EXISTENCE OF SOLUTIONS FOR QUASILINEAR ELLIPTIC EQUATIONS WITH SINGULAR CONDITIONS

Chung Nhan Phu, Tran Tan Quoc

University of Natural Sciences, VNU-HCM

(Manuscript Received on March 24 th, 2006, Manuscript Revised October 2nd, 2006)

ABSTRACT: In this paper, we study the existence of generalized solution for a class of singular elliptic equation: $-\text{diva}(x, u(x), \nabla u(x)) + f(x, u(x), \nabla u(x)) = 0$.

Using the Galerkin approximation in [2, 10] and test functions introduced by Drabek, Kufner, Nicolosi in [5], we extend some results about elliptic equations in [2, 3, 4, 6, 10].

1.INTRODUCTION

The aim of this paper is to prove the existence of generalized solutions in $W_0^{1,p}(\Omega)$ for the quasilinear elliptic equations:

$$-\operatorname{diva}(x, u(x), \nabla u(x)) + f(x, u(x), \nabla u(x)) = 0$$
 (1.1)

i.e. proving the existence of $u \in W_0^{1,p}(\Omega)$ such that

$$\int_{\Omega} a(x, u(x), \nabla u(x)) \nabla \phi dx + \int_{\Omega} f(x, u(x), \nabla u(x)) \phi dx = 0, \forall \phi \in C_{c}^{\infty}(\Omega)$$

where Ω is a bounded domain in $\mathbb{R}^N, N \ge 2$ with smooth boundary, $p \in (1, N)$ and $a: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N, f: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ satisfy the following conditions:

Each $a_i(x, \eta, \xi)$ is a Caratheodory function, that is, measurable in x for any fixed $\zeta = (\eta, \xi) \in \mathbb{R}^{N+1}$ and continuous in ζ for almost all fixed $x \in \Omega$,

$$|a_{i}(x,\eta,\xi)| \le c_{i}(x) [|\eta|^{\alpha} + |\xi|^{p-1} + k_{i}(x)], \forall i = \overline{1,N}$$
 (1.2)

$$\left[a(x,\eta,\xi)-a(x,\eta,\xi^*)\right]\left[\xi-\xi^*\right]>0 \tag{1.3}$$

$$a(x,\eta,\xi)\xi \ge \lambda |\xi|^p$$
 (1.4)

a.e. $x \in \Omega, \forall \eta \in \mathbb{R}, \forall \xi, \xi^* \in \mathbb{R}^N, \xi \neq \xi^*$.

where $c_1 \in L^{\infty}_{loc}(\Omega)$, $c_1 \ge 0$, $k_1 \in L^{p'}(\Omega)$, $\alpha \in [0, p-1]$, $\lambda > 0$.

and $f: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ is a Caratheodory function satisfying

$$\left| f\left(x, \eta, \xi \right) \right| \le c_2 \left(x \right) \left[\left| \eta \right|^{\beta} + \left| \xi \right|^{\gamma} + k_2 \left(x \right) \right] \tag{1.5}$$

$$f(x, \eta, \xi) \eta \ge -c_3(x) - b|\eta|^q - d|\xi|^r$$
 (1.6)

where c_2 is a positive function in $L^{\infty}_{loc}(\Omega)$, c_3 is a positive function in $L^{\infty}(\Omega)$, $k_2 \in L^{p'}(\Omega)$ and $r,q \in [0,p)$, b, d are positive constants, $\gamma \in [0,p-1]$, $\beta \in [0,p^*-1)$ with $p^* = \frac{Np}{N-p}$.

Because $c_1, c_2 \in L^\infty_{loc}(\Omega)$ we cannot define operator on the whole space $W^{1,p}_0(\Omega)$. Therefore, we cannot use the property of (S_+) operator as usual. To overcome this difficulty, in every Ω_n we find solution $u_n \in W^{1,p}_0(\Omega_n)$ of the equation:

$$-\operatorname{diva}(x, u(x), \nabla u(x)) + f(x, u(x), \nabla u(x)) = 0$$

where $\{\Omega_n\}$ is an increasing sequence of open subsets of Ω with smooth boundaries such that $\overline{\Omega_n}$ is contained in Ω_{n+1} and $\Omega = \bigcup_{n=1}^{\infty} \Omega_n$. In this case, we only have the strong convergence of $\{u_n\}$ to u in $W_{loc}^{1,p}(\Omega)$ by using the same technique of Drabek, Kufner, Nicolosi (in [5], section 2.4). However, it is enough to get the generalized solution.

