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Extended meshless moving Kriging method
for crack propagation analyzing in
orthotropic media

Nguyen Thanh Nha, Nguyen Ngoc Minh, Bui Quoc Tinh, Truong Tich Thien”

Abstract—orthotropic composite material is the
particular type of anisotropic materials and their
products have been extensively used in a wide range of
engineering applications. Study on mechanical
behaviors of such materials under working conditions
is very essential. In this study, an extended meshfree
moving Kriging interpolation method (namely as X-
MK) is presented for crack analyzing in 2D
orthotropic materials models. The Gaussian function
is used for constructing the moving Kriging shape
functions. Typical advantages of the MK shape
function are the high-order continuity and the
satisfaction of the Kronecker’s delta property. To
calculate the stress intensity factors (SIFs), interaction
integral method is used with orthotropic auxiliary
fields. Several numerical tests including static SIFs
calculating and crack propagation predicting are
performed to verify the accuracy of the present
approach. The obtained results are compared with
available refered results and they have shown a very
good performance of the present method.

Index Terms—orthotropic, crack, stress intensity
factors, meshless, MK.
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1 INTRODUCTION

I n recent decades, orthotropic composite materials
are used widely in various fields in engineering
such as automobile, aerospace and civil industries,
etc. One of the most advance property of composite
is the strength per weight ratio of these materials is
higher than other conventional engineering
materials. In many cases, orthotropic composites are
fabricated in thin plate or thin shell forms which are
so easy to fault. Moreover, fiber enforced
composites are so brittle and usually have linear
elastic crack behavior without or with very little
plasticity. For that reason, linear elastic crack
behavior of orthotropic materials has become a very
attracting study topic.

There are some important analytical solutions for
othortropic crack models early given by Sih et al
[1], Bowie et al [2], Tupholme et al [3], Barnet et al
[4] and Kuo and Bogy [5]. They found out the
singular fields such as displacement and stress near
crack tip zone in anisotropic models. More recent
contributions can be listed in Nobile et al [6, 7] and
Carloni et al [8, 9]. However, analytical
formulations cannot be applied to practical problems
that have complex geometries and loading
conditions. In the numerical fields, the extended
finite element method (XFEM) has shown a very
good capability in analyzing of fracture behavior of
orthotropic materials, some typical publications can
be listed in [10-14]. In XFEM, the finite element
approximation is enriched with Heaviside function
for crack face and appropriate functions extracted
from the analytical solutions for a crack tip near
field. Moreover, the element free Galerkin method
(EFG) [15] has been applied for fracture analysis of
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composite by Ghorashi et al [16]. In this aproach,
the support domain is modified to involve the
discontinuity at the crack face and the singularity at
the crack tip. Unlike the FEM, meshfree method
uses a set of scattered nodes to model the domain
and approximate the field variables. Because no
finite element or mesh is required in the
approximation, meshfree methods are very suitable
for modeling crack growth problems [17-20].

In this work, an extended meshfree Galerkin
method based on the moving Kriging interpolation
method (X-MK) associated with the vector level set
method is presented for modeling the crack problem
in orthotropic materials. To calculate the SIFs, the
interaction integral formulation for orthotropic
materials is taken. Several numerical examples
including static SIFs calculation and crack
propagation angle prediction are performed and the
obtained results are compared to the solutions given
by other methods to verify the accuracy of the
proposed method.

2 FRACTURE MECHANICS FOR
ORTHOTROPIC MATERIALS
2.1 Linear elastic behavior of orthotropic material

In orthotropic material, the linear elastic stress—
strain relations can be written as

¢=Co 1)
Whereo, € are linear stress and strain vectors,
respectivily and C is the fourth-order compliance

tensor. For plane stress problem, C can be defined
as:

1/, -v,/E, 0
C*=|-v,/lE  1/E, 0 )
0 0 1/G,

Where E,E,,G,, and Vv,,V, are Young’s

moduli, shear modulus and Poisson’s ratios,

respectively.

