạt độ phóng xạ nguồn trụ và Marinelli

- Trịnh Quang Vinh Đại học Quốc gia Tp. Hồ Chí Minh
- Trương Thị Hồng Loan
- Mai Văn Nhơn
 Trường ĐH Khoa học Tự nhiên, ĐHQG-HCM

(Bài nhận ngày 04 tháng 03 năm 2013, nhận đăng ngày 29 tháng 9 năm 2013)

TÓM TẮT

Phiên bản phần mềm xử lý phổ gamma Genie 2000 đang sử dụng ở Bộ môn Vật lý Hạt nhân (BM VLHN), khoa Vật lý – Vật lý kỹ thuật (VL – VLKT), trường Đại học Khoa học Tự nhiên (ĐH KHTN), Đại học Quốc gia Tp. Hồ Chí Minh (ĐHQG-HCM) thiếu gói xác định hoạt độ phóng xạ nguồn, và chưa hoàn toàn tự động hóa từ quá trình phân tích, xử lý phổ đến các quá trình nhận diện đồng vị phóng xạ, đánh giá hoạt độ nguồn. Tác giả

Từ khóa: HPGe, Genie 2000, WPF, VGSpec

MỞ ĐẦU

Đối với người làm thực nghiệm thì việc đánh giá hoạt độ phóng xạ của mẫu là vô cùng cần thiết. Vì vậy, vấn đề xây dựng một chương trình xử lý phổ gamma tự động vẫn đang là mục tiêu nghiên cứu của nhiều tác giả. Mục đích chính của báo cáo là bước đầu xây dựng một chương trình xử lý phổ gamma tự động bao gồm tìm kiếm đỉnh phổ tự động; tính toán diện tích đỉnh; nhận diện đồng vị phóng xạ, đánh giá hoạt độ nguồn. đã xây dựng chương trình VGSpec phiên bản 2.1 để xác định hoạt độ phóng xạ nguồn. Sau đó thực nghiệm đo nguồn chuẩn trụ và nguồn Marinelli bằng hệ phổ kế gamma phông thấp dùng detector HPGe để so sánh với kết quả từ chương trình, đánh giá tính chuẩn xác của chương trình VGSpec thông qua khả năng xác định hoạt độ phóng xạ nguồn trụ và Marinelli.

Chương trình xử lý phổ gamma tự động VGSpec phiên bản 2.1 đã có thêm gói Xác định hoạt độ nguồn, tra cứu thư viện đồng vị (phiên bản 1.1 chỉ dừng lại đến gói Nhận diện đồng vị phóng xạ).

Chương trình VGSpec phiên bản 2.1 được viết dựa trên ngôn ngữ lập trình C#, xây dựng giao diện bằng WPF (Windows Presentation Foundation) trên môi trường Microsoft Visual Studio 2010. Giao diện chính của chương trình được trình bày trên Hình 1.

Hình 1. Giao diện chính của chương trình.

Một số module và gói chính trong chương trình VGSpec: Module Đọc và hiển thị phổ; Gói Chuẩn năng lượng và bề rộng đỉnh; Gói Làm trơn phổ; Module Trừ phông; Gói Tính diện tích đỉnh; Gói Tìm đỉnh phổ tự động; Gói Nhận diện đồng vị phóng xạ; Gói Xác định hoạt độ nguồn, tra cứu thư viện đồng vị.

VẬT LIỆU VÀ PHƯƠNG PHÁP

Hệ phổ kế

Hệ phố kế gamma sử dụng trong bài báo cáo này thuộc Phòng thí nghiệm chuyên đề 2, Bộ môn Vật lý Hạt nhân, Khoa Vật lý – Vật lý Kỹ thuật, Trường ĐH Khoa học Tự nhiên, ĐHQG-HCM. Hình 2 trình bày hệ phổ kế gamma dùng detector HPGe này.

Hệ gồm có các phần chính như sau: Detector HPGe GC2018 với các thiết bị kèm theo gồm nguồn nuôi cao thế cho detector, tiền khuếch đại, khuếch đại, bộ biến đổi tương tự thành số và khối phân tích đa kênh, nguồn phóng xạ, buồng chì che chắn phông bao quanh detector và nguồn. Tuy nhiên khi mô hình hoá hệ phổ kế chúng tôi chỉ quan tâm đến cấu hình của detector, nguồn và buồng chì che chắn.

Hình 2. Hệ phổ kế gamma dùng detector HPGe 2018.

Detector

Detector đang sử dụng ký hiệu GC2018. Nó có hiệu suất danh định là 20% (giá trị chính xác là 22,4%) và độ phân giải năng lượng 1,8 keV (giá trị chính xác là 1,72keV) tại năng lượng 1,33 MeV của ⁶⁰Co. Cấu trúc detector GC2018 được trình bày trên Hình 3.

