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ABSTRACT: Necessary and sufficient conditions for & -optimal solutions of convex
infinite programming problems are established. These Kuhn-Tucker type conditions are
derived based on a new version of Farkas' lemma proposed recently. Conditions for & -duality
and & -saddle points are also given.

Keywords: ¢ -solution, ¢ -duality, & -saddle point.

1. INTRODUCTION

The study of approximate solutions of optimization problems has been received attentions
of many authors (see [6], [7], [9], [10], [11], [12] and references therein). Many of these
papers deal with convex problems in finite/infinite dimensional spaces and finite number of
convex inequality constraints and affine equality constraints. The others deal with Lipschitz
problems or vector optimization problems. In order to establish approximate optimality
conditions the authors often used Slater type constraint qualification (see, e.g., [7], [11], and
[12]). Recently, Scovel, Hush and Steinwart [13] introduced a general treatment of
approximate duality theory for convex programming problems (with a finite number of
constraints) on a locally convex Hausdorff topological vector space.

In the recent years, convex problems in infinite dimensional setting with possibly infinite
number of constraints were studied in [2], [3], where the optimality conditions, duality results,
and saddle-point theorems were established, based on the conjugate theory in convex analysis
and a newtlosedness condition called (CC) instead of Slater condition.

In this paper, we consider a model of convex infinite programming problem, that is, a
convex problem in infinite dimensional spaces with infinitely many inequality constraints. We
study the necessary and sufficient conditions for a feasible point to be an & -solution,
approximate duality and approximate saddle-points, using the tools introduced in [2] and [3].
These results will be established based upon a new Farkas type result in [3] and under the
closedness condition (CC).

The paper is organized as follows: Section 2 is devoted to some basic definitions and basic
lemmas which will be used later on. In Section 3, several & -optimality conditions of Karush-
Kuhn-Tucker type for an approximate solution of a class of convex infinite programming
problems are established. In particular, an optimality condition for (exact) solution of these
problems are derived as a consequence of the corresponding approximate result. Finally,
results on approximate duality and on approximate saddle-points are established in the last
section, Section 4. An example is given to illustrate the significance of the results.

2. PRELIMINARIES

Let T be an arbitrary (possibly infinite) index set and let R" be the product space
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with product topology. Denote by R the space of all generalized sequences A =(4,),.,
such that A, € R for each €T and the setsupp A = {t eT |4 #0 }, the supporting set of
A, is a finite subset of 7" . Set
R ={A=(4)eRP| 4,20,teT}.

Note that Rfrﬂ is a convex cone in R (see [5], page 48).

We recall some notations and basic results which will be used later on. Let X be a locally
convex Hausdorff topological vector space with its topological dual, X', endowed with weak -
topology. For a subset D X, the closure of D and the convex cone generated by [ are
denoted by cl D and cone D, respectively.

Let f:X — RU{+0} be a proper lower semi-continuous (l.s.c.) and convex function.
The conjugate function of f, £, is defined as '
7 X" > RU{+0},
f*(v) = sup {v(x) -f(x) | x e dom f},
where dom f = {xe X|f(x)< +oo} is the effective domain of £ The epigraph of f is
defined by
epi f ={(x,r)e X xR| f(x)<r}.
The subdifferential of the convex function fat @ € dom f is the set (possibly empty)
of (a)={ve X" | f ()~ f(@)2 V(x—a),Vx e X|.
For £ >0, the & -subdifferential of fat a € dom f* is defined as the set (possibly empty)
3.f(@)={ve X' |f(x)- f(a)2 v(x—a)—&,Vxedom f}.
If £>0then 8, f(a) is nonempty and it is a weak*-closed subsct of X Wheng=0,

8, f (a) collapses to of (a).
For any a € dom £, epi /" has a representation as follows (see [8]):

epi /" =i, W(@) + - f(a)lved,f(a)} @.1)

20

Noting that, for &,,&, 20 and z € dom f N"domg,
0,f(2)+0,,8(z) =0, (f+8)2)
and for £ > 0,620,z € dom f (see [14], page 83),

1O, f(2)=0,, (1 )2), (2.2)
Let us denote by &, (x) the indicator function of a subset B of X; i.e.,
0, xeB
Bplo)i=q ’
5 () {+ 0, x ¢ B.
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Let C be a closed convex subset of X. For £ >0, the &-normal cone of C at z, denoted
by N,(C,z), is defined by
N z)= {u e X |u(x-z)<eg Vxe C} :

It is easy to see that N_(C,z)=0.0.(z). Let f,: X —> RU{+w}, 1T, be proper,
L.s.c. and convex functions. We shall deal with the following convex system:
o={f,(x)<0,VteT, xeC}.

