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ABSTRACT
The local cohomology theory plays an important role in commutative algebra and algebraic ge-
ometry. The I-cofiniteness of local cohomology modules is one of interesting properties which
has been studied by many mathematicians. The I-cominimax modules is an extension of I-cofinite
modules which was introduced by Hartshorne. An R -moduleM is I-cominimax if SuppR M ⊆V (I)
and ExtiR(R/I,M) is minimax for all i ≥ 0. The aim of this paper is to show some conditions such
that the generalized local cohomologymoduleH ′

I(M,N) is I-cominimax for all i ≥ 0. We prove that
H i

I(M,K) if is I-cofinite for all i ≥ 0. We prove that if H i
I(M,K) is I-cofinite for all i < t and all finitely

generated R-module K, then H i
I(M,N) is I-cominimax for all i < t and all minimax R-module N. IfM

is a finitely generated R-module, N is a minimax R-module and t is a non-negative integer such that
dimSuppR H i

I(M,N)≤ 1 for all i < t , then H i
I(M,N) is I-cominimax for all i < t . When dimR/I ≤ 1

and H i
I(N) is I-cominimax for all i ≥ 0, then H ′

I(M,N) is I-cominimax for all i ≥ 0.
Key words: Generalized local cohomology, I-cominimax

INTRODUCTION
Let R be a local Noetherian ring, I an ideal of R andM
a finitely generated R -module. It is well known that
the local cohomology modules H i

I(M) are not gen-
erally finitely generated for i > 0. In a 1970 paper
Hartshorne1 gave the concept of I-cofinite modules.
An R-module K to be I-cofinite if SuppR K ⊆ V (I)
and Ext j

R(R/I,K) is finitely generated for all j ≥ 0.
Hartshorne asked which rings R and ideals I themod-
ules H i

I(M)were I-cofinite for all i and all finitely gen-
erated modules M.
In 1, if (R , m) is a complete regular local ring and
M is a finitely generated R-module, then H i

I(M) is I
-cofinite in two cases:

• I is a nonzero principal ideal, or
• I is a prime ideal with dimR/I = 1

In 1991, Huneke and Koh2 proved that if R is a com-
plete local Gorenstein domain, I is a one dimension
ideal ofR andM is a finitely generatedR-module, then
H i

l (M) is I-cofinite for all i. In 1997, Yoshida in 3 or
Delfino and Marley in 4 extended (b) to all one di-
mension ideals I of an arbitrary local ring R. In 1998,
Kawasaki 5 proved (a) in an arbitrary commutative
Noetherian ring. The local condition in (b) has been
removed by Bahmanpour and Naghipour in 6.
In7, Herzog gave a generalizations of the local coho-
mology theory. Let j be a non-negative integer andM
a finitely generated R-module anN an R-module. The

j-th generalized local cohomology module of M and
N with respect to I is defined by

H j
I (M,N)∼= lim

n⃗

(
Ext j

R (M/InM,N)
)

We see that if M = R, then H j
I (M,N) = H j

I (N) the
usual local cohomology module of Grothendieck8.
Another similar question is: When is the module
H j

I (M,N)I-cofinite for all j ≥ 0?
In 2001, Yassemi [9, Theorem 2.8] showed that in a
Gorenstein ring, H j

I (M,N) is I -cofinite for all j ≥ 0
where I is non-zero principal ideal. In 2004, Divaani-
Aazar and Sazeedeh [10, Theorem 2.8 and Theorem
2.9] have eliminated the Gorenstein hypothesis and
showed that if either

1. I is principal, or
2. R is complete local and I is a prime ideal with

dimR/I = 1, then H j
I (M,N) is I-cofinite for all

j ≥ 0.