Phần chính của detector GC2018 là tinh thể Ge siêu tinh khiết (độ tạp chất vào khoảng 10^{10} nguyên tử/cm³) gồm tinh thể Ge đường kính ngoài 52 mm, chiều cao 49,5 mm. Bên trong tinh thể có một hốc hình trụ đường kính 7 mm, độ sâu của hốc là 35 mm. Mặt ngoài tinh thể là lớp tiếp xúc loại n (lớp lithium) được khuếch tán có bề dày 0,86 mm nối với điện cực dương. Mặt trong hốc tinh thể là lớp tiếp xúc loại p (lớp boron) được cấy ion có bề dày 3 x 10^{-3} mm nối với điện cực âm. Mặt trên cùng của tinh thể có phủ hai lớp vật liệu bao gồm lớp trên được làm bằng kapton với bề dày 0,1 mm, lớp dưới làm bằng mylar được kim loại hóa với bề dày 0,85 x 10^{-3} mm.

Hộp kín bằng nhôm có độ dày 2,7 mm (chỗ dày nhất); 0,76 mm (chỗ mỏng nhất) để đảm bảo tránh được sự hấp thụ các photon năng lượng thấp. Khoảng chân không ở giữa mặt trên của tinh thể Ge với mặt dưới của vỏ nhôm là 5 mm để tránh va chạm với bề mặt tinh thể Ge khi lắp ráp detector.

Buồng chì

Detector GC2018 được đặt trong buồng chì giảm phông từ môi trường. Như ta đã biết chì là loại vật liệu có Z cao chính điều này đã giúp nó hấp thụ tia gamma trong môi trường và làm giảm phông cho detector.

Tuy nhiên tương tác của tia gamma với chì cũng tạo ra các tia X có năng lượng trong khoảng 75 – 85 keV. Các tia X này của chì có thể được ghi nhận bởi detector và làm cho phổ gamma bị nhiễu. Để hạn chế điều này người ta đã lót bên trong buồng chì các lớp Cu và Sn có bề dày tương ứng là 1,5 mm và 1,0 mm.

Hình 4. Mặt cắt dọc hệ detector - buồng chì.

Nguồn chuẩn

Các nguồn chuẩn dạng trụ giả điểm ²²Na, ⁵⁴Mn, ⁵⁷Co, ⁶⁰Co, ¹⁰⁹Cd, ¹³³Ba, ¹³⁷Cs

Các nguồn có dạng trụ nhỏ được mượn tại Khoa Vật lý Trường Đại học Sư phạm Tp.HCM với đường kính 2 mm, chiều cao 2 mm, được phủ một lớp plastic dày 1 mm, có đường kính toàn phần 3 cm, chiều cao toàn phần 4 mm.

Hình 5. Mặt cắt dọc (a) và mặt cắt ngang (b) của các nguồn chuẩn dạng trụ giả điểm.

Đồng vị	Nănglượng (keV)	Xác suất phát trên một phân rã (%)		Chu kỳ bán r 1 năm = 365.2	ā (ngày) 422 ngày	Hoạt độ (Bq)	Ngày sản xuất	
	Е	у	σy	T _{1/2}	$\sigma T_{1/2}$	A ₀	Т	
²² Na	1274,537	99,940	0,014	950,57	0,23	37000	12/15/07	
⁵⁴ Mn	834,838	99,9746	0,0011	312,29	0,26	37000	01/15/08	
⁵⁷ Co	122,06065	85,51	0,06	271.80	0.05	27000	01/15/08	
10	136,47356	10,71	0,15	271,00	0,05	37000	01/13/08	
⁶⁰ Co	1173,228	99,85	0,03	1925 23	0,27	37000	01/15/08	
CO	1332,492	99,9826	0,0006	1725,25		57000	01/15/00	
¹⁰⁹ Cd	88,0336	3,626	0,020	461,4	1,2	37000	01/15/08	
	80,9979	32,90	0,30					
	276,3989	7,16	0,05					
¹³³ Ba	302,8508	18,34	0,13	3848,7	1,2	37000	01/15/08	
	356,0129	62,05	0,19					
	383,8485	8,94	0,06					
¹³⁷ Cs	661,657	84,99	0,20	10990	40	26886	01/15/08	

Bảng 1. Các đặc trưng nguồn chuẩn dạng trụ giả điểm ²²Na, ⁵⁴Mn, ⁵⁷Co, ⁶⁰Co, ¹⁰⁹Cd, ¹³³Ba, ¹³⁷Cs.