Denote by A4 the solution set of o, that is, 4= {x eX|xeC(,f(x)<0,Vte T}. The
system o is said to be consistent if 4 # ¢ . The cone

K :=cone {U epi f;'| Jepid, }

teT

is called the characteristic cone of o . A consistent system ¢ is said to be a Farkas-
Minkowski system (FM) if K is weak -closed. The (FM) condition was introduced recently in
[2]. It was known that (FM) condition is weaker than several known interior- type constraint
qualifications. The following closedness condition [2] will be used later on.

_ (CC): epif +clK is weak —closed.

Remark 2.1 If o is (FM) and f is continuous at least one point in C then the condition
(CC) is satisfied (see Theorem I in [3]; see also [1, 2]).

The following lemma will be used as a main tool to establish -optimality conditions and
related results for convex infinite problems. It is known as generalized Farkas’ lemma and was
established recently in [3]. - ‘

Lemma 2.1 /3] Suppose that o is (FM) and (CC) holds. For any a € R, the following
statements are equivalent:

() xeC,f,(x)S0O,VteT = f(x)z2a;
(i) (0,~a)eepif +K;
(i) A1 e R if(x)+zi,f,(x) >a,VxeC.

tel

3. APPROXIMATE OPTIMALITY CONDITIONS
Consider the following optimization problem:
P) Minimize f(x)
subject to f,(x)<0,VteT,
xeC,
where 7 is an arbitrary (possibly infinite) index set, X is a locally convex Hausdorff
topological vector space, f, f, : X —>RU{+ oo}, teT, are proper, ls.c and convex

functions, C is a closed convex subset of X. Denote by 4 the feasible set of (P), i.e.,
A={xeX|xeC,f(x)<0,VteT}.
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From now on, assume that A # ¢ and inf(P) is finite. The definition of & -solution for a

convex problem with finite number of constraints was presented in [12]. We present the
definition of & -solution for convex infinite problem (P) as follows.
Definition 3.1 For the problem (P), let £ > 0. A point z€ Andom f is said to be an & -

solution of (P) if f(z) < inf(P)+¢,ie., f(z)< f(x)+¢ forall xe 4.
Tt is worth noting that a point z€ A is an &-solution of (P) if and only if
0ed,(f+35,)(z). Wenow give a characterization of & -optimality condition for (P).

Theorem 3.1 Lete = 0 and let z € Andom f . Suppose that o is (FM) and that (CC)
holds. Then z is an -solution of (P) if and only if there exist A =(4,)€ R o2 Uiey 20
and €,20 forall t €T, such that

0€d, f(2)+ 2.8, (Af)2+N, (C.2), 3.1)

tesupp A

=g +e+ 2.6~ 2 012 (3.2)

tesupp 4 tesupp A
Proof. Suppose that z is an & -solution of (P). This means that
xeC, f(x)<0,VteT = f(x)2f(z)-¢. (3:3)
Since o is (FM) and (CC) holds; it follows from Lemma 2.1 that (3.3) is equivalent to

(0,6 — f(2)) eepif* +cone(| Jepi f; | Jepide).

teT

Hence, there exists 4 = (1,) € R such that
(0,6~ f(2)eepif + D Aepif, +epid. .

teT
From this and (2.1) (applies to epif", epif and epid,), there exist u,v,u, € X,
£20,6,20,620 and ued, f(z), u €0, f(z), ved,5.(z) for all €T such
that

0 —u+ Zlfu, +v,
tesupp A
e-f(@)=u@) +&-f(D)+ D AW+~ [(D)]+(2)+ & —c(2).
tesupp A .
The first equality gives 0€0, f(z)+ Z A8 ./ (2)+ N, (C,z)
tesupp A !

and the second implies &€ =&, + &, + Zﬂ,,s; - Z;b;f,(z) .

tesupp A tesupp A
Let g, := 4, 8; . Taking (2.2) into account, we get

0ed, f(2)+ D.0, (AL )2+ N, (C,2),

tesupp A
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E=& %+ B+ Zg,— Z/'L,f,(z).

tesuppd  tesupp i
The necessity has been proved.
Conversely, suppose that there exist A =(4,) € R" >0, 20 and & 20 for all
t € T satisfying (3.1) and (3.2). Then there exists
ued, f(z)+ Zag, (A4.f)(z) suchthat —u e N, (C,z).

resupp A
Note that
-ueN,(Cz) < u(x) 2 u(z)-¢,, Vxe C.

Asued, f(z)+ Zagr (A4,/)(2), there exist v, u, € X "for all ¢ € suppA such that

tesupp A

u=v+ Z”:: veo, f(z), u, € d, (4,1,)(2), Yt esuppl.