When I is a principal ideal, Cuong, Goto and Hoang
[11, Theorem 1.1] gave another proof for H j

I (M,N) is
I-cofinite for all j. They also showed that if dimM ≤ 2
or dimN ≤ 2, then H j

I (M,N) is I-cofinite for all j.
An extension of I-cofinite modules is I-cominimax
modules which was introduced in 200912. An R-
module M is called I-comiminax if SuppR M ⊆ V (I)
and ExtiR(R/I,M) is minimax for all i ≥ 0 (see [2, 3.1
and 2.2(ii)]). Naturally, we have a question:
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Question: When are the modules
H i

I(N) or H i
I(M,N)I-cominimax for all i ≥ 0?

In [2, 3.10], we see that ifN is an I-minimaxR-module
and I is a principal ideal, then H i

I(N) is I-cominimax
for all i ≥ 0. In 2011, Mafi13 proved that if N is a
minimax R-module, then H i

I(N) is I-cominimax for
all i ≥ 0 when one of the following cases holds:

1. dimR/I ≤ 1;
2. cd(I) = 1;
3. dimR ≤ 2.

In14, the authors showed that, if M is a minimax R-
module with SuppR

(
H i

I(M)
)
≤ 1 for all i ≥ 0 and N

is a finitely generatedR-module with SuppR N ⊆V (I),
then Ext j

R
(
N,H i

l (M)
)
is minimax for all i ≥ 0.

In [18], the authors proved that in a local ring, if
M is a finitely generated R-module and N, L are
two minimax R-modules with SuppR L ⊆ V (I), then
Ext j

R
(
L,H i

l (M,N)
)
isminimax for all i and jwhenone

of the following cases holds:

1. dimR/I ≤ 1;
2. cd(I) = 1;
3. dimR ≤ 2.

The aim of this paper is to study the I-cominimaxness
of H i

I(M,N). Theorem 2.2 shows that if H i
I(M,K) is I-

cofinite for all i < t and all finitely generatedR-module
K, then H i

I(M,N) is I-cominimax for all i < t and all
minimaxR-moduleN.Wewill see inTheorem2.4 that
if M is a finitely generated R-module, N is a minimax
R-module and t is a non-negative integer such that
dimSuppR H i

l (M,N) ≤ 1 for all i < t, then H i
I(M,N)

is I- cominimax for all i < t. When dimR/I ≤ 1, The-
orem 2.9 shows that if H i

I(N) is I-cominimax for all
i ≥ 0, then H i

l (M,N) is I-cominimax for all i ≥ 0.

MAIN RESULTS
In15, Zöschinger introduced the class of minimax
modules. An R-module K is said to be a minimax
module, if there is a finitely generated submodule T
of K, such that K/T is Artinian.
Remark 2.1 There are some elementary properties of
minimax modules:

1. The class of minimax modules contains all
finitely generated modules and all Artinian
modules.

2. Let 0 → L → M → N → 0 be an exact sequence
ofR-modules. Then,M is minimax if and only if
L and N are both minimax. Thus, any submod-
ule and quotient of a minimax module is mini-
max. Moreover, if N is finitely generated and M
is minimax, then Ext j

R(N,M) and TorR
j (N,M)

are minimax for all j ≥ 0.

3. The set of associated primes of any minimax R-
module is finite.

4. If M is a minimax R-module and p is a non-
maximal prime ideal of R , then Mp is a finitely
generated Rp -module.

Definition 2.1 (Azami, Naghipour and Vakili) An R-
module M is I-cominimax if SuppRM ⊆ V (I) and
ExtiR(R/I,M) is minimax for all i ≥ 0
The following result is a generalization of [14, 2.3].
Theorem 2.2 Let t be a non-negative integer. Assume
that H i

I(M,K) is I-cofinite for all i < t and all finitely
generated R-module K.Then H i

I(M,N) is I-cominimax
for all i < t and all minimax R-module N.
Proof. Since N is a minimax R-module, there is a
finitely generated R-module K of such that N/K is ar-
tinian. From the short exact sequence 0 → K → N →
N/K → 0 we get the following exact sequence