Nguồn chuẩn dạng Marinelli ¹⁵²Eu

Nguồn có dạng Marinelli xuất xưởng từ phòng thí nghiệm Isotope Products, mã số EG-152, mã nguồn 1576-32 có 14 đỉnh năng lượng gamma với chu kỳ bán hủy $T_{1/2} = 4933 \pm 11$ ngày, có hoạt độ 37,89 kBq (1,024µCi), sản xuất ngày 01/3/2012 được trang bị cho Bộ môn Vật lý Hạt nhân với đường kính ngoài R = 12cm, đường kính trong r = 8,8 cm, chiều cao H = 9 cm, chiều cao trong h = 7,5 cm, khoảng cách d = 0,5 cm, vỏ là một lớp plastic dày a1 = a2 = b = 2 mm, thành phần chất nền là exoxy matrix, khối lượng riêng $\rho = 1$ g/cm³

Hình 6. Mặt cắt dọc (a) và mặt cắt ngang (b) của nguồn chuẩn dạng Marinelli.

Chuẩn năng lượng, bề rộng đỉnh

Việc chuẩn năng lượng thường được làm trước khi tiến hành việc đo đạc để lấy phổ và thường được xem như là một phần của việc khởi động hệ đo. Việc chuẩn năng lượng bao gồm những bước sau: đo phổ của một nguồn phóng xạ có năng lượng gamma phát ra đã được biết trước; xác định các đỉnh gamma có trong phổ theo thứ tự; cung cấp năng lượng tương ứng với các đỉnh được xác định. Từ đó thiết lập mối quan hệ giữa năng lượng gamma và số kênh theo hàm bậc nhất.

$\mathbf{E} = \mathbf{A} + \mathbf{B}.\mathbf{K} \qquad (1)$

Tương tự việc chuẩn bề rộng đỉnh sẽ góp phần nâng cao tính chính xác của việc tính toán diện tích đỉnh cũng như xác định đỉnh chập. Các đỉnh gamma thường được xấp xỉ dưới dạng Gauss và bề rộng một nửa chiều cao (FWHM) của đỉnh thường được làm khóp theo năng lượng dưới dạng:

$$FWHM = A + B\sqrt{E}$$
 (2)

Trang 86

Tìm đỉnh phổ tự động

Đỉnh năng lượng toàn phần chứa những thông tin quan trọng nhất khi phân tích phố. Vị trí của đỉnh cho ta biết năng lượng bức xa của nguồn còn diện tích đỉnh cho ta biết hoạt độ của nó. Do vậy, công việc đầu tiên khi phân tích phổ bức xạ của một nguồn là tìm xem số đỉnh tồn tại trong phổ và vi trí của những đỉnh này. Thông thường, đối với những phổ tương đối đơn giản, ta có thể thực hiện các công việc này một cách thủ công. Tuy nhiên, đối với các phổ phức tạp, việc tìm ra các đỉnh này lại không đơn giản, có thể do đỉnh có thống kê quá thấp, biên độ nhỏ hoặc do thăng giáng thống kê quá lớn. Và một vấn đề nữa của việc phân tích thủ công là thời gian dài và kết quả có đô chính xác không cao. Do đó, các thuật toán tìm đỉnh tự động là một giải pháp cần thiết cho công việc này. Hiện nay có khá nhiều thuật toán trong việc tìm kiếm và định vị đỉnh tự động như: phương pháp dựa vào cực đại, phương pháp dựa vào đạo hàm bậc nhất, phương pháp dựa vào đạo hàm bậc hai, v.v...

Thuật toán tìm đỉnh phổ tự động trong chương trình xử lý phổ gamma tự động sử dụng phương pháp vi phân bậc nhất:

Giả sử đỉnh phổ cần tìm có dạng hàm Gauss như sau:

$$G(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$
(3)

Đạo hàm của G(x) theo x được cho kết quả:

$$G'(x) = \frac{\mu - x}{\sqrt{2\pi\sigma^3}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
(4)

Nhận thấy đạo hàm bậc nhất của hàm Gauss nhận giá trị 0 khi $x = \mu$ và nhận giá trị dương khi $x < \mu$ và nhận giá trị âm khi $x > \mu$. Như vậy đạo hàm bậc nhất của phổ thay dấu ở chóp tận cùng của đỉnh.

Để định vị đỉnh phổ, máy tính theo dõi các nhóm kênh sao cho đạo hàm bậc nhất đã được làm tron của phổ thỏa mãn tiêu chuẩn (5a), (5b), (5c):

$$N'(p) \le 0$$
 (5a)
 $N'(p+i) < 0$ (5b)

$$N'(p-i) < 0$$
 (5b)

Trong đó:

p là vị trí đỉnh;

i là khoảng chạy.

Khoảng chạy của i được chọn tùy thuộc vào khả năng phân giải năng lượng của hệ phổ kế.

