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ABSTRACT: This paper introduces the novel inverse dynamic intelligent MIMO model which is

applied for modeling and identifying the stepper motor dynamic model. Hence the highly nonlinear

features of stepper motor system are modeled thoroughly based on the inverse neural NARX model

identification process using experimental input-output training data. Consequently the proposed inverse

neural NARX MIMO model scheme of the nonlinear stepper motor has been investigated. The results

showed that the proposed inverse neural NARX MIMO model trained by the back propogation learning

algorithm (BP) yields outstanding performance and perfect accuracy.
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1. INTRODUCTION

Nowadays stepper motor is popularly
applied in the industry due to some significant
advantages. First no feedback is conventionally
required for both position control and speed
control. In addition, positional error is not
accumulative. Furthermore stepper motors are
intrinsically compatible with modern digital
equipment. Hence, various types and classes of
stepping motor have been used in computer
peripheral, automated machinery, and similar
system [1]. The cost of the stepper system is
significantly lower than that of the servo
system. It is because of the removal of high
cost of the position feedback device and
complicated feedback control. Moreover, it
does not require tuning of feedback control

which needs extra expertise and support.

The nonlinear stepper motor driving
system is belonged to highly nonlinear systems
where perfect knowledge of their parameters is
unattainable by conventional modeling
techniques because of the time-varying inertia,
external force variation. One of the most
unfavorable features of stepper motor is
mechanical resonance, particularly at low
speed. Resonance prevents stepper motor to run
steadily at certain speeds and reduce the
motor’s usable torque. This prevents stepper
motor to be used on application that requires
smooth low-speed motion.

Up to now much effort has been spent on
improving the performance of stepper system
in various ways. Brown and Srinivas [2]
attempted to use resistance and capacitance to

increase electric damping at particular
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frequency. It showed some advantages at the
expense of system efficiency and circuit
complexity. Schweid et al. [3] developed a
nonlinear analog position controller to regulate
the velocity of hybrid stepper system. Zribi and
Chiasson [4] demonstrated that stepper system
could be fast and accurate with exact feedback-
linearized position control. They also showed
that the linearization was the well-known
direct-quadrature (DQ) transformation if the
detent torque was not considered. Crnosija et
al. [5] had implemented the optimal algorithm
for closed-loop control. Chen et al. [6]
improved profile tracking performance by
using a model-based feedback controller with a
least-squares-based identification procedure.
Furthermore, they had exploited learning
control for precision control at low speed [7].
Betin et al. [8] had applied fuzzy logic
principle on closed-loop speed control of
stepping motor. Hwang et al. [9] improved the
position accuracy through a closed-loop control
scheme. However, the performance of the
mentioned algorithms was highly dependent on
the resolution of the position feedback device.
The feedback device also increased the system
cost and was not commercially favorable.
Recently, robust-adaptive control
approaches combining conventional methods
with new learning techniques are realized.
During the last decade several neural network
models and learning schemes have been
applied to offline and online learning of
nonlinear systems [10-11]. Ahn and Anh in

[12-13] have successfully optimized a NARX

fuzzy model of the nonlinear robot arm using
genetic algorithm. These authors in [14] have
identified the stepper motor based on forward
recurrent neural networks. The drawback of all
these results is related to consider the stepper
motor as an independent decoupling system.
Consequently, all intrinsic cross-effect features
of the stepper motor have not represented in its
recurrent neural model.

Nowadays artificial neural network
(ANN) techniques have recently had an impact
on power electronics and motor drives [15].
Sanchez et al. [16] proposed a sliding-mode
control law based on the ANN identifier for
trajectory tracking. Rubaai er al. [17-18] had
exploited ANN-based techniques for high-
performance stepper motor drives. However,
the developing ANN-based techniques are
often facing challenges on convergence and
overtraining.

To overcome these disadvantages, in this
paper, a new approach of intelligent multiple
inputs — multiple outputs (MIMO) model,
namely inverse dynamic neural MIMO NARX
model, firstly utilized in simultaneously
modeling and identification the stepper motor
system. The results show that the proposed
inverse dynamic neural MIMO NARX model
trained by back propagation (BP) learning
algorithm yields outstanding performance and
very good accuracy.

The rest of paper is organized as follows.
Section 2 introduces to the learning algorithm
applied to the modeling and identification of

the stepper motor. Section 3 introduces to the
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modeling of the stepper motor driving system
based on the conventional state-space
equations. Section 4 presents the experimental
set-up configuration for Inverse dynamic neural
MIMO NARX model-based identification. The
results from the inverse dynamic neural MIMO
NARX  model-based identification  are
presented in Section 5. Finally, in Section 6 a

conclusion remark is made.

