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ABSTRACT: In this paper, based on the vector model for gravitational field we have
Jound a metric tensor of the space —time that in the first order approximate it lead to the
Schwarzschild metric tensor in the General T heory of Relativity(GTR). Thus, we have also
obtained 3 classical tests of GTR in the Vector Model Jor Gravitational Field.

LINTRODUCTION

We have known that when using the equivalence principle in a very direct way, Einstein
made the first derivation of the red shift which appropriated good with experiments and he also
predicted the deflection of the light rays in the gravitational field of the Sun but it only
approached half of the experimental value.

Some authors as R. Adler , M. Bazin and M. Schiffer[1]; Frank W.K Firk[2] obtained the
Schwarzschild metric tensor in the context of special relativity by using the equivalence
principle , however these approaches were difficult to understand.

In this paper, based on the vector model for gravitational field and the Special relativity, we
have found the metric tensor of the space —time that in the first order approximate it leads to the
Schwarzschild metric tensor in GTR. This approach is a clear deduction. Thus, we have also
obtained 3 classical tests of GTR in the Vector Model for Gravitational Field.

2. SPACE AND TIME IN NON-INERTIAL REFERENCE FRAMES AND IN
GRAVITATIONAL FIELD

It is known that [3, 4] time is uniform and space is both uniform and isotropic in inertial
frames of reference. The geometrical properties of uniform and isotropic space can be described
by Euclidean geometry. ‘

In uniform and isotropic space, the length of line segments do not depend upon the region
of space they are in. We divide the axes of coordinates into equal segments Ax = Ay =] and draw
straight lines, parallel to the axes, through the points of division. Plane Xy is thus divided into
unit cells (fig.1, fig.2) in the form of equal squares.

In exactly the same way, owing to the uniformity of time in an inertial reference frame, the
interval of time At between two events is independent to the point of space at which these events
occur.

Space is non-uniform in a non- inertial reference frame. Indeed, we know that the length of a
line segment is less in a moving frame than in one in which the line segment is at rest:
2

' v
Ax' = Ay 1= )
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But in motion with constant acceleration v? = 2ax , where a is the acceleration of the non-
inertial frame of reference , we obtain[3] :

i @)

2

Ax' = Ax 1~

We see that in non-inertial frames of reference, the length of a line segment depends upon
the region of space it is located in. The length of the same line segment differs at points with
different abscissae.

h 4

v

Fig.1 Fig.2

But a line segment along the axis y retains unchanged length because (in our case) there is
no motion along this axis: Ay’= Ay

Space is not only non-uniform in a non-inertial reference frame but is anisotropic.

Indeed, the two directions are not equivalent along the axis of abscissas. In our example,
elements of length decrease along the positive direction of axis and increase along the negative
direction.

Tt should be noted that the laws of conservation of linear and angular momentum do not hold
in non-inertial reference frames due to the non-uniformity and anisotropy of space in these
frames.

Finally, it can also be shown that time is non-uniform in non-inertial reference frames, as a
result, the law of conservation of energy does not hold for such frames.

In a moving reference frame, an interval of time between two events occurring at the same
point is :

; At
At = —— (3)

' At
== “

Because of the non-uniformity and anisotropy of space in non-inertial reference frames, it is
necessary to describe properties of such space by means of a non-Euclidean geometry.
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From the previous papers[5,6], we see that inertial force field is just gravitational force field,
therefore space —time in a gravitational field (as in a field of inertial forces) is non- Euclidean.

3. MOTION OF BODIES IN A GRAVITATIONAL FIELD

Consider a particle moving freely under the influence of purely gravitational forces. Because
inertial forces are just gravitational forces in non-inertial reference frames [5,6], there is a freely
falling coordinate system £” in which equation of motion of this particle is that of straight line in
space — time[4]. This means:

d2§{x
o &)
Where dr is the proper time. With:
dr® = ~11,,dE"dE” (6)
Where:
+lifa=p=1,23
Nap = -lifa=03=0

0ifa =P

If we now use any other coordinate system x" , which can be a Cartesian coordinate system
at rest in the laboratory, but also may be curvilinear, accelerated, rotating ... The freely falling
coordinates £” are functions of the x* , and Eq.(5) becomes:

0= d o0& dx'”) _0¢° & i P& dx" dx”
Cdr o’ dr’ x* dr*  xfex” dr dr
A
Multiply this by sxa , and use the familiar product rule:
o&* ox* _ 5
ox” o&” B

This gives the equation of motion:
_dixt g dt A

0= +I7, (7
de* " dr dr )
Where l"j'v is the affine connection, defined by:
A 2ra
i _Ox" 0°¢ ®

= BET oxtox”

The proper time (6) may also be expressed in an arbitrary coordinate system:
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E” o&”r 2 o2
e’ = dxt Lo gk’ or dr’ =g, dx"dx (9)
R ox* ox"¥ a
Where g, is the metric tensor, defined by:
24 B

W v na
Ew = " '®

For mass-less particles the right-hand side of (6) vanishes. Instead of T we can use ¢ = g%, so
that (7) and (9) become:

dx" ¢ " dx"

_ ax” 1
0 do® " do do Lk
0 dax” dx”
= v 12
Eu do do (12)

We also recall the relation between g, and Ffv as follows [1,4,7]:

1—~0' :lgVJ{ag}-'V +agiv _agﬂl} (13)
Mo Tt ot &
We also see the case of a particle moving slowly in a weak stationary gravitational field, (7)
becomes the corresponding Newtonian equation:

d’x
dr’
If we have: ggo =-(1+ 2¢). We also note that equation (7) just is the equation of the geodesic
in the curved space-time with the metric tensor g.,.