Hình 7. Giao diện tìm đỉnh phố tự động của chương trình VGSpec đối với 7 nguồn ²²Na, ⁵⁴Mn, ⁵⁷Co, ⁶⁰Co, ¹⁰⁹Cd, ¹³³Ba, ¹³⁷Cs được đo cùng lúc tại sát bề mặt đầu dò.

Tính diện tích bằng phương pháp Quitter

Phương pháp Quittner được đưa ra nhằm hiệu chỉnh những sai sót khi giả thiết đưa ra là phông tuyến tính. Theo đó, phông bên dưới vùng đỉnh được mô tả bởi một đa thức bậc hai theo kênh. Cách xây dựng đường phông bậc hai này như sau: mỗi phía trái và phải ta lấy một số kênh, phông của phía trái và phải vùng đỉnh sẽ nhận được bằng cách làm khớp số đếm tại các kênh này với đa thức bậc hai. Số đếm và độ dốc tại các kênh giữa tính theo đa thức làm khớp của các vùng phông sẽ dùng để xây dựng đa thức bậc ba mô tả phông trong vùng đỉnh.

Diện tích đỉnh theo phương pháp này sẽ được tính bởi công thức (6)

$$S = \sum_{i=1}^{n} (N_i - C_i)$$
 (6)

Với C(i) là phông tại kênh thứ i được tính bởi đa thức bậc hai cho ở (7)

$$C_{i} = p_{1} + q_{1}(x_{p} + i - x_{1}) + \left[\frac{3(p_{r} - p_{1})}{M^{2}} - \frac{(q_{r} + q_{1})}{M}\right](x_{p} + i - x_{1})^{2}$$
(7)
$$+ \left[\frac{2(p_{1} - p_{r})}{M^{3}} - \frac{(q_{r} + q_{1})}{M^{2}}\right](x_{p} + i - x_{1})^{3}$$

Trong đó:

x_p là kênh trung tâm;

 x_l , x_r là kênh tâm của vùng phông bên trái và phải của đỉnh p_l , p_r giá trị đa thức bậc hai tại x_l , x_r ;

 q_l,q_r là độ dốc của các đa thức bậc hai tại x_l, x_r .

Hình 8. Giao diện tính diện tích đỉnh đồng vị ²²Na (1274,5 keV) của chương trình VGSpec đối với 7 nguồn ²²Na, ⁵⁴Mn, ⁵⁷Co, ⁶⁰Co, ¹⁰⁹Cd, ¹³³Ba, ¹³⁷Cs được đo cùng lúc tại sát bề mặt đầu dò.

Hình 9. Giao diện nhận diện đồng vị phóng xạ ¹³⁷Cs (661,7 keV) của chương trình VGSpec đối với 7 nguồn ²²Na, ⁵⁴Mn, ⁵⁷Co, ⁶⁰Co, ¹⁰⁹Cd, ¹³³Ba, ¹³⁷Cs được đo cùng lúc tại sát bề mặt đầu dò.

Xác định hoạt độ nguồn

Phương pháp tuyệt đối là phương pháp xác định hoạt độ phóng xạ chủ yếu dựa vào hiệu suất ghi của detector, các số liệu hạt nhân và các số liệu thực nghiệm từ hiệu suất ghi của detector. Hoạt độ riêng của đồng vị phóng xạ được xác định theo công thức:

$$A = \frac{S}{\epsilon(E).y.t}$$
(8)

Trong đó:

A là hoạt độ riêng (Bq);

S là diện tích đỉnh năng lượng;

 $\epsilon(E)$ là hiệu suất ghi của detector;

y là xác suất phát gamma trên một phân rã (%);

t là thời gian đo mẫu (s).

KẾT QUẢ VÀ THẢO LUẬN

Gói *Tính diện tích đỉnh*; Gói *Tìm đỉnh phổ tự động*; Gói *Nhận diện đồng vị phóng xạ*; Gói *Nhận diện đồng vị phóng xạ* của chương trình xử lý phổ tự động VGSpec được thực hiện đối với 7 nguồn chuẩn dạng trụ giả điểm ²²Na, ⁵⁴Mn, ⁵⁷Co, ⁶⁰Co, ¹⁰⁹Cd, ¹³³Ba, ¹³⁷Cs (được đo độc lập tại các khoảng cách 6,9cm; 13,8cm; 25,0cm từ bề mặt đầu dò và được đo cùng lúc tại sát bề mặt đầu dò) và nguồn chuẩn dạng Marinelli ¹⁵²Eu được đo tại sát bề mặt đầu dò thể hiện qua các Bảng 2, Bảng 3, Bảng 4.