2.BACK PROPOGATION LEARNING
ALGORITHM IN INVERSE NARX
MODEL IDENTIFICATION

The proposed inverse neural NARX model
used in this paper is a combination between the
Multi-Layer Perceptron Neural Networks
(MLPNN) structure and the Auto-Regressive
with eXogenous input (ARX) model. Due to
this combination, the inverse neural NARX
model possesses both of powerful universal
approximating feature from MLPNN structure
and strong predictive feature from nonlinear
ARX model.

Consider a 2™ order ARX model with

noisy input, which can be described as
A(g)¥(@) = Blg u(t=T)+C(ge(r) (1)

with 4(g™) =1+a¢™ +a,q7

B(g™")=b, +byq™

Clg")=c +eg +eyq”

where e(t) is the white noise sequence with
zero mean and unit variance; u(?) and y(?) are
input and output of system respectively; g is
the Inverse shift operator and 7 is the time

delay.

From equation (1), not consider noise
component e(?), we have the general form of
the discrete ARX model in domain z (with the
time delay T=n;=1)

-1 bz +b,z? +..+b, 27"
y(Z )_ 1z 2z "bZ (2)

na

u(z"y l+az'+a,z7 +..+a, z”

in which n, and n; are the order of output
y(z"") and input u(z”!) respectively.

By embedding a 3-layer MLPNN (with
number of neurons of hidden layer = 5) in a 2"
order ARX model with its characteristic
equation derived from (2) as follows:

Vi K) = byt (k= 1)+ by ay (k =1) = @, (k = 1) = ap,, (k =1)
VoK) = byt (k =1)+ by, (k = 1) = @y, (k = 1) = a,,y, (k1)

We will obtain the resulting Neural
NARXI11 model (n, =1, n, = 1, nx =1) with 6
inputs (u:1(1), u21(t), yi(t-1), uix(t), uzx(t) and
Va(t-1)), 2 outputs (Vina, Yonar) and its structure

3)

shown in Fig. 1.

The class of MLPNN-networks considered
in this paper is furthermore confined to those
having only one hidden layer and using
sigmoid activation function:

q [ n
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Fig. 1. Structure of neural MIMO NARX11 model

The weights (specified by the matrices w
and W) are the adjustable parameters of the
network, and they are determined from a set of

examples through the process called training.
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The examples, or the training data as they are
usually called, are a set of inputs, u(z), and
corresponding desired outputs, y(z).

The prediction error approach, which is
the strategy applied here, is based on the
introduction of a measure of closeness in terms
of a mean sum of square error (MSSE)

criterion:

EN(e,Z‘V)=2§v§b(t)—ﬁ(t o] o5

Based on the conventional error Back-
Propagation (BP) training algorithms, the

weighting value is calculated as follows:

3 L OEW (k) 6
Wk +1) =W (k) /L—aW(k) (6)

with k is k™ iterative step of calculation
and A is the learning rate which is often chosen
as a small constant value.

Concretely, the weights Wj; and wy of
neural NARX model are then updated as:

W, (k+1)=m,(k)+ AW, (k+1)

AW, (k+1)=1.5,.0, ™

6, =5,(1-3 )y -5)

with 51‘ is search direction value of i

neuron of output layer (i=/1—> m]); O; is the
output value of j# neuron of hidden layer
G=[1—> q]); yi and j}i are truly real output
and predicted output of i neuron of output
layer (i=/1—> m]), and
wﬂ(k+1)=wﬂ(k)+Awﬂ(k+1)
Aw, (k+1)= 1.5, u,

5,=0, (1 —0,; )ijl: W,

in which 0 i is search direction value of j*

neuron of hidden layer (j=/1—> q]); O; is the
output value of j# neuron of hidden layer
G=[1—> q]); w is input of /" neuron of input
layer (I=/1—> n]).

3. MATHEMATICAL MODEL OF THE
STEPPER MOTOR SYSTEM

ey | b
—

Fig. 2. Block diagrams of one full revolution of the
two phases stepper motor.

In this paper, the two-phases stepper motor
model is chosen for its good electrical and
mechanical performances rather than other
stepper motor models. The stepper motor is
driven by applied voltage. Fig. 2 shows the
block diagrams of the one full revolution of the
investigated two phases stepper motor.

