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Abstract—orthotropic composite material is the 

particular type of anisotropic materials and their 

products have been extensively used in a wide range of 

engineering applications. Study on mechanical 

behaviors of such materials under working conditions 

is very essential. In this study, an extended meshfree 

moving Kriging interpolation method (namely as X-

MK) is presented for crack analyzing in 2D 

orthotropic materials models. The Gaussian function 

is used for constructing the moving Kriging shape 

functions. Typical advantages of the MK shape 

function are the high-order continuity and the 

satisfaction of the Kronecker’s delta property. To 

calculate the stress intensity factors (SIFs), interaction 

integral method is used with orthotropic auxiliary 

fields. Several numerical tests including static SIFs 

calculating and crack propagation predicting are 

performed to verify the accuracy of the present 

approach. The obtained results are compared with 

available refered results and they have shown a very 

good performance of the present method. 

  

Index Terms—orthotropic, crack, stress intensity 

factors, meshless, MK. 
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1 INTRODUCTION 

n recent decades, orthotropic composite materials 

are used widely in various fields in engineering 

such as automobile, aerospace and civil industries, 

etc. One of the most advance property of composite 

is the strength per weight ratio of these materials is 

higher than other conventional engineering 

materials. In many cases, orthotropic composites are 

fabricated in thin plate or thin shell forms which are 

so easy to fault. Moreover, fiber enforced 

composites are so brittle and usually have linear 

elastic crack behavior without or with very little 

plasticity. For that reason, linear elastic crack 

behavior of orthotropic materials has become a very 

attracting study topic.  

 There are some important analytical solutions for 

othortropic crack models early given by Sih et al 

[1], Bowie et al [2], Tupholme et al [3], Barnet et al 

[4] and Kuo and Bogy [5]. They found out the 

singular fields such as displacement and stress near 

crack tip zone in anisotropic models. More recent 

contributions can be listed in Nobile et al [6, 7] and 

Carloni et al [8, 9]. However, analytical 

formulations cannot be applied to practical problems 

that have complex geometries and loading 

conditions. In the numerical fields, the extended 

finite element method (XFEM) has shown a very 

good capability in analyzing of fracture behavior of 

orthotropic materials, some typical publications can 

be listed in [10-14]. In XFEM, the finite element 

approximation is enriched with Heaviside function 

for crack face and appropriate functions extracted 

from the analytical solutions for a crack tip near 

field. Moreover, the element free Galerkin method 

(EFG) [15] has been applied for fracture analysis of 
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composite by Ghorashi et al [16]. In this aproach, 

the support domain is modified to involve the 

discontinuity at the crack face and the singularity at 

the crack tip. Unlike the FEM, meshfree method 

uses a set of scattered nodes to model the domain 

and approximate the field variables. Because no 

finite element or mesh is required in the 

approximation, meshfree methods are very suitable 

for modeling crack growth problems [17-20]. 

 In this work, an extended meshfree Galerkin 

method based on the moving Kriging interpolation 

method (X-MK) associated with the vector level set 

method is presented for modeling the crack problem 

in orthotropic materials. To calculate the SIFs, the 

interaction integral formulation for orthotropic 

materials is taken. Several numerical examples 

including static SIFs calculation and crack 

propagation angle prediction are performed and the 

obtained results are compared to the solutions given 

by other methods to verify the accuracy of the 

proposed method.  

2 FRACTURE MECHANICS FOR 

ORTHOTROPIC MATERIALS 

2.1 Linear elastic behavior of orthotropic material 

In orthotropic material, the linear elastic stress–

strain relations can be written as 

ε Cσ                (1) 

Whereσ , ε  are linear stress and strain vectors, 

respectivily and C  is the fourth-order compliance 

tensor. For plane stress problem, C  can be defined 

as: 
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Where 1 2 12, ,E E G  and 12 21,   are Young’s 

moduli, shear modulus and Poisson’s ratios, 

respectively.  