Bảng 2. So sánh kết quả Diện tính đỉnh, Tìm đỉnh tự động, Nhận diện đồng vị của chương trình Genie 2000 và chương trình VGSpec đối với 7 nguồn chuẩn dạng trụ giả điểm ²²Na, ⁵⁴Mn, ⁵⁷Co, ⁶⁰Co, ¹⁰⁹Cd, ¹³³Ba, ¹³⁷Cs được đo tại các khoảng cách 6,9cm; 13,8cm; 25,0cm từ bề mặt đầu dò.

Vhažna	Thời gian	Viter	Năng		Genie 2	000			VGS	pec		
cách	đo (s)	đỉnh	lượng (keV)	Diện tíc	h đỉnh	Tìm	Nhận	Diện tíc	ch đỉnh	Tìm	Nhận	Tỉ số hai diện tích
(cm)	t	K	Е	S	σS (%)	dinh	diện	S	σS (%)	dinh	diện	
					22	Na						
6,9	800	5298	1274,5	26388	0,62			26271	0,26	х	²² Na	1,00
13,8	2100	5297	1274,5	19177	0,73			19148	1,12	х	²² Na	1,00
25,0	4200	5299	1274,5	14211	0,85			14294	0,01	Х	²² Na	0,99
					54	Mn	-	-		-		
6,9	1800	3463	834,8	12101	0,92			12156	0,81	х	⁵⁴ Mn	1,00
13,8	5100	3462	834,8	9195	1,06			9270	1,24	Х	⁵⁴ Mn	0,99
25,0	14400	3460	834,8	9398	1,06			9324	0,17	х	⁵⁴ Mn	1,01
					57	Со	-	-		-		
6.9	7500	486	122,1	94679	0,34			95082	0,75	Х	⁵⁷ Co	1,00
0,9	7500	546	136,5	11781	1,06			12075	2,43	х	⁵⁷ Co	0,98
13.8	18000	485	122,1	54527	0,47			54496	0,23	х	⁵⁷ Co	1,00
15,0	10000	546	136,5	6473	1,96			6458	3,34	х	⁵⁷ Co	1,00
25.0	46800	486	122,1	47361	0,58			47942	1.18	х	⁵⁷ Co	0,99
23,0	40000	546	136,5	6705	2,57			6608	12.01	х	⁵⁷ Co	1,01
					60	Co		-	-			
6.9	900	4879	1173,2	52740	0,45			53150	0,14	х	⁶⁰ Co	0,99
0,7	700	5544	1332,5	44499	0,51			47610	1,00	х	⁶⁰ Co	0,93
13.8	2100	4879	1173,2	34315	0,56			34357	0,79	х	⁶⁰ Co	1,00
15,0	2100	5544	1332,5	29130	0,62			30816	0,33	х	⁶⁰ Co	0,95
25.0	4500	4879	1173,2	26496	0,64			26490	0,73	х	⁶⁰ Co	1,00
23,0	4300	5544	1332,5	23031	0,69			24106	0,26	х	⁶⁰ Co	0,96
					109	Cd	-	-		-		
6,9	2100	344	88.0	4899	1,66			5036	4,07	Х	¹⁰⁹ Cd	0,97
13,8	13200	344	88.0	7430	1,69			7749	5,32	х	¹⁰⁹ Cd	0,96
25,0	39600	344	88.0	7657	2,33			7558	6,67	х	¹⁰⁹ Cd	1,01
					13	³ Ba	-	-		-		
		315	81,0	70015	0,41			70482	1,37	Х	¹³³ Ba	0,99
		1130	276,4	10105	1,09			9965	2,81	Х	¹³³ Ba	1,01
6,9	400	1240	302,9	24246	0,67			24377	1,88	Х	¹³³ Ba	0,99
		1462	356,0	69231	0,38			69402	0,34	х	¹³³ Ba	1,00
		1578	383,8	9361	1,05			9396	0,07	Х	¹³³ Ba	1,00
13.8	1200	315	81,0	50698	0,48			50818	0,81	Х	¹³³ Ba	1,00
15,0	1200	1130	276,4	8247	1,22			8280	0,77	Х	¹³³ Ba	1,00

TẠP CHÍ PHÁT TRIỂN KH&CN, TẬP 16, SỐ T3 – 2013

		1240	302,9	19034	0,75		18998	2,40	х	¹³³ Ba	1,00
		1462	356,0	55948	0,43		55777	0,29	х	¹³³ Ba	1,00
		1578	383,8	7515	1,17		7506	1,75	Х	¹³³ Ba	1,00
		315	81,0	38310	0,57		38629	1,43	х	¹³³ Ba	0,99
		1129	276,4	6391	1,41		6486	1,43	х	¹³³ Ba	0,99
25,0	2700	1240	302,9	15099	0,85		15300	5,61	х	¹³³ Ba	0,99
		1462	356,0	44192	0,48		44122	0,79	х	¹³³ Ba	1,00
		1579	383,8	5861	1,35		5858	2,41	х	¹³³ Ba	1,00
					13	⁷ Cs					
6,9	300	2739	661,7	39450	0,51		39494	0,64	х	¹³⁷ Cs	1,00
13,8	600	2739	661,7	21361	0,69		21415	0,11	Х	¹³⁷ Cs	1,00
25,0	1500	2739	661,7	18894	0,73		18840	0,27	Х	¹³⁷ Cs	1,00

