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ABSTRACT: In this paper, we study the existence of generalized solution for a class
of singular elliptic equation: —diva(x,u(x),Vu (x))+f(x,u(x),Vu (x))=0.

Using the Galerkin approximation in [2, 10] and test functions introduced by Drabek,
Kufner, Nicolosi in [5], we extend some results about elliptic equations in [2, 3, 4, 6, 10].

1.INTRODUCTION

The aim of this paper is to prove the existence of generalized solutions in W,"” (Q) for
the quasilinear elliptic equations:

—diva(x,u(x),Vu(x))+f(x,u(x),Vu(x))=0 (1.1)

i.e. proving the existence of ue W,” (€) such that

Ia(x,u (x),Vu(x)) Vedx +;‘!f (x,u(x),Vu(x))edx =0,V e C; ()

Q
where Q is a bounded domain in R“,N>2 with smooth boundary,pe(1,N) and
a:QOxRxRY 5> R, f:QxRxR" - R satisfy the following conditions:

Each a;(x,m,) is a Caratheodory function, that is, measurable in x for any fixed

¢ =(m,&)eR"" and continuous in ¢ for almost all fixedx € Q,

o, (.8 <, ([l +le ™ +K, (x) |- vi=LN (1.2)

[a(xn.8)-a(xnE)|[e-E]>0 (1.3)

a(x,n,E)E2A[E[ (1.4)
ae xeQVneR,VEE eRME=E’.
wherec, e L, (Q),¢, 20,k, e ¥ (Q),a.€[0,p-1],A>0.
and f: QxRxRY - R is a Caratheodory function satisfying

£ (x,n.)|<c, (%) [I'r]|’a +E[ +k, (x)] (1.5)

f(x,n,E)n=—c;(x)-b|n|' —dg[ (1.6)
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where ¢, is a positive function in L}, (Q),¢, is a positive function in L*(Q), k, e ”' (Q)
L.
N-p’
Because c,c, L} (Q) we cannot define operator on the whole space W}’ (Q).

Therefore, we cannot use the property of (S;) operator as usual. To overcome this difficulty,
in every Q_ we find solution u, € W,* (Q,) ofthe equation:

andr,q e[0,p), b, d are positive constants, y € [O,p—I],Be [0,p" =1) with p’' =

—diva(x,u(x),Vu(x))+f(x,u(x),Vu(x)): 0
where {Q } is an increasing sequence of open subsets of © with smooth boundaries such

that Q_" is contained in Q , andQ=U7_ Q.. In this case, we only have the strong
convergence of {u,} to u in W,”(Q) by using the same technique of Drabek, Kufner,
Nicolosi (in [5], section 2.4). However, it is enough to get the generalized solution.

An example for our conditions:

8, ()= o I8+, (n) v, () s
1

“(x)

where d(x)=dist(x,8Q);0,p> 0;A,,k,,k, are positive functions

£ (€)=l +hf’ +k, (x) Jsenn

k. k, e"(Q); A, (n)<n[*;0a€ [0.p-1];be[0,p"~1).
The problem is singular because aﬁ’d_“l(ﬁ el} (Q).
Remark:

1)If ¢, e L”(Q) and B,y €[0,p—1) the condition (1.5) implies the condition (1.6).
2) The pseudo-Laplacian a(x,m.£)= ([glr’_z E s |Em|p"2 §N), the  p-Laplacian

a(x,m,€)= (|§]p_2 §I,...,]§|p_2 éN) are some special cases that satisfy our conditions. So ou:
results generalized the corresponding Dirichlet problems in [3, 4]. Our paper also extends
the recent result about singular elliptic equations for case p=2 in [6].
2. PREREQUISITES

2.1.Lemma 2.1

(See e.g. [10], Proposition 1.1, page 3) Let G be a measurable set of positive measure
in R" and h:GxRxR™ — R satisfy the following conditions:
a) h is a Caratheodory function.
b) |h(xup,mu, )| < Ju " +g(x),VxeG
i=l

where c is a positive constant, p, € (l,oo), Vi=l,..,m,gel? (G)
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Then the Nemytskii operator defined by the equality
H(u,,...u,)(x)= h(x, U, (x),m Uy (x)) acts continuously from
I? (G)x..xL" (G) to1¥ (G). Moreover, it is bounded, i.e. it transforms any set which is

bounded into another bounded set. (Proof of this fact for the simple case can be found in
[8], theorem 2.2, page 26).