=-V¢ (14)

4. AN APPROACH TO THE METRIC TENSOR OF SPACE-TIME WITH THE
PRESENT OF THE GRAVITATIONAL FIELD '

In this section, we introduce an approach to the Schwarzschild metric tensor, it is similar to
an approach from the equivalence principle of different authors [1,2].

Suppose that we want to seek the interval of events attached to a particle which moves in a
gravitational field of M,. To realize this, we should displace a standard ruler and a standard
clock along the orbit of the particle.But when the ruler and clock move along the orbit in the
gravitational field, the length of ruler and rate of the clock vary at each point. Because of this
reason, the measured results at each point in the gravitational field can not be compared together
if we do not know any relation between the etalons at each point. Seeking this relation between
ctalons, then we convert measured results at each point with its etalons into measured results
with the standard etalon is the synchronizing of the rulers and the clocks as the synchronizing of
clocks in the special theory of relativity.

Firstly, we seek the relation between etalons at each point then convert the measured results.

We choose the length of a ruler and rate of a clock at a point O which is very distance from
the ficld source, say ly and 1y, as a standard etalon. The gravitational potential is the cosmic
background potential @4 at this point.
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We suppose that there is every locally Minkowskian coordinate system at each point in a
gravitational field. This hypothesis agrees the axiom which Gauss took as the basis of non-
Euclidean geometry. Gauss assumed that at any point on a curved surface we may erect a locally
Cartesian coordinate system in which distances obey the law of Pythagoras. This hypothesis also
is a part of the equivalence principle [4].

We find the interval of two events near a point N(r) in the gravitational field with the local
etalon at N(r) as follows:

2 2 3.2 2 2 2 .2 2
ds” =cdt” —dr” —r>(d@” +sin’ 8dgp?) (15)

Now we seek the expression of the interval (15) if it is measured by the standard etalon lp, 0.
Firstly, we seek the relation between etalons (lo,7o) and etalon (I,t). Consider two observers A
and B, their etalons are the same. Observer A is rest with respect to the cosmological
background potential @g. Observer B moves with respect to it with velocity of v= at in x

direction (the vertical direction). We have the following relations from the special theory of
relativity:

P, =—2— (16)

Where @ is the gravitational potential on the system of B.

2

[ y(vertical ) = ,[1— 15.[ 4 (vertical) 17)
g

Iy (horizontal ) =1, (horizontal ) (18)
— (19)

v 2

e

From (16), (17) and (19) we have :
1, (vertical) = 2521 (vertical) 20)
g
g = & T4 (21)
‘ng

Where @, is the gravitational potential in the system A; @, is the gravitational potential in

the system B.
Now we return the above problem. The gravitational potential at O is the cosmological
background potential @0 the gravitational potential at N(r) is:

=P %, 22)
Where @, is the gravitational potential of M, at N(r).
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We see that the potential @, causes the gravitational ficld on the system B and we have the
relations (20), (21) between the etalons at A and B. In a similar case, the potential @, , causes

the gravitational field at N so we also have the relations (20) and (21) between the etalons at N
and A

From (20), (21) we have the relation between etalons at O and N is:

I (vertical) = P 1, (vertical) (23)
q’gN
ngN
T ——, (24)
@go

From (23) and (24) we have the relations between the interval of length and the interval of
time at O and N are:

¢" gN

dr =2 dr, 25)
@g()

dt= Pe0 ——drt, (26)
ngN

Substituting (25), (26) into (15) we obtain:

ds? =2 (P0y di} — (P} - r}(d6 +sin’ 6dp?) @)

‘z’DgN qog()
Note that we still have r = ro Noting (22), we have:
200
@gN - (pgo (;Dg =1+ @g 2 _?% (28)
qogl) qagO @g(} c

We have had @, = = —¢? from the previous paper [6]. Substituting (28) into (27), we obtain:
3 P :
ds® = c*(1— 2£) 2 de? — (1 - 25) dry — 1 (d6* +sin’ 6dp*) (29)
c

@
For —-g << 1, we have:
c

ds* =c (1+2 ~£) dty - (1- 2¢—§) dr? —r2(d6” +sin’ 6dp™) (30)
C

GM

r

Withg, =— , we obtain from (30):

ds’®

M
) dr? —rl(d6* +sin® Gdp®) (1)
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(31) s just the Schwarzschild solution in GTR.
From the metric tensor (31) and equations (7),(11),(12) we find the classical three tests of

GTR.

5. CONCLUSION

In conclussion, based on the vector model for gravitational field we have obtained the metric
tensor of the space-time (29). This metric tensor leads to the Schwarzschild metric tensor in a
weak gravitational field, therefore we have also obtained three classical tests of GTR in the Sun
system. In a strong gravitational field, the metric tensor (29) is different with the Schwarzschild
metric tensor and it gives the small suplementations to these three classical tests.

MOT TIEP CAN PEN 3 HIEU UNG KINH PIEN CUA THUYET TUONG POI
TONG QUAT TRONG MO HINH VECTG CHO TRUONG HAP DAN

V6 Vin On
Truong Pai hoc Khoa hoc Ty nhién, PHQG-HCM

TOM TAT: Trong bai bdo nay khi diea trén mé hinh vécto cia truong hap dan, ching 16i
thu dugc mét tenxo métric cua khong thoi gian ma trong gan ding bdc nhdt né dan dén tenxo
métric Schwarzschild trong Thuyét Tuong DJi T6 ong Quat (GTR). Nhu vy, 3 kiém tra kinh dién
cua GTR trong hé mdt troi ciing tim lai duoc trong mé hinh hdp ddn vécto nay.
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