Bảng 3. So sánh kết quả Diện tính đỉnh, Tìm đỉnh tự động, Nhận diện đồng vị của chương trình Genie 2000 và chương trình VGSpec đối với 7 nguồn chuẩn dạng trụ giả điểm ²²Na, ⁵⁴Mn, ⁵⁷Co, ⁶⁰Co, ¹⁰⁹Cd, ¹³³Ba, ¹³⁷Cs được đo cùng lúc tại sát bề mặt đầu dò.

	Thời	Vite	Năng		Genie 2000			VGSpec				
Đồng vị	gian đo (s)	đỉnh	lượng (keV)	Diện tíc	ch đỉnh	Tìm	Nhận	Diện tíc	ch đỉnh	Tìm	Nhận	Tỉ số hai diện tích
	t	K	Е	S	σS (%)	ainn	diện	S	σS (%)	ainn	diện	
¹³³ Ba	2700	320	81,0	81242	0,41			80894	0,00	х	¹³³ Ba	1,00
¹⁰⁹ Cd	2700	350	88,0	784	20,71			1087	34,41	х	¹⁰⁹ Cd	0,72
⁵⁷ Co	2700	494	122,1	7509	2,76			7782	11,44	х	⁵⁷ Co	0,96
⁵⁷ Co	2700	556	136,5	779	25,14			755	11,52		⁵⁷ Co	1,03
¹³³ Ba	2700	1150	276,4	14431	1,43			14880	1,17	х	¹³³ Ba	0,97
¹³³ Ba	2700	1262	302,9	32241	0,72			31970	0,83	х	¹³³ Ba	1,01
¹³³ Ba	2700	1488	356,0	94259	0,35			94730	0,25	х	¹³³ Ba	1,00
¹³³ Ba	2700	1607	383,8	12891	1,25			13386	1,01	х	¹³³ Ba	0,96
¹³⁷ Cs	2700	2788	661,7	71555	0,39			71602	0,52	х	¹³⁷ Cs	1,00
⁵⁴ Mn	2700	3523	834,8	4648	2,28			4714	4,94	х	⁵⁴ Mn	0,99
⁶⁰ Co	2700	4963	1173,2	34310	0,56			34447	0,58	х	⁶⁰ Co	1,00
²² Na	2700	5393	1274,5	20315	0,71			20288	0,17	х	²² Na	1,00
⁶⁰ Co	2700	5640	1332,5	30819	0,57			30750	0,42	х	⁶⁰ Co	1,00

Bảng 4. So sánh kết quả Diện tính đỉnh, Tìm đỉnh tự động, Nhận diện đồng vị của chương trình Genie 2000 và chương trình VGSpec đối với nguồn chuẩn dạng Marinelli ¹⁵²Eu được đo tại sát bề mặt đầu dò.

	Thời	Vi trí	Năng		Genie 20	000		VGSpec				
Đồng vị	gian đo (s)	đỉnh	lượng (keV)	Diện tích	n đỉnh	Tìm	Nhận	Diện tícl	n đỉnh	Tìm	Nhận	Tỉ số hai diện tích
	t	Κ	Е	S	σS (%)	ann	aiện	S	σS (%)	ann	diện	
¹⁵² Eu	3600	492	121,8	1265246	0,11			1286723	0,75	х	¹⁵² Eu	0,98
¹⁵² Eu	3600	1011	244,7	243380	0,29			243372	5,58	х	¹⁵² Eu	1,00
¹⁵² Eu	3600	1432	344,3	683990	0,13			690087	0,04	х	¹⁵² Eu	0,99
¹⁵² Eu	3600	1715	411,1	42027	0,95			42537	16,17	х	¹⁵² Eu	0,99
¹⁵² Eu	3600	1854	444,0	60247	0,68			59807	1,45	х	¹⁵² Eu	1,01
¹⁵² Eu	3600	3271	778,9	159544	0,32			161778	1,75	х	¹⁵² Eu	0,99
¹⁵² Eu	3600	3645	867,4	43751	0,84			44091	11,62	х	¹⁵² Eu	0,99
¹⁵² Eu	3600	4054	964,1	154492	0,30			155485	0,63	х	¹⁵² Eu	0,99
¹⁵² Eu	3600	4570	1085,8	110147	0,38			121047	1,04	х	¹⁵² Eu	0,91
¹⁵² Eu	3600	4585	1089,7	76296	0,60			119902	2,43		¹⁵² Eu	0,64
¹⁵² Eu	3600	4681	1112,1	132257	0,32			134956	8,55	х	¹⁵² Eu	0,98
¹⁵² Eu	3600	5107	1212,9	10583	1,92			11840	8,26	х	¹⁵² Eu	0,89
¹⁵² Eu	3600	5472	1299,1	12314	1,35			12396	11,33	х	¹⁵² Eu	0,99
¹⁵² Eu	3600	5933	1408,0	164845	0,25			166149	0,76	х	¹⁵² Eu	0,99