 

  
Figure 1. Orthotropic crack model 

2.2 Crack behavior of orthotropic material 

Consider an orthotropic cracked body subjected 

to arbitrary forces with general boundary conditions 

as shown in Fig. 1. Global Cartesian 

coordinates
1 2

( , )X X , local Cartesian coordinates 

1 2( , )x x  and local polar coordinates ( , )r   

defined on the crack tip are also displayed. Using 

equilibrium and compatibility conditions [21], a 

four-order partial differential equation with the 

following characteristic equation can be obtained 
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It was proved by Lekhnitskii [21] that the roots 

ks  of Eq. (3) are always complex or purely 

imaginary ( , 1, 2)k kx kys s is k    and occured 

in conjugate pairs as 1 1,s s  and 2 2,s s . The 

displacement and stress fields in the vicinity of the 

crack tip are given in [1]. 

2.3 Criterion for crack growth direction 

In orthotropic material, the crack growth direction 

is predicted based on the maximum hoop stress 

criterion [27]. This criterion means that the crack 

tends to propagate in the direction where the hoop 

stress   is maximum. Moreover, diferent from 

isotropic material that has only one fracture 

toughness value in every direction, in orthotropic 

case, the fracture toughness is given by 
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where 
1
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K  and 

2

IC
K  respectively are the fracture 

toughness of material along direction 1 and 2. These 

values are assumed to relate to the ratio of elastic 

modulii as below [27] 
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To apply this criterion for crack propagation in 

orthotropic model that have general crack angle and 

material orientation, the formulation is generalized 

as [28] 

   2 22
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   (6) 

where mat  is the material orientation and   is 

the crack angle. The value of   that makes the 

expression (6) get maximum is the crack growth 

direction. 

3 X-MK FORMULATION FOR CRACK 

PROBLEM. 

3.1 The moving Kriging shape function 

According to Gu et al. [22], the approximation of 

the distribution functions ( )iu x , within a sub-

domain 
x  , is interpolated based on all nodal 

values at 
ix  within this sub-domain ( 1,...,i n  and 

n is the total number of nodes in the sub-domain). 

The moving Kriging interpolation   ,hu x  

x x  is defined as 

 
       
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T T
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
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Φ x u x

      (7) 

where ( )u x  is the vector of nodal displacements; 

( )p x  is the vector of m polynomial basis functions 

and 

        
T

1 2
, , ,

n
R R Rr x x x x x x x  is 

the vector of n correlation functions. The vector of 

basis functions can be chosen as linear functions 

   T
1 x yp x . 

The matrixes A (3×n) and B (n×n) are determined 

by  
-1

T -1 T -1
A = P R P P R  and  -1

B = R I PA  

where I is an unit matrix, matrix P of the basis 

functions and correlation matrix R are given in 

detail in [22] 

In this study, the Gaussian function is used as 

correlation function  
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where 
c

l  factor can be taken as the average 

distance between nodes in the domain and 

ij i j
r  x x . The choise of correlation function as 

in Eq. (8) is to eliminate the effect of the correlation 

coeffiction in the Gaussian correlation function in 

[22].  

3.2 Meshless X-MK discretization and vector level 

set method 

Based on the extrinsic enrichment technique, the 

displacement approximation 
h

u  is rewritten in 

terms of the signed distance function f and the 

distance from the crack tip as follow: 
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where I is the moving Kriging shape functions 

[22] and  f x  is the signed distance from the 

crack line. The jump enrichment functions 

  H f x  and the vector of branch enrichment 

functions 
jB   (j = 1, 2, 3, 4) are defined respectively 

by [10] 
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where r  is the distance from x to the crack tip 

TIP
x  and   is the angle between the tangent to the 

crack line and the segment 
TIP

x x  as shown in Fig. 

2. The functions 
j

  and 
j

g  (j=1, 2) in Eq. (11) can 

be written as  

 arctan sin / (cos sin )
j jy jx

s s       (12) 
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In Eq. (9), 
b

W  denotes the set of nodes whose 

support contains the point x and is bisected by the 

crack line and 
S

W  is the set of nodes whose support 

contains the point x and is slit by the crack line and 

contains the crack tip. ,
I Ij

   are additional 

variables in the variational formulation [18]. 

 

Figure 2. Distance r and angle   

3.3 Discrete equations 

Applying the meshless procedure [23] by 

substituting the approximation (9) into the well-

known weak form for solid problem, a linear system 

of equation can be written as 

Ku F          (14) 

with K  being the stiffness matrix, respectively, and 

F  being the vector of force, they can be defined by  

T

IJ I J
d



 K B DB    (15) 

t

T T

I I I I I
d d

 

    F Φ b Φ t  (16) 

where Φ  is the vector of enriched MK shape 

functions; the displacement gradient matrix B   

must be calculated appropriately dependent upon 

enriched or non-enriched nodes [20]. 