Hence, forall xe X, f(x)— f(z)2v(x—z)—¢,and
A f,(x)=2.f(z) 2u,(x—z)— ¢, Vt € supp.
Thus, ;
f+ Y. ALE)-f(2)- > Af(2)2v(x—z)+ > ux-2)-(6+ ),&)VxeX.

tesupp A tesupp A tesupp A tesupp A

Since u# =Vv+ Zu! and u(x—z)=-¢, forall xeC,

resupp A
[+ Y AL®-f@) - DALEZ(6+e+ D E), VxeC.
tesupp A tesupp 1 tesupp 4

Combining this and (3.2) we get
fE+ DAL 2 f(2)-6 Vxel.

tesupp A
Since A, 20 and f,(x)<0 forall xe 4 and for all 7€ T, f(x)= f(z)—¢ for all
x € A, which proves z to be an & -solution of (P).

We get the following result proved recently in [3] when taking £ =0.
Corollary 3.1 For the problem (P), let z € Andom f. Suppose that o is (FM) and

(CC) holds. Then z is a solution of (P) if and only if there exists A € Rinsuch that
0€df(2)+ . A8 (2)+ Nc(2), 4,f(2)=0,VieT.

teT

Proof. Let &£ = 0. Tt follows from (3.2) that 0 = &, + &, + Za‘, - Zﬁ, J.(2)

tesupp A iesupp A

The conclusion follows by taking the fact that 4, f,(z) <0 foreach 1 €T, &,,&, 2 0 and

& 20 forall f €T into account.
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Corollary 3.2 Let £€>0 and let ze Andom f. For the Problem (P), assume that
f,f,t €T, are finite-valued, continuous, and convex functions. Assume further that the
system o is (FM). Then z is an &-solution of (P) if and only If there exist
A=(4)e Rfrn, £20,6,20and & 20 forall t €T such that

0e 6glf(z) + Zagr (A.f)(=z)+ Ng2 (C.2),

tesupp A
E=¢g+¢&+ Zg, - Z}L,f,(z)_
tesupp A tesupp A

Proof. The conclusion follows from Remark 2.1 and Theorem 3.1.
Example
Consider the problem

Q) Minimize x*
subject to tx* —x<0,te[0,1],
xeC=[-1/2,1/2].

The feasible set of (Q) is 4 =[0,1/2] and so & =inf(Q)=0. To illustrate Theorem 3.1,
take £=1/4 and z=1/2. We will show that there exist 1€ R{",£,20,6, 20 andg, 20
for all # € T such that (3.1) and (3.2) hold.

Set f(x)=x", f,(x)=t"—x, teT =[0,1]. A simple computation gives

6,1(1/2)=1ul 1-25 <u<1+2g fand N, (C,1f2)={v|v2-s,}.
If we choose
6=6=1/8, u=18¢e0, f(1/2), v=-1/8e N, (C,1/2)
then
O=u+ve 6Elf(1/2)+N£2(C,l/2).
Letting A =(4,) =(0,) and & =0 forall €T, we obtain
0ed, f(1/2)+D 48, fY2)+ N, (C,1/2)
teT
and

Jd=c=¢+&+Y e~ AL 1[2).

tel teT

Thus, (3.1) and (3.2) are satisfied and z =1/2 is an (1/4) -solution of (Q).

4. £ -DUALITY AND & -SADDLE POINT

The study of & -duality and & -saddle points of an optimization problem was seen in many
papers (see [4], [9], [10], [11], [12], [13]). There, the problems in consideration have a finite
number of constraints. In this section we establish some results concerning & -duality and & -
saddle points of the convex infinite problem (P) introduced in Section 3. For the problem (P),
the Lagrangian function (see [2]) is
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Jf(x)+ Zﬂo,f,(x),x eCich’,
L(JC,:%)= teT

+o, otherwise.

Set w(A)=inf__, L(x,4), A € RV, The following optimization problem is called the

xeC

Lagrange dual problem of (P) [2]:
D) sup (1)
subject to A€ R".

Definition 4.1 For the problem (D), let £ =2 0 and let A bea point of RfrT) . The point i
is said to be an & -solution of (D) if w(z) 2sup(D)—-g, ie., ;V(Z) 2w(Ad)—¢ for all
AeRD,

Theorem 4.1 Let& = 0. Suppose that o is (FM) and (CC) holds. If z is an & -solution of
(P) then there exists de Rir}such that A is an & -solution of (D).
Proof. Denote by S, and D, the sets of all &-solutions of (P) and (D), respectively.
Since S, ¢ A< C, y(A) =inf, . L(x,A) <inf _, L(x,4) < inf, ¢ L(x,4).
Hence,
w(A) < L(x,A) < f(x),Vxe S,,VieR" .
Since z is an & -solution of (P),
w(A) < f(2), YAeRD. 4.1
On the other hand, if z is an & -solution of (P) then
f(x)20,vieT,xeC = f(x)2f(z)-¢.