Kết quả tính Diện tính đỉnh của chương trình xử lý phổ tự động VGSpec cho kết quả:

- Sai lệch không quá 1%, 1%, 2%, 1%, 7%, 4%, 2% và trùng khớp một cách tương ứng tại đỉnh 1274,5 keV; 834,8 keV; 2 đỉnh (122,1 keV và 136,5 keV); 1173,2 keV; 1332,5 keV; 88,0 keV; 5 đỉnh (81,0 keV; 276,4 keV; 302,9 keV; 356,0 keV; 383,3 keV) và 661,7 keV so với Genie 2000; tìm đỉnh phổ tự động và nhận diện đồng vị trùng khớp tại đỉnh 1274,5 keV; 834,8 keV; 2 đỉnh (122,1 keV và 136,5 keV), 2 đỉnh (1173,2 keV; 1332,5 keV); 88,0 keV; 5 đỉnh (81,0 keV; 276,4 keV; 302,9 keV; 356,0 keV; 383,3 keV) và 661,7 keV với các nguồn chuẩn trụ 22Na, 54Mn, 57Co, 60Co, 109Cd, ¹³³Ba và ¹³⁷Cs tại các khoảng cách 6,9 cm; 13,8 cm và 25 cm từ bề mặt detector.
- Sai lệch không quá 4% tại 12 đỉnh (trừ nguồn ¹⁰⁹Cd do chu kỳ bán rã quá ngắn và

xác suất phát gamma quá nhỏ so với các nguồn còn lại) so với Genie 2000; Tìm 12/13 đỉnh phổ tự động, Nhận diện đồng vị trùng khớp tại 13 đỉnh năng lượng với 7 nguồn chuẩn dạng trụ giả điểm ²²Na, ⁵⁴Mn, ⁵⁷Co, ⁶⁰Co, ¹⁰⁹Cd, ¹³³Ba, ¹³⁷Cs được đo cùng lúc tại sát bề mặt đầu dò.

Sai lệch không quá 2% tại 13 đỉnh (trừ đỉnh 1089,7 keV do hiện tượng chồng chập phổ) so với Genie 2000, Tìm 13/14 đỉnh phổ tự động, Nhận diện đồng vị trùng khớp tại 14 đỉnh với nguồn chuẩn dạng Marinelli ¹⁵²Eu được đo tại sát bề mặt đầu dò.

Gói Xác định hoạt độ nguồn, tra cứu thư viện đồng vị của chương trình xử lý phổ tự động VGSpec được thực hiện với 7 nguồn chuẩn dạng trụ giả điểm ²²Na, ⁵⁴Mn, ⁵⁷Co, ⁶⁰Co, ¹⁰⁹Cd, ¹³³Ba, ¹³⁷Cs được đo cùng lúc tại sát bề mặt đầu dò và nguồn chuẩn dạng Marinelli ¹⁵²Eu được đo tại sát bề mặt đầu dò thể hiện qua các Bảng 5, Bảng 6.

Đồng vị	Vị trí đinh Năng lượng (keV)		Diện tích đỉnh	Hoạt độ (Bq)		
	K	Е	S	А	σΑ	
²² No	5393	1274,5	20288	12743	21	
INA	Hoạt độ tại thò	ri điểm đo		12958	3	
⁵⁴ Mp	3523	834,8	4714	1632	81	
IVIII	Hoạt độ tại thò	ri điểm đo		1626	4	
	494	122,1	7782	1015	116	
⁵⁷ Co	556	136,5	755	993	115	
Co	Hoạt độ trung	bình	1004	116		
	Hoạt độ tại thò	ri điểm đo	1021	1		
	4963	1173,2	34447	22030	129	
⁶⁰ C a	5640	1332,5	30750	22335	94	
Co	Hoạt độ trung	bình	22183	112		
	Hoạt độ tại thò	ri điểm đo	22288	2		
¹⁰⁹ Cd	350	88	1087	4206	1447	
Cu	Hoạt độ tại thò	ri điểm đo		4464	25	
	320	81	80894	29376	268	
	1150	276,4	14880	29604	403	
¹³³ Ba	1262	302,8	31970	28071	307	
	1488	356	94730	28272	111	
	1607	383,9	13386	28293	343	

Bảng 5. Kết quả Xác định hoạt độ nguồn của chương trình VGSpec đối với 7 nguồn chuẩn dạng trụ giả điểm ²²Na, ⁵⁴Mn, ⁵⁷Co, ⁶⁰Co, ¹⁰⁹Cd, ¹³³Ba, ¹³⁷Cs được đo cùng lúc tại sát bề mặt đầu dò.