· · ·→H i
I(M,K)

fi→ H i
I(M,N)

gi→ H i
I(M,N/K)

hi→
H i+1

I (M,K)→ ···

Now, the short exact sequence

0 → lm fi → H i
I(M,N)→ Imgi → 0

induces a long exact sequence

· · · → Ext j
R (R/I, Im fi)→ Ext j

R

(
R/I,H i

I(M,N)
)
→

Ext j
R (R/I, Imgi)→ Ext j+1

R (R/I, Im fi)→ ···

gives rise to a long exact sequence I -cofinite

· · · → Ext j
R (R/I, Imhi−1)→ Ext j

R

(
R/I,H i

I(M,K)
)

→ Ext j
R (R/I, Im fi)→ Ext j+1

R (R/I, Imhi−1)→ ·· ·

By the hypothesis, H i
I(M,K) is I-cofinite for all i ≥ 0.

Hence Ext j
R
(
R/I,H i

I(M,K)
)

is finitely generated for
all i < t, j ≥ 0. Since N/K is artinian, it follows from
[16, 2.6] that H i

I(M,N/K) is artinian for all i ≥ 0. It
is easy to see that Ext j

R (R/I, Imhi−1) is Artinian for
all i, j ≥ 0. Consequently, Ext j

R (R/I, Im fi) is mini-
max for all i < t, j ≥ 0. Since Imgi is a submodule
of H i

I(M,N/K), it follows that Ext j
R (R/I, Imgi) is ar-

tinian for all i, j ≥ 0. Thus Ext j
R
(
R/I,H i

I(M,N)
)

is
minimax for all i < t, j ≥ 0.
Before showing a consequence of Theorem 2.2, we re-
call the concept of the local cohomology dimension of
an ideal.
Definition 2.3 The cohomological dimension of I in
R, denoted by cd(I) is the smallest integer n such that
the local cohomology modules H i

I(M) = 0 for all R-
modules M, and for all i > n.
We show some conditions such that the module
H i

I(M,N) is I-cominimax for all i ≥ 0.
Corollary 2.4 Let M be a finitely generated R-module
and N a minimax R-module. If either
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1. I is principal, or
2. dimM ≤ 2, or
3. dimN ≤ 2, or
4. cd(I) = 1,

then HI
i(M, N) is I-cominimax for all i ≥ 0. 

Proof. (1), (2) and (3), Combining heorem 2.2 with 
[11, 1.1] or [11 , 1.3], it follows that HI

i(M, N) is I-
cominimax for all i ≥ 0.

4. follows from [16, 2.2] and Theorem 2.2.

Next, we will show some results concerning to small
dimensions and R is an arbitrary (not local) commu-
tative Noetherian ring.
Theorem 2.4 Let M be a finitely generated R-module,
N a minimax R-module and t a non-negative inte-
ger such that dimSuppR

(
H i

I(M,N)
)
≤ 1 for all i <

t. Then H i
I(M,N) is I-cominimax for all i < t and

Hom
(
R/I,Ht

I (M,N)
)
is minimax.

Proof. SinceN is minimax, there is a finitely generated
R-module K of such that N/K is artinian. The short
exact sequence 0 → K → N → N/K → 0 gives rise to
a long exact sequence.

· · · → H i
I(M,K)

fi→ H i
I(M,N)

gi→ H i
I(M,N/K)

hi→

H i+1
I (M,K)→ ·· ·

Since N/K is artinian, it follows from [ 17, 2.6] that
H i

I(M,N/K) is artinian for all i ≥ 0. By the assump-
tion, we induce dimSuppR

(
H i

I(M,K)
)
≤ 1 for all i <

t. It follows from [11, 1.2] that H i
I(M,K) is I-cofinite

for all i < t. Now, the short exact sequence

0 → lm fi → H i
I(M,N)→ Imgi → 0

induces a long exact sequence

· · · → Ext j
R (R/I, Im fi)→ Ext j

R

(
R/I,H i

I(M,N)
)

→ Ext j
R
(
R/I, lmg j

)
→ Ext j+1

R (R/I, Im fi)→ ···

Note that Ext j
R (R/I, Imgi) is artinian for all i, j ≥ 0.