Figure 1. Orthotropic crack model

2.2 Crack behavior of orthotropic material

Consider an orthotropic cracked body subjected
to arbitrary forces with general boundary conditions
as shown in Fig. 1. Global Cartesian
coordinates (X,, X,), local Cartesian coordinates
(X, X,) and local polar coordinates (I, @)
defined on the crack tip are also displayed. Using
equilibrium and compatibility conditions [21], a
four-order partial differential equation with the
following characteristic equation can be obtained

Cff’s4 - 20123D + (2C122D + C323D)s2
—-2C2s+C2 =0
It was proved by Lekhnitskii [21] that the roots
s, of Eg. (3) are always complex or purely

k =1, 2) and occured

3)

imaginary (S, = S,, +Iis,,

in conjugate pairs as S, S, and S,,S,. The
displacement and stress fields in the vicinity of the
crack tip are given in [1].

2.3 Criterion for crack growth direction

In orthotropic material, the crack growth direction
is predicted based on the maximum hoop stress
criterion [27]. This criterion means that the crack
tends to propagate in the direction where the hoop

stress O, is maximum. Moreover, diferent from

isotropic material that has only one fracture
toughness value in every direction, in orthotropic
case, the fracture toughness is given by

K. = K. cos’ ¢ + K%, sin’ ¢ (4)

where K. and K? respectively are the fracture

toughness of material along direction 1 and 2. These
values are assumed to relate to the ratio of elastic
modulii as below [27]
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To apply this criterion for crack propagation in
orthotropic model that have general crack angle and
material orientation, the formulation is generalized
as [28]

- % (6)
EZ cos’(p—6,, +a)+sin’(p—6,, +)
1

where @__. is the material orientation and & is

mat
the crack angle. The value of ¢ that makes the

expression (6) get maximum is the crack growth
direction.

3 X-MK FORMULATION FOR CRACK
PROBLEM.

3.1 The moving Kriging shape function

According to Gu et al. [22], the approximation of
the distribution functions u(x;), within a sub-
domain Q cQ, is interpolated based on all nodal
values at x; within this sub-domain (i=1,..,n and
n is the total number of nodes in the sub-domain).

The moving Kriging interpolation  u"(x),
vx e, isdefined as
u"(x)=[p" (x)A+r"(x)B]u(x) )
:d)(x)Tu(x)

where u(x) is the vector of nodal displacements;
p(X) is the vector of m polynomial basis functions
and
r(x)=[R(x,x) R(x,x) ... R(x,x)]" is
the vector of n correlation functions. The vector of
basis functions can be chosen as linear functions

p(x)=[1 x vy].
The matrixes A (3xn) and B (nxn) are determined
by A=(P'R'P) P'R* and B=R"(I-PA)

where | is an unit matrix, matrix P of the basis
functions and correlation matrix R are given in
detail in [22]

In this study, the Gaussian function is used as
correlation function

_lpe
2|2 1
C

R(Xi’xj):e 8)

where | factor can be taken as the average

distance between nodes in the domain and

= ||x —xJ|| . The choise of correlation function as

in Eqg. (8) is to eliminate the effect of the correlation
coeffiction in the Gaussian correlation function in
[22].
3.2 Meshless X-MK discretization and vector level
set method

Based on the extrinsic enrichment technique, the
displacement approximation u" is rewritten in
terms of the signed distance function f and the
distance from the crack tip as follow:

u"() = 2 40U + D g () H(f(x))

1eW (x) Tew, (x)

4
+ 2 40028, ()5, ©)
1eW, (x) j=1
where @, is the moving Kriging shape functions
[22] and f(x) is the signed distance from the
crack line. The jump enrichment functions
H(f(x)) and the vector of branch enrichment
functions B; (j =1, 2, 3, 4) are defined respectively
by [10]

e if f(x)>0
H (T (X))_{—l it f(x)<0 (o)
B, (x) = [ﬁcosgalgl(e),
Jr cos%\/gz(e), (12)

«/Fsin%«/gl(e),\ﬁsin%\/92(9)]}

where r is the distance from x to the crack tip

X, and ¢ is the angle between the tangent to the

crack line and the segment x —Xx_ . as shown in Fig.
2. The functions 7; and g; (j=1, 2) in Eg. (11) can
be written as

y, = arctan (sjy sin@/(cosd+s, sin 9)) (12)
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9,(6) =\/(cosa+ijsin ) +(s,sin6)”  (13)

In Eq. (9), W, denotes the set of nodes whose
support contains the point x and is bisected by the
crack line and W, is the set of nodes whose support
contains the point x and is slit by the crack line and

contains the crack tip. «, are additional

lj
variables in the variational formulation [18].