An example for our conditions:

$$a_{i}(x, \eta, \xi) = \frac{1}{d^{\theta}(x)} \left[\left| \xi_{i} \right|^{p-1} + A_{1}(\eta) + k_{1}(x) \right] \operatorname{sgn} \xi_{i}$$

$$f(x, \eta, \xi) = \frac{1}{d^{\mu}(x)} \left[\left| \xi \right|^{a} + \left| \eta \right|^{b} + k_{2}(x) \right] \operatorname{sgn} \eta$$

where $d(x) = dist(x, \partial\Omega); \theta, \mu > 0; A_1, k_1, k_2$ are positive functions

$$k_1, k_2 \in L^{p'}(\Omega); A_1(\eta) \le |\eta|^{\alpha}; \alpha, a \in [0, p-1]; b \in [0, p^*-1).$$

The problem is singular because $\frac{1}{d^{\theta}(x)}, \frac{1}{d^{\mu}(x)} \in L^{\infty}_{loc}(\Omega)$.

Remark:

1) If $c_2 \in L^{\infty}(\Omega)$ and $\beta, \gamma \in [0, p-1)$ the condition (1.5) implies the condition (1.6).

2) The pseudo-Laplacian $a(x, \eta, \xi) = (|\xi_1|^{p-2} \xi_1, ..., |\xi_N|^{p-2} \xi_N)$, the p-Laplacian $a(x, \eta, \xi) = (|\xi|^{p-2} \xi_1, ..., |\xi|^{p-2} \xi_N)$ are some special cases that satisfy our conditions. So our results generalized the corresponding Dirichlet problems in [3, 4]. Our paper also extends the recent result about singular elliptic equations for case p=2 in [6].

2. PREREQUISITES

2.1.Lemma 2.1

(See e.g. [10], Proposition 1.1, page 3) Let G be a measurable set of positive measure in \mathbb{R}^n and $h: G \times \mathbb{R} \times \mathbb{R}^m \to \mathbb{R}$ satisfy the following conditions:

a) h is a Caratheodory function.

b)
$$|h(x, u_1, ..., u_m)| \le c \sum_{i=1}^m |u_i|^{p_i/p^i} + g(x), \forall x \in G$$

where c is a positive constant, $p_i \in (1, \infty)$, $\forall i = 1, ..., m$, $g \in L^{p'}(G)$.

(1.8)

Then the Nemytskii operator defined by the equality

$$H(u_1,...,u_m)(x) = h(x,u_1(x),...,u_m(x))$$
 acts continuously from

 $L^{p_1}(G) \times ... \times L^{p_m}(G)$ to $L^{p'}(G)$. Moreover, it is bounded, i.e. it transforms any set which is bounded into another bounded set. (Proof of this fact for the simple case can be found in [8], theorem 2.2, page 26).

2.2.Lemma 2.2

(See e.g. [10], lemma 4.1, page 14) Let $F: \overline{U} \to \mathbb{R}^m$ be a continuous mapping of the closure of a bounded domain $U \subset \mathbb{R}^m$. Suppose that the origin is an interior point of D and

that the condition
$$(F(x), x) = \sum_{i=1}^{m} F_i(x) x_i \ge 0, \forall x \in \partial U$$
 (1.7)

Then the equation F(x) = 0 has at least one solution in \overline{U} .

We recall some results about Schauder bases.

Definition: A sequence $\left\{x_i\right\}$ in a Banach space X is a Schauder basis if every $x \in X$ can be written uniquely $x = \sum_{i=1}^{\infty} c_i x_i = \lim_{n \to \infty} \sum_{i=1}^{n} c_i x_i$, where $\left\{c_i\right\} \subset \mathbb{R}$.

Because every $x \in X$ is written uniquely $x = \sum_{i=1}^{\infty} c_i x_i$ we have $x_i \neq 0$ and c_i is a function from X to \mathbb{R} , for all i in R.

- **2.3.Lemma 2.3:** ([9], Theorem 3.1, page 20) For all i in \mathbb{N} , c_i is a continuous linear function on X, i.e. $\forall i \in \mathbb{N}, \exists M_i > 0, |c_i(x)| \leq M_i ||x||_X, \forall x \in X$
- **2.4.Lemma 2.4:** ([7], Corollary 3) Let D be a bounded domain in \mathbb{R}^N with smooth boundary. Then the space $W_0^{1,p}(D)$ has a Schauder basis.