Let i < t, the short exact sequence

0 → lmhi−1 → H i
I(M,K)→ Im fi → 0

induces a long exact sequence

· · · → Ext j
R (R/I, Imhi−1)→

Ext j
R

(
R/I,H i

I(M,K)
)
→ Ext j

R (R/I, Im fi)→

Ext j+1
R (R/I, Imhi−1)→ ··· .

Since H i
I(M,K) is I-cofinite, it follows that

Ext j
R
(
R/I,H i

I(M,K)
)

is finitely generated for all
j ≥ 0. By the artinianness of Ext j

R (R/I, Imhi−1), we
can conclude that Ext j

R (R/I, Im fi) is minimax for all

j ≥ 0. Therefore Ext j
R
(
R/I,H i

I(M,N)
)

is minimax
for all j ≥ 0. We have two following exact sequences

0 → HomR (R/I, Im ft)→ HomR
(
R/I,Ht

I (M,N)
)
→

HomR (R/I, Imgt)

and

HomR
(
R/I,Ht

I (M,K)
)
→ HomR (R/I, Im ft)→

Ext1R (R/I, Imht−1)→ ···

Since dimSuppR
(
H i

I(M,K)
)
≤ 1 for all i < t, it follows

from [4, Theorem 1.2] that HomR
(
R/I,Ht

I (M,K)
)

is finitely generated. On the other hand,
Ext1R (R/I, Imht−1) is an artinian R-module.
Therefore HomR (R/I, Im ft) is minimax. We
see that HomR (R/I, Imgt) is artinian and then
HomR

(
R/I,Ht

I (M,N)
)
is minimax.

In [18, 3.1 and 3.2], the authors showed that H i
I(M,N)

is I-cominimax for all i ≥ 0 when dim R/I ≤ 1 where
R is a local ring. Now we consider that R is not a local
ring.
Corollary 2.5 Let M be a finitely generated R-module,
N a minimax R-module and t a non-negative inte-
ger. Assume that dimM/IM ≤ 1 or dimN ≤ 1 or
dimR/I ≤ 1. Then H i

I(M,N) is I-cominimax for all
i ≥ 0.
Corollary 2.6 Let M be a finitely generated R-module,
N a minimax R-module and t a non-negative inte-
ger. Assume that SuppR

(
H i

I(M,N)
)
is finite for all

i < t. Then H i
I(M,N) is I-cominimax for all i < t

and HomR
(
R/I,Ht

I (M,N)
)
is minimax. In particular,

Ass
(
Ht

I (M,N)
)
is a finite set.

Proof. Since SuppR
(
H i

I(M,N)
)

is a finite set, we
can conclude that dimSuppR

(
H i

I(M,N)
)
≤ 1. It fol-

lows fromTheorem 2.4 that H i
I(M,N) is I-cominimax

for all i < t and HomR
(
R/I,Ht

I (M,N)
)

is minimax.
Moreover, we have

Ass
(
Ht

I (M,N)
)
= Ass

(
HomR

(
R/I,Ht

I (M,N)
))

By Remark 2.1.3, Ass
(
Ht

I (M,N)
)
is a finite set.

Corollary 2.7 Let N be a non-zero minimax R-module
and I an ideal of R. Let t be a non-negative integer such
that dimSuppR H i

I(N) ≤ 1 for all i < t . Then the fol-
lowing statements hold:

1. the R-modules H i
I(N) are I-cominimax for all i <

t;
2. the R-module HomR

(
R/I,Ht

I (N)
)
is minimax.