4 STRESS INTENSITY FACTORS 

CALCULATION FOR ORTHOTROPIC 

MODELS. 

The stress intensity factors are important 

parameters in linear elastic fracture mechanics, they 

are used to evaluate the status of crack and predict 

the angle of crack propagation.  

In this paper, the interaction integral derived from 

the path independent J-integral is used to extract the 

SIFs for orthotropic model [13]. The path 

independent integration can be written as 

,1 ,1 1 ,
( )

aux aux aux

ij i ij i ij ij j j

A

I u u q dA            (17) 

where 
,1,ij iu  and  ,1,aux aux

ij iu  are real and auxiliary 

states of stress and derivative of displacement 

respectively. The weight function q is defined in 

[13] 

The stress intensity factors can then be evaluated 

by solving a system of linear algebraic equations: 
(1)
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5 NUMERICAL EXAMPLES. 

5.1 Single mode: Square plate with center crack 

The first example deals with an orthotropic 

square plate with a center crack, the dimensions are 

20W H mm   shown in Fig. 3. The plate are 

subjected to a uniform tensile stress 

0

2
1 /kN mm   at the top and bottom edges. The 

crack length 2a=2mm and the orthotropic material 

properties are given as 
1

114.8E GPa ,  

2
11.7E GPa , 

12
0.21  , and  

12
9.66G GPa . 

Due to the symmetry of the model, a uniform nodal 

distribution of 20 40  nodes are used for a half of 

the plate. The dimensionless size of support domain 

is considered as 2.0
sd

  . 

 

Figure 3. Square orthotropic plate with center crack 
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The results for normalized mode-I SIF 

0
/

I
K K a   are given in Table 1. The 

obtained X-MK results are compared to the 

solutions given by other methods such as FEM [24], 

XFEM [12], X-RPIM [20] and EFG [16]. 

 

Table 1. Normalize mode-I SIF for square orthotropic plate 

Method DOFs 
I

K  

X-MK (this work) 3600 1.031 
X-RPIM [20] 3600 1.022 

Conventional EFG [16] 3875 0.965 

Modified EFG [16] 4035 1.005 
FEM [24] 11702 0.997 

XFEM [12] 4278 1.020 

  

In Table 1, the values of DOFs in X-MK and X-

RPIM are assumed for the full models. Practically, 

authors only use 800 nodes (1600 dofs) for the 

symmetric model. The numerical results of the SIFs 

indicated that the proposed X-MK method gives 

acceptable solution with fewer DOFs than others.  

To investigate the effect of the dimensionless size 

of support domain, various values of  
sd

  are 

considered and reported in Table 2. It can be seen 

that the optimum values for this size coefficient are 

from 1.9 to 2.1. 

 

Table 2. Normalized mode-I SIF with different sizes  

of support domain 

sd
  

I
K  

1.8 0.977 

1.9 1.051 

2.0 1.031 
2.1 1.015 

2.2 0.936 
2.3 0.921 

 

5.2 Orthotropic plate with edge crack under shear 

stress 

In the second example, a cantilever orthotropic 

plate with an edge crack is considered as shown in 

Fig. 4. The plate is subjected to a shear stress at the 

top edge. Dimension, load and boundary condition 

are display in Fig. 4. The orthotropic material 

properties are 
1

114.8E GPa , 
2

11.7E GPa , 

12
0.21   and 

12
9.66G GPa . Various cases of 

orthotropic material axes are considered 

(
0 0

90 90    ). A distribution of 20 40  scatter 

nodes is used in this plane stress analysis.  

Mixed-mode normalized stress intensity factors 

versus orthotropy angles are plotted in Fig. 5. The 

obtained results are compared to solutions given by 

X-RPIM [25], EFG [16] and FEM [26]. The charts 

show a very good agreement acquired between 

solutions. 

 

 
Figure 4. Orthotropic edge crack plate under shear loading 

 

 

 
Figure 5. Normalized SIFs results with several orientations of the 

axes of orthotropy 

 

5.3 Predicting for propagation angle 

In this example, a rectangular speciment with an 

edge crack is subjected to a uniform tensile loading 

at both top and bottom edges. The orthotropic 

material properties are 
1

139 ,E GPa  
2

10 ,E GPa  

12
5.2G GPa  and 

12
0.3v  . The configuration is 

plotted in Fig. 6 and all dimensions are given in 

mm.  