2.5.Lemma 2.5: Let
$$D$$
 be an open set in Ω , $\overline{D} \subset \Omega$. If
$$u \xrightarrow{\text{weak}} u \text{ in } W^{1,p}(D)$$

and
$$\lim_{n\to\infty} \int_{\Omega} \left[a\left(x, u_{n}, \nabla u_{n}\right) - a\left(x, u_{n}, \nabla u\right) \right] \left[\nabla u_{n} - \nabla u \right] dx = 0$$
 (1.9)

Then there exists a subsequence of $\{u_n\}$ still denoted by $\{u_n\}$ such that $\nabla u_n \to \nabla u$ in $L^p(D)$.

Proof: Since $c_1, c_2 \in L^{\infty}_{loc}(\Omega)$ we have $c_1, c_2 \in L^{\infty}(D)$ and the conditions (1.2), (1.5) become:

$$|a_{i}(x,\eta,\xi)| \le C_{1} \left[|\eta|^{\alpha} + |\xi|^{p-1} + k_{1}(x) \right], \forall i = \overline{1, N}$$
$$|f(x,\eta,\xi)| \le C_{2} \left[|\eta|^{\beta} + |\xi|^{\gamma} + k_{2}(x) \right]$$

Using the well-known result in [2], Lemma 3, we obtain our Lemma.

Let us recall the definition of class (S+): A mapping $T: X \to X^*$ is called belongs to the class (S+) if for any sequence u_n in X with $u_n \overset{weak}{\to} u$ and $\limsup_{n \to \infty} \left\langle Tu_n, u_n - u \right\rangle \leq 0$ it follows that $u_n \to u$.

2.6.Lemma 2.6: (see [2, 10]) Let D be an open set in Ω , $\overline{D} \subset \Omega$ and A be a mapping from $W_{0}^{1,p}\left(D\right) \text{ to}\left[W_{0}^{1,p}\left(D\right)\right]^{*}, \text{ such that } \left\langle Au,v\right\rangle = \int_{-\infty}^{N}a_{i}\left(x,u,\nabla u\right)\frac{\partial v}{\partial x}dx + \int_{-\infty}^{\infty}f\left(x,u,\nabla u\right)vdx$ Then A is a (S_+) operator.

3. MAIN RESULTS

Let $\left\{\Omega_{n}\right\}$ be an increasing sequence of open subsets of Ω with smooth boundaries such that $\overline{\Omega}_n$ is contained in Ω_{n+1} and $\Omega = \bigcup_{n=1}^{\infty} \Omega_n$.

First, in every Ω_n we find solution $u_n \in W_0^{1,p}(\Omega_n)$ of the equation:

$$-\operatorname{diva}(x, u(x), \nabla u(x)) + f(x, u(x), \nabla u(x)) = 0$$
(3.1)

Applying the same technique as in [10], Theorem 4.1, page 14, we can show that (3.1) has a bounded solution in $W_0^{1,p}(\Omega_n)$.

3.1.Lemma 3.1:

For each Ω_n , the equation: $-\text{diva}(x, u(x), \nabla u(x)) + f(x, u(x), \nabla u(x)) = 0$ has a solution $u_n \in W_0^{1,p}(\Omega_n)$. Furthermore, there exists a positive constant R independent of n satisfying that $\|\mathbf{u}_n\|_{W_n^{1,p}(\Omega_n)} \leq R, \forall n \in \mathbb{N}$.

Proof: Fix $n \in \mathbb{N}$. Let $D = \Omega_n$, $X = W_0^{1,p}(D)$ and A be a mapping from $W_0^{1,p}(D)$ to $\left[W_0^{1,p}(D)\right]^*$, such that

$$\left\langle Au, v \right\rangle = \int_{D} \sum_{i=1}^{N} a_{i} \left(x, u, \nabla u \right) \frac{\partial v}{\partial x_{i}} dx + \int_{D} f \left(x, u, \nabla u \right) v dx, \forall u, v \in W_{0}^{1,p} \left(D \right)$$

By Lemma 2.6, A belongs to class (S+).