Lemma 2.8 Let M be a finitely generated R-module
such that SuppR M ⊆ V (I) and N an I-cominimax R-
module. Then ExtiR(M,N) is minimax for all i ≥ 0.
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Proof. The proof is by induction on i. Since N is an
I-cominimax R-module, the module ExtiR(R/I,N) is
minimax for all i ≥ 0. By Gruson’s theorem, there is a
chain of submodules of M.

0 = M0 ⊆ M1 ⊆ . . .⊆ Mk = M

such that M j/M j−1 is a homomorphic image of
(R/I)t for some positive integer t . We consider short
exact sequences

0 → K → (R/I)m → M1 → 0

and

0 → M j−1 → Mi → M j/M j−1 → 0

Thefirst exact sequence induces a long exact sequence

0 → HomR (M1,N)→ HomR ((R/I)m,N)→

HomR(K,N)→ ···

where K is a submodule of (R/I)m for some posi-
tive integer number m. Since HomR ((R/I)m,N) ∼=
HomR(R/I,N)m, it follows that HomR (M1,N) is
minimax. By similar arguments, we also get that
HomR

(
M j/M j−1,N

)
is minimax for all 1 ≤ i ≤ k .

Now, the exact sequence

0 → HomR
(
M j/M j−1,N

)
→ HomR

(
M j,N

)
→

HomR
(
M j−1,N

)
→ ···

deduces that HomR
(
M j,N

)
is minimax for all j and

then HomR(M,N) isminimax. Therefore, we have the
conclusion when i = 0.
Let i > 0. The short exact sequence

0 → K → (R/I)m → M1 → 0

gives rise to a long exact sequence

· · · → Exti−1
R (K,N)→ ExtiR (M1,N)→

ExtiR
(
(R/I)t ,N

)
· · ·

By the inductive hypothesis, Exti−1
R (K,N) is a

minimax R-module. Since ExtiR ((R/I)m,N) ∼=
ExtiR(R/I,N)m, it follows that ExtiR (M1,N) is mini-
max. Analysis similar to the above proof, we have
ExtiR (Mk,N) is minimax and which completes the
proof.

The following result shows a connection on the I-
cominimaxness of H i

I(N) and H i
I(M,N)when R is not

a local ring and N is an arbitrary R-module.
Theorem 2.9 Let M be a finitely generated R-module
with pd(M)< ∞ and N an R- module. Let I be an ideal
of R with dimR/I = 1 and t a non-negative integer such
that H i

I(N) is I-cominimax for all i < t. Then H i
I(M,N)

is I-cominimax for all i < t.
Proof. We prove by induction on p = pd(M). If p = 0,
then M is a projective R-module. It follows from [19,
2.5] that H i

I(M,N) ∼= HomR
(
M,H i

I(N)
)
for all i ≥ 0.

By [20, 10.65], we have

Ext j
R

(
R/I,HomR

(
M,H i

I(N)
)
∼= Ext j

R

(
M/IM,H i

I(N)
)

for all i < t, j ≥ 0. Therefore Ext j
R
(
R/I,H i

I(M,N)
)∼=

Ext j
R

(
M/IM,H j

I (N)
)

where Ext j
R
(
M/IM,H i

I(N)
)
is

minimax for all j ≥ 0 by Lemma 2.8 and then the as-
sertion follows.
Let p > 0 and the statement is true for all finitely gen-
erated R-module with projective dimension less than
p. There is a short exact sequence

0 → K → P → M → 0,

where K is finitely generated, P is projective finitely
generated. Note that pd(K) = p− 1 and then by the
inductive hypothesis H i

I(K,N) is I-cominimax for all
i < t. On the other hand, there is a long exact sequence
· · · → H i

I(K,N)→ H i+1
I (M,N)→ H i+1

I (P,N)→ ·· ·
in which H i

I(K,N) and H i
I(P,N) are I-cominimax for

all i ≥ 0. It follows from [21, 2.6] that H i
I(M,N) is also

I-comiminax for all i ≥ 0 and the proof is complete.
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