2.2.Lemma 2.2
(See e.g. [10], lemma 4.1, page 14) Let F:U—>R™ be a continuous mapping of the

closure of a bounded domainU c R™ . Suppose that the origin is an interior point of D and

that the conditioﬁ (F(x),x)=iFi (x)x;20,vxedU (1.7)
i=1

Then the equation F(x) =0 has at least one solution inU.
We recall some results about Schauder bases.

Definition: A sequence {xi} in a Banach space X is a Schauder basis if every x € X

can be written uniquelyx = Y ¢x; =lim D ¢;x; , where {¢,} cR.
o =

o0
Because every x € X is written uniquely x = Zcixi we have x, # 0 and ¢; is a function
i=1

from X toR, for all i in R.

2.3.Lemma 2.3: (/9], Theorem 3.1, page 20) For all i inN, c; is a continuous linear
function on X, i.e. ¥ie N,aM; > 0[c, (x)| < M, |x], ., Vx e X

2.4.Lemma 2.4: ([7], Corollary 3) Let D be a bounded domain in R with smooth
boundary. Then the space W,* (D) has a Schauder basis.

2.5.Lemma 2.5: Let D be an open set inQQ, DcQ. If

u, —%5u in W (D) (1.8)
and lim j[a(x,un,Vun)—a(x,un,Vu)][Vun—Vu}lx:O (1.9)
D

Then there exists a subsequence of {un} still denoted by {un} such that Vu, — Vu
inl? (D).
Proof: Since ¢,,¢, € L}, (Q) we have ¢,,¢, € L™ (D) and the conditions (1.2), (1.5)

become:

Jos (x,m,E)| < € [l +[ef™ +K, (x)].vi=LN

£ (xnE) < Cu | Inf +[e +k, (x)]
Using the well-known result in [2], Lemma 3, we obtain our Lemma.

o
Let us recall the definition of class (S+): A mapping T:X — X' is called belongs to the

weak
class (S+) if for any sequence u, in X with u, — uand lim sup(Tun, u, —u) <0 it follows

n—wm

that u, —u.
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2.6.Lemma 2.6: (see [2, 10]) Let D be an openset inQ, D c Q and A be a mapping from
. N
wee (D) to[wg"’ (D):l , such that (Au, v) - _[Z:ai (x, u,Vu)%—dx + J'f(x, u,Vu) vdx
i i D

p i=l i

Then A is a (S+) operator.

3 . MAIN RESULTS
Let { Qn} be an increasing sequence of open subsets of Q with smooth boundaries

andQ=U7_Q

n+l n=l"%n"*

such that Q—n is contained in Q

First, in every Q, we find solution u, € W,*(Q,) of the equation:

~diva(x,u(x), Vu(x))+f (x,u(x), Vu(x)) =0 ‘(3.1
Applying the same technique as in [10], Theorem 4.1, page 14, we can show that (3.1) hasa
bounded solution in W,* (Q, ).
3.1.Lemma 3.1:
For eachQ_, the equation: —diva (x,u(x),Vu (x))+ f(x,u(x),Vu (x)) =0 (3.2)
has a solutionu, € Wy* (Q, ). Furthermore, there exists a positive constant R independent

of n satisfying that|u, .. @) SR VneN.