We will prove that A is a demicontinuous operator, i.e. if $u_m \to u$ in $W_0^{1,p}(D)$, then

$$\langle Au_m, v \rangle \rightarrow \langle Au, v \rangle, \forall v \in W_0^{1,p}(D)$$

By $u_m \rightarrow u$ in $W_0^{1,p}(D)$ and (1.2), (1.5), applying Lemma 2.1, we get

$$\begin{aligned} &a_{i}\left(.,u_{m},\nabla u_{m}\right) \rightarrow a_{i}\left(.,u,\nabla u\right), \forall i=1,..,N \text{ In } L^{p'}\left(D\right) \text{ as } m \rightarrow \infty \\ &f\left(.,u_{m},\nabla u_{m}\right) \rightarrow f\left(.,u,\nabla u\right) \text{ in } L^{p'}\left(D\right) \text{ as } m \rightarrow \infty \end{aligned}$$

$$\frac{1}{N} = \left(\sum_{i=1}^{N} a_i \left(x_i + \sum_{i=1}^{N} a_i \right) \right) \right) \right) \right) \right) \right) \right) \right)$$

Hence
$$\langle Au_{m}, v \rangle = \int_{D}^{N} \sum_{i=1}^{N} a_{i}(x, u_{m}, \nabla u_{m}) \frac{\partial v}{\partial x_{i}} dx + \int_{D} f(x, u_{m}, \nabla u_{m}) v dx \rightarrow$$

$$\int_{D}^{N} a_{i}(x, u, \nabla u) \frac{\partial v}{\partial x_{i}} dx + \int_{D} f(x, u, \nabla u) v dx = \langle Au, v \rangle, \forall v \in W_{0}^{1,p}(D)$$

Therefore, A is demicontinuous.

Besides, by applying the boundedness of Nemytskii operator for $a(., u, \nabla u)$ and $f(., u, \nabla u)$ one deduces that A is bounded.

For any arbitrary u in $W_0^{1,p}(D)$, due to (1.4), (1.6), we have

$$\begin{split} \left\langle Au,u\right\rangle &=\int\limits_{D}a\left(x,u,\nabla u\right)\nabla udx+\int\limits_{D}f\left(x,u,\nabla u\right)udx\\ &\geq\lambda\int\limits_{D}\left|\nabla u\left(x\right)\right|^{p}dx-\int\limits_{D}\left[c_{3}\left(x\right)+b.\left|u\left(x\right)\right|^{q}+d.\left|\nabla u\left(x\right)\right|^{r}\right]\!dx \end{split}$$

$$\geq \lambda \|u\|_{X}^{p} - \|c_{3}\|_{L^{\infty}(D)} - b\|u\|_{L^{q}(D)}^{q} - d\int_{D} |\nabla u(x)|^{r} dx$$

Let $\hat{u}(x) = u(x)$, $\forall x \in D$ and $\hat{u}(x) = 0$, $\forall x \in \Omega \setminus D$, we have

$$\left\langle Au,u\right\rangle \geq \lambda \left\| u\right\|_{X}^{p}-\left\| c_{3}\right\|_{L^{\infty}(D)}-b\left\| \widehat{u}\right\|_{L^{q}(\Omega)}^{q}-d\left(\int\limits_{D}\left| \nabla u\left(x\right) \right|^{p}dx\right)^{r/p}\left(\int\limits_{D}dx\right)^{1-r/p}$$

Since $q , the continuous imbedding <math>W_0^{1,p}(\Omega) \to L^q(\Omega)$ implies that

$$\begin{split} \left\langle Au,u\right\rangle &\geq \lambda \left\| u \right\|_{X}^{p} - \left\| c_{3} \right\|_{L^{\infty}(\Omega)} - b \left(M. \left\| \widehat{u} \right\|_{W_{0}^{1,p}(\Omega)} \right)^{q} - d.K \left\| \nabla u \right\|_{L^{p}(D)}^{r} \\ &\geq \lambda \left\| u \right\|_{X}^{p} - \left\| c_{3} \right\|_{L^{\infty}(\Omega)} - b M^{q}. \left\| u \right\|_{W_{0}^{1,p}(D)}^{q} - d.K \left\| u \right\|_{W_{0}^{1,p}(D)}^{r} \\ &\geq \left\| u \right\|_{X}^{p} \left(\lambda - \frac{\left\| c_{3} \right\|_{L^{\infty}(\Omega)}}{\left\| u \right\|_{X}^{p}} - \frac{b M^{q}}{\left\| u \right\|_{X}^{p-q}} - \frac{d.K}{\left\| u \right\|_{X}^{p-r}} \right) \end{split}$$

Since 1, r, q<p, one can choose a positive constant R independent of n such that

$$\langle Au, u \rangle \ge 0, \forall u \in \partial B_X(0, R)$$
 (3.3)

Applying Lemma 2.4 there exists a Schauder basis $\{v_i\}$ in the space X. We consider in \mathbb{R}^m

the domain
$$U_m = \left\{ c = (c_1, ..., c_m) : \left\| \sum_{i=1}^m c_i v_i \right\|_X < R \right\}$$