	Hoạt độ trung l	oình		28723	286
	Hoạt độ tại thờ	i điểm đo		28714	2
137 C a	2788	661,7	71602	24377	140
Cs	Hoạt độ tại thờ	i điểm đo		24602	8

Bảng 6. Kết quả Xác định hoạt độ nguồn của chương trình VGSpec đối với nguồn chuẩn dạng Marinelli ¹⁵²Eu được đo tại sát bề mặt đầu dò.

Vị trí đinh Năng lượng (keV)		Diện tích đỉnh	Hoạt độ (Bq)
K	Е	S	А	σΑ
492	121,7817	1286723	37986	334
1011	244,6974	243372	37575	2108
1432	344,2785	690087	38077	173
1715	411,1165	42537	37355	6042
1854	443,965	59807	37918	574
3271	778,9045	161778	37854	687
3645	867,38	44091	37603	4376
4054	964,072	155485	38566	290
4570	1085,837	121047	43389	521
4585	1089,737	119902	252505	6308
4681	1112,076	134956	37451	3207
5107	1212,948	11840	38803	3213
Hoạt độ trung b	ình	37833	2123	
Hoạt độ tại thời	điểm đo	37609	1	

Kết quả xác định hoạt độ đồng vị của chương trình xử lý phổ tự động VGSpec phù hợp với nguồn trụ và nguồn Marinelli, cho thấy chương trình chạy ổn định.

KẾT LUẬN

Chương trình xử lý phổ gamma tự động VGSpec có khả năng thực hiện được một số thao tác cơ bản như: đọc và hiển thị phổ; làm trơn phổ; trừ phông; chuẩn năng lượng và bề rộng đỉnh; tính diện tích đỉnh; đã được so sánh với một trong những chương trình xử lý phổ thông dụng nhất hiện nay là Genie 2000 cho kết quả phù hợp.

Ngoài ra chương trình VGSpec đã cải tiến hơn phiên bản Genie 2000 tại bộ môn là tìm đỉnh phổ tự động, nhận diện đồng vị phóng xạ, xác định hoạt độ nguồn, tra cứu thư viện đồng vị đối với nguồn trụ và nguồn Marinelli và cho kết quả phù hợp.

Assessing an accuracy of vgspec program through ability of calculating peak area, automatically finding the peak, identifying isotopes and determining radioactivity for cylindrical and marinelli sources

- Trinh Quang Vinh
 Viet Nam National University Ho Chi Minh City (VNU-HCM)
- Truong Thi Hong Loan
- Mai Van Nhon University of Science, VNU-HCM

ABSTRACT

Genie 2000 version of gamma spectrum processing program, which is being used at Nuclear Physics Department, Physics – Technique Physics Faculty, University of Science is lacked of package for determining radioactivity of sources, also has not been comprehensibly automatic from analysis and process to identification of radioactive isotopes and evaluation of source activity. We have built version 2.1 of VGSpec

Key words: HPGe, Genie 2000, WPF, VGSpec.

TÀI LIỆU THAM KHẢO

- [1]. C. Hacker, *Radiation decay*, Version 4.1, FreeWare (2009).
- [2]. C.J. Sullivan, Generation of customized wavelets for the analysis of g-ray spectra, *Nuclear Instruments and Methods in Physics Research*, A579, 275-278 (2007).
- [3]. E. Yoshida, Application of neural networks for the analysis of gamma-ray spectra measured with a Ge spectrometer, *Nuclear*

Instruments and Methods in Physics Research, A484, 557–563 (2002).

- [4]. IAEA-TECDOC-1011, Intercomparison of gamma ray analysis software packages, IAEA (1998).
- [5]. J.M.L Arcos, Gamma-ray spectra deconvolution by maximum-entropy methods, *Nuclear Instruments and Methods in Physics Research*, A 369, 634-636 (1996).
- [6]. www.laraweb.free.fr

program to determine source radioactivity. Then, the experiments are carried out to measure cylindrical standard and Marinelli samples by low background gamma spectrometer using HPGe detector, to compare experimental results with ones of the program, as well as assess the accuracy of VGSpec program through ability of determining radioactivity for cylindrical and Marinelli sources.