X

[ ]
.

crack line (f =0) l ¢ .-

’
/-
z -~

f <O XTIP

Figure 2. Distance r and angle (9

3.3 Discrete equations

Applying the meshless procedure [23] by
substituting the approximation (9) into the well-
known weak form for solid problem, a linear system
of equation can be written as

Ku=F (14)
with K being the stiffness matrix, respectively, and
F being the vector of force, they can be defined by

- [B/DB,d0 (15)

F =[®bdo+ [@]dr (16)

where @ is the vector of enriched MK shape
functions; the displacement gradient matrix B
must be calculated appropriately dependent upon
enriched or non-enriched nodes [20].

4 STRESS INTENSITY FACTORS
CALCULATION FOR ORTHOTROPIC
MODELS.

The stress intensity factors are important
parameters in linear elastic fracture mechanics, they
are used to evaluate the status of crack and predict
the angle of crack propagation.

In this paper, the interaction integral derived from
the path independent J-integral is used to extract the
SIFs for orthotropic model [13]. The path
independent integration can be written as

|_j( o,uY +otu, —oe, 5 ) A (17)

aux

where o, u, and o, u’y* are real and auxiliary
states of stress and derivative of displacement
respectively. The weight function q is defined in
[13]

The stress intensity factors can then be evaluated
by solving a system of linear algebraic equations:

¥ =2d K, +dK, (18)
19 =d K, +2dK, (19)
where

C S, +8S
d, =-——Im| —=|,

2 S,S,

1

d,=-—2Im Cu Im(ss,),

2 S S, 2
d,=—Im(s, +s,) (20)

5 NUMERICAL EXAMPLES.

5.1 Single mode: Square plate with center crack

The first example deals with an orthotropic
square plate with a center crack, the dimensions are
W =H =20mm shown in Fig. 3. The plate are
subjected to a uniform  tensile  stress

o, =1kN /mm? at the top and bottom edges. The
crack length 2a=2mm and the orthotropic material

properties  are E, =114.8GPa,

E,=11.7GPa, v, =021, and G, = 9.66GPa .

Due to the symmetry of the model, a uniform nodal
distribution of 20 x40 nodes are used for a half of
the plate. The dimensionless size of support domain

given  as

is considered as a,, =2.0.

EENREEE
E,

Ua |2

N 2a0=2
[ :
4 2
FTTiITT

Figure 3. Square orthotropic plate with center crack
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The
K,=K/o,Nza are given in Table 1. The

obtained X-MK results are compared to the
solutions given by other methods such as FEM [24],
XFEM [12], X-RPIM [20] and EFG [16].

results for normalized mode-l SIF

Table 1. Normalize mode-1 SIF for square orthotropic plate

Method DOFs KI
X-MK (this work) 3600 1.031
X-RPIM [20] 3600 1.022
Conventional EFG [16] 3875 0.965
Modified EFG [16] 4035 1.005
FEM [24] 11702 0.997
XFEM [12] 4278 1.020

In Table 1, the values of DOFs in X-MK and X-
RPIM are assumed for the full models. Practically,
authors only use 800 nodes (1600 dofs) for the
symmetric model. The numerical results of the SIFs
indicated that the proposed X-MK method gives
acceptable solution with fewer DOFs than others.

To investigate the effect of the dimensionless size

of support domain, various values of «, are

considered and reported in Table 2. It can be seen
that the optimum values for this size coefficient are
from 1.9 to 2.1.

Table 2. Normalized mode-I SIF with different sizes
of support domain

asd K |

1.8 0.977
19 1.051
2.0 1.031
2.1 1.015
2.2 0.936
2.3 0.921

5.2 Orthotropic plate with edge crack under shear
stress

In the second example, a cantilever orthotropic
plate with an edge crack is considered as shown in
Fig. 4. The plate is subjected to a shear stress at the
top edge. Dimension, load and boundary condition
are display in Fig. 4. The orthotropic material

properties are E =114.8GPa, E,=11.7GPa,
v, =021 and G, =9.66GPa. Various cases of
orthotropic  material axes are considered

(o =-90" +90"). A distribution of 20x40 scatter
nodes is used in this plane stress analysis.