Proof: FixneN. Let D=Q,,X=W;?(D) and A be a mapping from W,?(D) to
[Wf:“’ (D)]', such that

N
(Au,v) = jZai (x, u,Vu)%dx 2 J-f(X,U,VU)de,Vu,v e W (D)
i D

D i=l i

By Lemma 2.6, 4 belongs to class (S+).
We will prove that 4 is a demicontinuous operator, i.e. if u, —>u in W,? (D), then
(Au,,v) > (Au,v),Vve W,? (D)
By u, = u in W;?(D) and (1.2), (1.5), applying Lemma 2.1, we get
3;(.u,.Vu,)>a,(,u,Vu),Vi=1..N In I’ (D) as m - oo
and f(.,um,Vum)—>f(.,u,Vu) in L"'(D) as m—» o
Hence (Au,,,v)= J'ﬁ:ai (= um,Vum)%v—dx+ If(x,um,Vum)vdx -
i D

p i=l

N
IZai (x, u,Vu)-:?vdx+ If(x,u,Vu)vdx =(Au,v),Vve W,* (D)
i D

D i=l i
Therefore, 4 is demicontinuous.
Besides, by applying the boundedness of Nemytskii operator for a(., u,Vu) and f(,u,Vu)
one deduces that 4 is bounded.

For any arbitrary u in W,"® (D) , due to (1.4), (1.6), we have
(Au,u) = Ia(x,u,Vu)Vudx + If(x, u, Vu)udx
D D

> ?LJ}VU (x)|p dx — ,5[[03 (x)+ b.|u (x)]q +d.|Vu (x)lr ]dx
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2 Mol =l e oy =Bl ey =4 []Vu () dx
D

Let ﬁ(x) =u(x),vxeD andG(x): 0,vx e Q\D, we have
r/p l-r/p
(Au,u) 2 Aful}. =, [|L,,(D) b"u - (E!]Vu(x)"’ dx] [!dx)
Sinceq <p < p’, the continuous imbedding W,” () — L' (£2) implies that

(A )2 Mfulf, ey b (M
2 Aol ey ~oM* Il

*(p)

| -axfvul]

wy?(R)

L*(9) Wy*(D) —-dK "u"

S|k o A
UTME RE B

Since 1, r, g<p, one can choose a positive constant R independent of n such that

(Au,u)20,VuedB, (0,R) (3.3)

Wo* (D)

Applying Lemma 2.4 there exists a Schauder basis {v;} in the space X. We consider in R"

Zc,v, <R}

<MR,Vi=1m,¥(c,,...c,)eU,

the domain U, —{c (0., " .,.

Applying Lemma 2.3, there exists

m
i ch\’j

il

X

So U, is bounded inR™ . We apply Lemma 2.2 to this domain Uy, and to the mapping
F:Un > R", F(c)=(F(c),-+Fa(c)). Fi(c)=<A(chij,vi>
=

Let c=(c,,...,c,)€dU, and u= icjvj thenuf, =R . We have
=

(F(c),c)=§;pj(c)cj—< (zc,v]),zc;ﬁ) (Au,u)20

=l j=1 =
because of (3.3). By Lemma 2.2, the equation F(c) =0 has at least one solution in Un, for

example c= (ci,..., Cm). Hence E (c) = < (chvj), > 0,Yi=1m

=l

Consequently, u,, = Y ¢;v; satisfies the inequality
il

Jual <R (3.4)

And is a solution of the system

(Au,,v,)=0,Vi=], - (3.5
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Let m go through N we have a sequenice {u,,} satisfying (3.4) and is a solution of (3.5). By

virtue of the reflexivity of the space X, the sequence uy, contains weakly convergent
weak

subsequenceu,, . So u, —>u,. Since u,is in X with the Schauder basis{vi}, we have

m

@ m m
Yo =Z|°L1Vj 5 ,!,'Elz;am -Let w,, =Z{ajvi then w, —u, so w, —u,. We have
= = =
(Aumt,umk —u0> :(Aumk,umk - W, >+(Aumk,wmk —uo) (3.6)
Moreover,
lim (Au, ,W,, —u,)=0 - (3.7)

because of (3.4), the boundedness of the operator 4, and the strong convergence of W, 10

ug. Since u, —W, = Zﬂjvj and (3.5), we get(Aum,umk os ) =0,Vk.
j=1
Hence
lim (Au,, ,u,, —u,)=0 (3.8)