Applying Lemma 2.3, there exists

$$M_{i} > 0, |c_{i}| \le M_{i} \left\| \sum_{j=1}^{m} c_{j} v_{j} \right\|_{v} < M_{i} R, \forall i = \overline{1, m}, \forall (c_{1}, ..., c_{m}) \in U_{m}$$

So U_m is bounded in \mathbb{R}^m . We apply Lemma 2.2 to this domain U_m and to the mapping

$$F: \overline{U}_m \to \mathbb{R}^m, F(c) = (F_1(c), ..., F_m(c)), F_i(c) = \left\langle A\left(\sum_{j=1}^m c_j v_j\right), v_i \right\rangle$$

Let $c = (c_1, ..., c_m) \in \partial U_m$ and $u = \sum_{j=1}^m c_j v_j$ then $\|u\|_X = R$. We have

$$\left(F(c),c\right) = \sum_{j=1}^{m} F_{j}(c)c_{j} = \left\langle A\left(\sum_{j=1}^{m} c_{j}v_{j}\right), \sum_{j=1}^{m} c_{j}v_{j}\right\rangle = \left\langle Au,u\right\rangle \ge 0$$

because of (3.3). By Lemma 2.2, the equation F(c) = 0 has at least one solution in \overline{U}_m , for example $c = (c_1, ..., c_m)$. Hence $F_i(c) = \left\langle A\left(\sum_{j=1}^m c_j v_j\right), v_i\right\rangle = 0, \forall i = \overline{1, m}$

Consequently, $u_m = \sum_{i=1}^{m} c_i v_j$ satisfies the inequality

$$\left\|\mathbf{u}_{\mathbf{m}}\right\|_{\mathbf{X}} \le \mathbf{R} \tag{3.4}$$

And is a solution of the system

$$\langle Au_m, v_i \rangle = 0, \forall i = \overline{1, m}$$
 (3.5)

Let m go through N we have a sequence $\{u_m\}$ satisfying (3.4) and is a solution of (3.5). By virtue of the reflexivity of the space X, the sequence u_m contains weakly convergent subsequence u_{m_k} . So $u_{m_k} \xrightarrow{\text{weak}} u_0$. Since u_0 is in X with the Schauder basis $\{v_i\}$, we have

$$u_0 = \sum_{j=1}^{\infty} \alpha_j v_j = \lim_{m \to \infty} \sum_{j=1}^{m} \alpha_j v_j \text{ . Let } w_m = \sum_{j=1}^{m} \alpha_j v_j \text{ then } w_m \to u_0 \text{ so } w_{m_k} \to u_0. \text{ We have } w_m = \sum_{j=1}^{m} \alpha_j v_j \text{ then } w_m \to u_0 \text{ so } w_{m_k} \to u_0.$$

$$\langle Au_{m_k}, u_{m_k} - u_0 \rangle = \langle Au_{m_k}, u_{m_k} - w_{m_k} \rangle + \langle Au_{m_k}, w_{m_k} - u_0 \rangle$$
 (3.6)

Moreover,

Hence

$$\lim_{k \to \infty} \left\langle A u_{m_k}, w_{m_k} - u_0 \right\rangle = 0 \tag{3.7}$$

because of (3.4), the boundedness of the operator A, and the strong convergence of w_{m_k} to u_0 . Since $u_{m_k} - w_{m_k} = \sum_{j=1}^{m_k} \beta_j v_j$ and (3.5), we get $\left\langle A u_{m_k}, u_{m_k} - w_{m_k} \right\rangle = 0, \forall k$.

$$\lim_{k \to \infty} \left\langle A u_{m_k}, u_{m_k} - u_0 \right\rangle = 0 \tag{3.8}$$

Because A belongs to class (S+) and (3.8), we deduce that $u_{m_k} \to u_0$. Since A is demicontinuous, passing to limit the equality (3.5) for a fixed i, we have

$$\langle Au_0, v_i \rangle = 0 \tag{3.9}$$

Let $v \in X$, then $v = \sum_{j=1}^{\infty} \alpha_j v_j = \lim_{m \to \infty} \sum_{j=1}^m \alpha_j v_j$. Since i is an arbitrary index, it follows from (3.9) $\operatorname{that} \left\langle Au_0, \sum_{i=1}^m \alpha_i v_i \right\rangle = 0, \forall m \in \mathbb{N} \text{ . Let } m \text{ tend to infinity, we get } \left\langle Au_0, v \right\rangle = 0$