Mixed-mode normalized stress intensity factors
versus orthotropy angles are plotted in Fig. 5. The
obtained results are compared to solutions given by
X-RPIM [25], EFG [16] and FEM [26]. The charts
show a very good agreement acquired between
solutions.

—> L» — —>
W
a=05
E, E
W \ﬁ ;0{
W =1
|-
>

K and Ky
IS

Hoo -50 50 100

0
o (%)
Figure 5. Normalized SIFs results with several orientations of the
axes of orthotropy

5.3 Predicting for propagation angle

In this example, a rectangular speciment with an
edge crack is subjected to a uniform tensile loading
at both top and bottom edges. The orthotropic

material properties are E, =139GPa, E, =10GPa,
G, =5.2GPa and v, =0.3. The configuration is

plotted in Fig. 6 and all dimensions are given in
mm.
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Figure 6. Normalized SIFs results with several orientations

A distribution of 20x50 scatter nodes and the
size of crack increment Aa =3 are used for this
simulation. The predicted initial propagation angles
with respect to the material orientation angles are
shown in Table 3. The obtained results match well
with solution from experiment and XFEM [28]. To
investigate the effect of material orientation angle
on the crack path, various cases of & are
considered. Charts in Fig. 7 shows crack paths with

0 =0°30°45°,60° and 90°. These crack paths

can be compared directly to experimental results
given in [28].

Table 3. Initial crack propagation angles (degree)

00 X-MK Experimental X-FEM
0 0.91 0 0
30 30.00 30 29
45 42.73 45 43
60 57.27 60 57
90 82.73 90 83
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Figure 7. Crack paths with various values of angle 0

6 CONSLUSION

An extended meshless method based on moving
Kriging interpolation (X-MK) has been proposed
for cracks analysis in orthotropic with several
material orientations. The MK shape functions
satisfy the Kronecker’s delta property so the
Dirichlet boundary conditions can be enforced
conveniently. Several numerical examples including
SIFs calculation and crack growth simulation are
considered with different material models and
loading conditions. A good agreement between the
proposed method and the references. The presented
X-MK is promising to be extended to more complex
problems such as dynamic SIFs calculation and
dynamic crack propagation problems of orthotropic
materials.
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Phuong phap khong lud1 moving Kriging mo
rong cho phan tich lan truyén vét nut trong
vat li¢u truc huoéng
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2yién Cong nghé Tokyo, Nhat Ban
Tac gia lién hé: tttruong@hcmut.edu.vn

Ngay nhén ban thao: 12-6-2017, ngay chip nhan dang: 18-11-2017

Tém tit—Vat liéu composite true hwéng 13 mot dang dic biét trong nhém vit liéu bat ding hwéng va cac san
phim tir vét li¢u nay ngay cang dwge sir dung rong rii trong ky thuit. Viéc nghién ciru wng xir co' hoc ciia loai vit
liéu nay 1a rét cin thiét. Trong nghién ciru niy, tic gii ap dung phwong phap khong lwéi mé réng dwa trén phép
ndi suy moving Kriging (X-MK) cho bai toan phan tich nit trong vat liéu composite truwc hwéng. Ham Gauss
dwgc diung dé thiét 1ap ham dang moving Kriging. Uu diém cia ham dang MK 1a théa min thudc tinh
Kronecker’s delta va lién tuc bic cao. Dé tinh toan hé s6 cwdong dd ving suit (SIFs), phwong phap tich phan twong
tac dugc sir dung két hop voi mién phu trg truee hwéng lan can dinh vét nirt. Cac vi du s dwoc thye hién bao gdm
cac bai tinh hé s6 SIFs va du doan hwdng lan truyén vét niet nhim kiém chiing sw chinh xéc ciia phwong phap.
Cic két qua thu dwge duoc so sanh véi cac 101 gidi tham khio tir cac phwong phap khac va s phit hop giira cac
két qua thé hién tinh ding din ciia phuong phap di voi bai toan da dé cap.

Tir khéa—vét liéu trwc huwéng, co hoc pha hity, hé sé cwong dd tng suit, phwong phap khéng luéi MK,
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