Because 4 belongs to class (S+) and (3.8), we deduce thatu, —u,. Since 4 is
demicontinuous, passing to limit the equality (3.5) for a fixed i, we have

(Aug,v;)=0 3.9)

@ m
Letve X, thenv = Zajvj = lim Zajvj . Since i is an arbitrary index, it follows from (3.9)
j=l mn—pe J=l

that<Au0,Za,vi> =0,VmeN. Let m tend to infinity, we get (Au,,v)=0
i=l

weak
Hence, uo is a solution of the equation (3.2). Moreover, sinceu, —u,, we get

|]u0||w5,,,(ql) =|lugll < liminf IlumL ”x <R, where R does not depend on n. This completes the

k-3
proof of Lemma 3.1
o
By Lemma 3.1, we have proved that (3.2) has a bounded solution u, € W,*(Q,)

satisf}'ing||un||w‘.{p(nn) <R,VneN. Next, we expand u, to allQ:u, (x)=0,vxeQ\Q,. So
u, € W,* () and|

un||w$4.(n) =||un||w‘:,,(nn) <R,VneN. By virtue of the reflexivity of the

weak
space W, (Q), there exists ue W;”(Q) such that u, - u in W,*(Q) for some
subsequence. We will prove that u is a generalized solution of the equation (1.1) in

W,*(Q) , ie. _fa (x,u(x),Vu(x))Vadx + If(x,u (x),Vu(x))odx =0,VpeC? (Q)
Q Q
In order to do that, we need the following lemma:
3.2.Lemma 3.2.
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Letmin N, we have
lim [[a(x,u,,Vu,)-a(x.u,,Vu)][Vu, -Vulx =0
Q,

n—wm

Proof: We only need to consider n>m+1. Let ¢,, be a functions inC{ (Q), with 0< ¢, <1

) 1 ifxeQ, .
in Q and ¢, (x)= o e s . Then there exists M such that,
if xeQ\Q,_,,
6. (x)| <M, [V, (x)|sM, VxeQ (3.10)

Put w, =¢,,.(u, —u) restricted onQ, .
Because supp[q:m.(un —u)] cQ,,,cQ,,Vn>m+l1, wehavesuppw, cQ_ , Vn>m+1.
Sow, € W,*? (Qn ) . Since u, is the solution of the equation (3.2), we have

Ja(x,un,Vun)andx+ Jrf(x,un,Vun)wndx=0.
Q,

Q,
Hence J- a(x,u,,Vu, )Vw dx+ I f(x,u,,Vu,)w,dx=0 (3.11)
QIIHJ nm+|.
We shall prove that lim | f(x,u,,Vu,)é, (v, —u)dx=0 (3.12)

n—w
+

by finding a number s such that f(.,u,,Vu,) is bounded in I’ (Q,,,) and u, > u in
L'(2,,)- Since Be[0,p"—1) and p<p’, we can find s satisfying B+1<s<p’ and p<s.
Hence B<s—1= i. andy<p-l<p-L= E' . Since {u, } is bounded in W;* (), the

s s s
Sobolev imbedding implies that there exists a subsequence still denoted by { un} such that
u, »>uinl’(Q), so u, > uinL’(Q,,). From (1.5) and Lemma 2.1, one deduces that

f(.,u,,Vu,) is bounded inL*{Q,,, ). Combining (3.10), we have (3.12). Hence

lim | f(x,u,,Vu,)w,dx=0 (3.13)