Since ¢ is (FM) and (CC) holds, by Lemma 2.1, there exists ie RJET) such that
f@) -2 )+ > Af(x), VxeC.

3 teT

Hence, f(z)—& <y (). This and (4.1) imply that y(4)—& <y (A) forall 2e R
Thus, A isan ¢ -solution of (D).

Remark 4.1 Let £>0 and letze Andom f. If there exists A€ R such that
f(z)—& <w(A) thenitis easy to see that z is an & -solution of (P).

We now give a definition of & -saddle points of (P).

Definition 4.2 Let £ > 0. A point (z,4) € Cx R!" is said to be an & -saddle point of the
Lagrange function L if L(z,A)—¢ < L(z,A) < L(x, 1) +¢& forany (x,4)e Cx R,
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Theorem 4.3 Suppose that o is (FM) and (CC) holds. Let &2 0 and let
ze Andom f. If z is ané& -solution of (P) then there exists Ae Riﬂ such that (Z,Z) is
an & -saddle point of the Lagrange function L.

Proof. Suppose that z€ Andom f is an_¢ -solution of (P). Then

xeC,f(x)<0VteT = f(x)zf(z)-e.

Since o is (FM) and (CC) holds, it follows from Lemma 2.1 that there exists
Ae R" satisfying :
FE)+ XA f,(x) 2 f(2)-¢, VxeC. 4.2)

teT

An argument as in the proof of Theorem 4.1 shows that A isalsoan & -soluti(;n of (D).
Since z € 4, we get f,(x) <0 forall € T. Hence,

fO+ A f,()+e2 f(2)2 f(2)+ Y, A f,(2), Vx € C,
tel tel
or, equivalently, L(x, /_1) +&2 L(z, E) for all x € C. On the other hand, since z € S,,
f,(z2)<0 forall e T . Then,
L(z,A) = f(2)+ 2 A f,(2) < f(2), VAe R, (4.3)
teT

Moreover, it follows from (4.2) that, f(z)< L(z,z) + &. This, together with (4.3),
implies that L(z,A)—¢ < L(z,z) for all A€ RJET). Consequently, for all x € C and for all
AeRD, L(z,A)- e < L(z,A) < L(x,A) +&.

Theorem 4.4 Let £20. If (Z,Z) is an (&/2)-saddle point of the Lagrange function L
then z is an & -solution of (P) and A is an & -solution of (D).Proof. Since (z,z) e Cx Riﬁ
is an (&/2)-saddle point of the Lagrange function L, we have

f@+Y L@ (D@ + Y Af;(@) < f)+ X A, (%) +(£/2), V(x,A) e CxRY.

teT teT teT

Hence,

f@+Y 41@)<f@)+ Y Af,(x)+&, V(x,A) e Cx R (4.4)

1eT 1eT

If xe 4 then f,(x) <0 forall €T, and hence, Zﬂ:f,(x)SO.

teT

Taking A =0 and noting that f(x)+ sz f,(x) £ f(x) for all x e A4,it follows from
teT

(4.4)
that f(z) < f(x)+¢ forall xe 4,ie., z is an& -solution of (P). Since z € C,

inf, (/) + D2 AL} f(2)+ D A1)

teT teT
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It follows from (4.4) that
inf, A/ (x)+ Y ALE}S F(@)+ D Afi(@) Sinf () + > A0} +e.

teT tel teT

Hence, w(1)— & <w(A),ie., A isan & -solution of (D).

PIEU KIEN XAP Xi TOI UU VA POI NGAU CHO BAI TOAN QUI HOACH

LOI VO HAN

Nguyén Dinh”, Ta Quang Son® ‘
(1) B4 mon Toan, Truong Pai hoc Québc té, Pai hoc Qudc gia Tp. H6 Chi Minh
(2) Truong Cao Dang Su Pham Nha Trang, Nha Trang

TOM TAT: Bai bdo nay thiét lap cdc diéu kién cdn va dir 16i wu cho nghiém xdp xi ciia
bai todn qui hoach 16i v6 han. Cdc diéu kién nay thuéc dang Kuhn-Tucker va nhdn duoc bc%ng
cdch sir dung mét két qua dang Farkas diwoc thiét lp gan ddy. Mot $6 két qua vé doi ngdu
Lagrange xdp xi va diém yén ngua xdp xi cho bdi todn 16i v6 han ciing dwoc thiét lap.

Tiv khod: & -nghiém, & -ddi ngdu, diém & -yén ngua.
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