W

W

1W 

0.5a 



1E
2E


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Figure 6. Normalized SIFs results with several orientations 

 

A distribution of 20 50  scatter nodes and the 

size of crack increment 3a   are used for this 

simulation. The predicted initial propagation angles 

with respect to the material orientation angles are 

shown in Table 3. The obtained results match well 

with solution from experiment and XFEM [28]. To 

investigate the effect of material orientation angle 

on the crack path, various cases of   are 

considered. Charts in Fig. 7 shows crack paths with 
0 0 0 0

0 ,30 , 45 ,60   and 
0

90 . These crack paths 

can be compared directly to experimental results 

given in [28]. 

 

Table 3. Initial crack propagation angles (degree) 

 (0) X-MK Experimental X-FEM 

0 0.91 0 0 

30 30.00 30 29 

45 42.73 45 43 

60 57.27 60 57 

90 82.73 90 83 

 

 

Figure 7. Crack paths with various values of angle   

6 CONSLUSION 

An extended meshless method based on moving 

Kriging interpolation (X-MK) has been proposed 

for cracks analysis in orthotropic with several 

material orientations. The MK shape functions 

satisfy the Kronecker’s delta property so the 

Dirichlet boundary conditions can be enforced 

conveniently. Several numerical examples including 

SIFs calculation and crack growth simulation are 

considered with different material models and 

loading conditions. A good agreement between the 

proposed method and the references. The presented 

X-MK is promising to be extended to more complex 

problems such as dynamic SIFs calculation and 

dynamic crack propagation problems of orthotropic 

materials. 
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27 

Engineering from Ho Chi Minh city University of 

Technology, VNU-HCM. 

He is an Associate Professor, Department of 

Engineering Mechanics, Ho Chi Minh City 

University of Technology, VNU-HCM. His current 

interests include fracture analysis and numerical 

methods.  

 

 

 

Phương pháp không lưới moving Kriging mở 

rộng cho phân tích lan truyền vết nứt trong 

vật liệu trực hướng 
 

Nguyễn Thanh Nhã1, Nguyễn Ngọc Minh1, Bùi Quốc Tính2, Trương Tích Thiện1,* 

1Trường Đại học Bách Khoa, ĐHQG-HCM 
2Viện Công nghệ Tokyo, Nhật Bản 

Tác giả liên hệ: tttruong@hcmut.edu.vn 

 

Ngày nhận bản thảo: 12-6-2017, ngày chấp nhận đăng: 18-11-2017 
 

 

Tóm tắt—Vật liệu composite trực hướng là một dạng đặc biệt trong nhóm vật liệu bất đẳng hướng và các sản 

phẩm từ vật liệu này ngày càng được sử dụng rộng rãi trong kỹ thuật. Việc nghiên cứu ứng xử cơ học của loại vật 

liệu này là rất cần thiết. Trong nghiên cứu này, tác giả áp dụng phương pháp không lưới mở rộng dựa trên phép 

nội suy moving Kriging (X-MK) cho bài toán phân tích nứt trong vật liệu composite trực hướng. Hàm Gauss 

được dùng để thiết lập hàm dạng moving Kriging. Ưu điểm của hàm dạng MK là thỏa mãn thuộc tính 

Kronecker’s delta và liên tục bậc cao. Để tính toán hệ số cường độ ứng suất (SIFs), phương pháp tích phân tương 

tác được sử dụng kết hợp với miền phụ trợ trực hướng lân cận đỉnh vết nứt. Các ví dụ số được thực hiện bao gồm 

các bài tính hệ số SIFs và dự đoán hướng lan truyền vết nứt nhằm kiểm chứng sự chính xác của phương pháp. 

Các kết quả thu được được so sánh với các lời giải tham khảo từ các phương pháp khác và sự phù hợp giữa các 

kết quả thể hiện tính đúng đắn của phương pháp đối với bài toán đã đề cập. 

 

Từ khóa—vật liệu trực hướng, cơ học phá hủy, hệ số cường độ ứng suất, phương pháp không lưới MK. 
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