The characteristic equations of the stepper

motor are represented as:

e
=
oy
A=k, b an(Nrdhe b, oo Ne g )~ Bo-T, |
ar N
iy, W —RE -k, msudNrd )
== B
o, £ {15, = R, 4k s [V 6 )
o ‘ ©

We see that J,in (7) (in this paper
)A/l. composed of)A/1 and )A/z) represented the

two control current values la and /b in (9)
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which are the currents applied to the two coils
of the two phases stepper motor; likewise u; in
(8) represents the angular velocity @ [rad/s]
used in equations (9) of the two phases stepper
motor, respectively.

Mathematical model expressed by the
equations (9) can be presented by the
MATLAB model. The model of the two phases
stepper motor in SIMULINK is shown in Fig.
3. Used symbols are tabulated in Table 1.
Various parameters of the stepper motor are
shown in Table 2.

Table 1. Used symbols
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Fig. 3. Model of the two phases stepper motor

Table 2. Parameters of the Stepper motor

system.

4. EXPERIMENT CONFIGURATION OF
THE STEPPER MOTOR

A general configuration and the schematic
diagram of the stepper motor and the
photograph of the experimental apparatus are
shown in Fig.4 and Fig.5, respectively.

A commercial 1.8 stepper motor is chosen
for our studies. It is a 50-pole-pair motor with
coil resistance of 0.9 Q, coil inductance of 2.2
mH, rotor inertia of 0.36 x 10—4 kg - m?, rated
current of 3 A, holding torque of 1.27 N'm, and
force constant (Km) of 0.3 N'm/A. The motor is
optimized for microstepping control. An
optical encoder (1000 lines, 4000 pulses/rev) is
attached to the motor for performance
monitoring. It is also used as position feedback
for the position loop in servo mode. A
photograph of the hardware platform is shown
in Fig. 5.

Trang 38



TAP CHi PHAT TRIEN KH&CN, TAP 13, S0 K6 - 2010

- = STEPPER i
laik MOTOR i)
SYSTEM
Tark) 4+ bkl
i ek}
1
#rkd 5
Uik
- T erse
I Nenral
' MARX22
BF Leaming Mloaded

Algsrithm |1

Fig. 4. Block diagram of step motor inverse neural

MIMO NARX model identification

Fig. 5. Photograph of the Stepper motor driving

system

5. RESULTS OF INVERSE NEURAL
MIMO NARX MODEL STEPPER MOTOR
IDENTIFICATION

In general, the procedure which must be
executed when attempting to identify a
dynamical system consists of four basic steps.
STEP 1 (Getting Training Data)

STEP 2 (Select Model Structure )
STEP 3 (Estimate Model)
STEP 4 (Validate Model)

To realize Step 1, Fig.6a presents the
input voltage signal applied to the stepper
motor armature and the responding rotation
speed. This experimental input-output data is
used for training and validating the stepper
motor Inverse neural MIMO NARX model (see
Fig.6b).

ESTIMATION STEPMOTOR INPUT/QUTPUT TRAINING DATA
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Fig. 6. (a) Stepper motor estimation Input-Output

Training data

VALIDATION STEPMOTOR INPUT/OUTPUT TRAINING DATA
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Fig. 6. (b) Stepper motor validation Input-Output
Training data

The 2™ step relates to select model
structure. A nonlinear inverse neural MIMO
NARX model structure is attempted. The full
connected Multi-Layer Perceptron (MLPNN)
network architecture composes 3 layers with 5
neurons in hidden layer is selected (results
derived from Ahn and Anh, 2006 [12]). The
final structure of proposed Inverse neural
MIMO NARX22 model of Stepper motor is

shown in Fig.7.

£ Ibhat(t)

la(t-2)

la(t-1)

Fig. 7. Structure of proposed inverse neural MIMO
NARX22 models of the investigated step motor

The proposed inverse neural MIMO
NARX22 model structure is defined as a
nonlinear neural MLPNN integrated a 2°¢ order
ARX model (with n4=2; np=2 and ngx=1)
possessed 5 neurons in hidden layer. The
activating function applied in neurons of
hidden Layer and of output layer is hyperbolic
tangent  function and linear function
respectively. Fig.4 represents the block
diagram for identifying stepper motor inverse

neural MIMO NARX22 model.