From (3.11), (3.13), one deduces that lim | a(x,u,,Vu,)Vw,dx=0 or

n—x
+

lim [ a(xuv,.Vu,)V(,.(u,-u))dx=0

ﬂnnl
Hence,
lim | a(x,u,,Vu, )60V (1, —u)+(u, —u) Ve, Jdx =0 (3.14)
Besides, since p < s, we get u, »>uin[f (Qm+,) (3.15)
Applying Lemma 2.1, we have a(.,u,,Vu,) is bounded in [L"' o 8 ):]N . Combining with
(3.19), (3.15), we obtain lim a(x,u,,Vu,)(u, —u).Ve, dx=0 (3.16)
Q54
From (3.14), (3.16) we have lim I a(x,u,,Vu,)$,.Y(u, —u)dx =0 (3.17)
Q.
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On the other hand, (1.2), Lemma 2.1, (3.15) imply

a(.u,,Vu)—>a(,u,Vu) in [L"' (s )]N

Combining with (3.10) and the boundedness of un in W,* (Q,,,,), one deduces that

lim I [a(x,un,Vu)—a(x,u,Vu)]d)m.V(un —u)dx =0 (3.18)

n—3w

and due to the weak convergence of un to u in Wy®(Q,,,) also

lihr’n a(x,u,Vu)d}m.V(un—u)dx:O (3.19)

It follows from (3.18), (3.19) that
lim [ a(x,u,, V)4,V (u,-u)dx =0 (3.20)
Q,

Hence (3.17) together with (3.20) yield
lim J [a x,u,,Vu,) aa.(x,un,Vu):](tam.V(un —u)dx =0

n—nn

Since¢,,.[a(x,u,,Vu,)-a(x,u,,Vu)](Vu, -Vu)20, forall x inQ,,, , we get

lim I[a (x,u,,Vu,)-a(x,u,,Vu)]$,, .V (u,—u)dx =0

n—wo

The fact that ¢,, (x)=1,Vx € Q,_, then implies

lim I[a(x u,,Vu,)-a(x,u, Vu)]V(un—u)dx=0 o

n—

Fixp e C7 (Q), there exists m in N such thatsuppp = Q. Applying Lemma 2.5,
Lemma 3.2, we have Vu, —»Vuin 17(Q,) for some subsequence. Since u, —uin

P (Qm) also, together with Lemma 2.1, we obtain

Ia(x,un,Vu )Vodx — Ia(x,u,Vu)V(pdx
qa,

If(x,un,Vun)q)dx - jf(x,u,Vu)cpdx
a, q,

So
Ia(x‘,u,Vu)Vq)dx + Jf(x,u,Vu)cpdx = _"a(x,u,Vu)chdx+ If(x,u,Vu)tpdx =0
0 0 o, Q,

Therefore, we get the main theorem:
Theorem 3.1. Under the conditions (1.2)-(1.6), equation (1.1) has at least a generalized

solution u in W, (Q), that is, for any ¢ e C (Q)
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Ia(x,u,Vu)V(pdx + If(x, u, Vu)edx =0
Q Q

SU TON TAI NGHIEM CUA PHUONG TRINH ELLIPTIC QUASILINEAR

VOI PIEU KIEN Ki DI

Chung Nhan Phi, Trin T4n Qubc
Trudng Pai hoc Khoa hoc tur nhién, PHQG-HCM

TOM TAT: Trong bai bdo nay, chiing t6i khdo sat su ton tai nghiém suy réng ciia mét
l6p phwong trinh elliptic ki dj:
—diva(x,u(x), Vu(x))+f(x, u(x) Vu(x))=0

Sir dung phuong phdp xdp xi Galerkin trong [2 10] va ham thir duoc Drabek, Kufner,

Nicolosi néu trong [5], chiing t6i mé réng mot s6 két aua vé phirong trinh elliptic trong
[2,3,4,6,10].
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