FITNESS CONVERGENCE STEPMOTOR INVERSE NEURAL NARX MODEL

10°

FITNESS
3

0 50 100 150 200 250 300 350 400 450 500
ITERATIONS

Fig. 8. Fitness convergence of the step motor inverse

neural MIMO NARX model

The 3™ step estimates trained stepper
motor inverse neural MIMO NARX22 model.
A good minimized convergence is shown in
Fig.8 with the minimized Mean Sum of Scaled
Error (MSSE) value is equal to 0.003659 after
number of training 500 iterations with the
proposed Inverse neural MIMO NARX model.
An excellent estimating result, which proves
the perfect performance of resulted inverse
neural MIMO NARX22 model, is shown in
Fig.9.

The last step relates to validate
investigated nonlinear neural Inverse MIMO
NARX  models. Applying the same
experimental diagram in Fig.8, an excellent
validating result, which proves the performance
of resulted Inverse Neural MIMO NARX
model, is shown in Fig.10. A good minimized
convergence is shown in Fig.10 with the
minimized Mean Sum of Scaled Error (MSSE)
value is equal to 0.005577 after a number of

training equal 500 iterations.

Trang 40



TAP CHi PHAT TRIEN KH&CN, TAP 13, SO K6 - 2010

ESTIMATION STEPMOTOR INVERSE NEURAL NARX MODEL IDENTIFICATION
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Fig. 9. Estimation of proposed step motor inverse Fig. 10. Validation of stepmotor inverse neural
neural MIMO NARX Model MIMO NARX Model
Table 3. Resulted weights of step motor inverse neural MIMO NARX22-Total Number of weighting
values=47.
Wijo — Wy — Wiko— Wi — Wiko—
wii — weights of Input Layer weights of weights weight weights weight
Bias Input of Hidden of Bias of Hidden of Bias
Layer layer Hidden layer Hidden
layer layer
X 1 2 3 4 5 6 0 =1 =2
i N
1 -0.0031 -1.0561 1.0231 0.0816 -1.0563 1.023 0.016019 2.5682 2.5299
2 -0.0196 0.1474 -0.0957 0.00911 0.14689 -0.0948 0.003387 -51.636 -13.859
3 -0.0036 -0.2834 | 0.31051 0.0196 -0.2834 0.31085 0.0084819 3.4736 41918
4 -0.027 0.01427 -0.1092 0.00469 0.0136 -0.1094 -0.01051 -31.64 -5.7829
5 0.00593 -0.3565 0.32875 -0.0193 -0.3562 0.32937 0.0030561 -28.851 -45.182
0 -6.1159 -12.906

Finally, in summary, Table 3 tabulates the

resulted weights of the proposed step motor

inverse neural MIMO NARX22 model

6. CONCLUSIONS

In this paper, a new approach of inverse

dynamic neural MIMO NARX model firstly

utilized in modeling and identification of the

stepper motor. Training and testing results

show that the newly proposed inverse dynamic

MIMO NARX model presented in this study

can be used in online control with better

dynamic property and strong robustness. This
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proposed intelligent model is quite suitable to

be applied for the modeling, identification and

control of various MIMO plants, including

regard

linear and nonlinear MIMO process without

greatly  change of  external

environments.

NHAN DANG HE PONG CO BUOC SU DUNG MO HINH PONG NGUQC NO RON
NARX PA BIEN VAO - RA

H6 Pham Huy Anh®, Nguyén Hiru Phac®, Phan Huynh LAm®
(1) Truong Dai hoc Bach Khoa, PHQG-HCM
(2) DCSELAB, Truong Pai hoc Bach Khoa, PHQG-HCM

TOM TAT: Bai bdo dé xudt mé hinh théng minh dong nguoc da dau vao — ra (MIMO) ding mé

hinh héa va nhdn dang hé dong hoc dong co bude. Cdc yéu 16 phi tuyén ciia hé truyén dong ding dong

co buoc qua do sé dwoc mé hinh va nhdn dang tron ven nho sw dung mé hinh no rén nguwoc MIMO

NARX méi duoce dé xudt voi tap dir liéu hudn luyén vao — ra dwoc thu thdp tir hé dong co budc thuc

nghiém. Tir @6 mé hinh no rén nguwpe MIMO NARX dwoc dé xudt cia hé truyén déng ding dong co

bude di dwoe mé hinh héa va nhdn dang thanh céng. Két qua cho thdy mé hinh no rén ngiwoe MIMO

NARX dwoc dé xudt hudn luyén bang thudt todn hoc lan truyén ngugc (BP) dat khé ndang dap iimg dong

rat cao véi do chinh xac hoan hao.

Tir khéa: mé hinh théng minh dong ngwoc da dau vio — ra (MIMO), mé hinh no rén ngugc

MIMO NARX.
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