Hence, u_0 is a solution of the equation (3.2). Moreover, since $u_{m_k} \stackrel{\text{weak}}{\to} u_0$, we get $\|u_0\|_{W_0^{1,p}(\Omega_n)} = \|u_0\|_X \le \liminf_{k\to\infty} \|u_{m_k}\|_X \le R$, where R does not depend on n. This completes the proof of Lemma 3.1

By Lemma 3.1, we have proved that (3.2) has a bounded solution $u_n \in W_0^{1,p}(\Omega_n)$ satisfying $\|u_n\|_{W_0^{1,p}(\Omega_n)} \leq R$, $\forall n \in \mathbb{N}$. Next, we expand u_n to all $\Omega: u_n(x) = 0$, $\forall x \in \Omega \setminus \Omega_n$. So $u_n \in W_0^{1,p}(\Omega)$ and $\|u_n\|_{W_0^{1,p}(\Omega)} = \|u_n\|_{W_0^{1,p}(\Omega_n)} \leq R$, $\forall n \in \mathbb{N}$. By virtue of the reflexivity of the space $W_0^{1,p}(\Omega)$, there exists $u \in W_0^{1,p}(\Omega)$ such that $u_n \stackrel{\text{weak}}{\to} u$ in $W_0^{1,p}(\Omega)$ for some subsequence. We will prove that u is a generalized solution of the equation (1.1) in $W_0^{1,p}(\Omega)$, i.e. $\int_{\Omega} a(x,u(x),\nabla u(x)) \nabla \phi dx + \int_{\Omega} f(x,u(x),\nabla u(x)) \phi dx = 0$, $\forall \phi \in C_c^{\infty}(\Omega)$

In order to do that, we need the following lemma:

3.2.Lemma 3.2.

Let m in \mathbb{N} , we have

e have
$$\lim_{n\to\infty} \int_{\Omega_n} \left[a(x, u_n, \nabla u_n) - a(x, u_n, \nabla u) \right] \left[\nabla u_n - \nabla u \right] dx = 0$$

Proof: We only need to consider n>m+1. Let ϕ_m be a functions in $C_c^{\infty}(\Omega)$, with $0 \le \phi_m \le 1$

in Ω and $\phi_m(x) = \begin{cases} 1 & \text{if } x \in \Omega_m \\ 0 & \text{if } x \in \Omega \backslash \Omega_{m+1} \end{cases}$. Then there exists M such that,

$$\left|\phi_{m}(x)\right| \le M, \left|\nabla\phi_{m}(x)\right| \le M, \forall x \in \Omega$$
 (3.10)

Put $w_n = \phi_m \cdot (u_n - u)$ restricted on Ω_n .

Because $\text{supp} \Big[\varphi_m . \big(u_n - u \big) \Big] \subset \Omega_{m+2} \subset \Omega_n$, $\forall n > m+1$, we have $\text{suppw}_n \subset \Omega_n$, $\forall n > m+1$.

So $w_n \in W_0^{1,p}(\Omega_n)$. Since u_n is the solution of the equation (3.2), we have

$$\int_{\Omega_{n}} a(x, u_{n}, \nabla u_{n}) \nabla w_{n} dx + \int_{\Omega_{n}} f(x, u_{n}, \nabla u_{n}) w_{n} dx = 0.$$

$$\int_{\Omega_{n+1}} a(x, u_{n}, \nabla u_{n}) \nabla w_{n} dx + \int_{\Omega_{n+1}} f(x, u_{n}, \nabla u_{n}) w_{n} dx = 0$$
(3.11)

Hence

We shall prove that

$$\lim_{n \to \infty} \int_{\Omega_{m+1}} f(x, u_n, \nabla u_n) \phi_m (u_n - u) dx = 0$$
 (3.12)

by finding a number s such that $f(., u_n, \nabla u_n)$ is bounded in $L^s(\Omega_{m+1})$ and $u_n \to u$ in $L^s(\Omega_{m+1})$. Since $\beta \in [0, p^* - 1)$ and $p < p^*$, we can find s satisfying $\beta + 1 < s < p^*$ and p < s.

Hence $\beta < s-1 = \frac{s}{s'}$ and $\gamma < p-1 < p - \frac{p}{s} = \frac{p}{s'}$. Since $\{u_n\}$ is bounded in $W_0^{1,p}(\Omega)$, the

Sobolev imbedding implies that there exists a subsequence still denoted by $\{u_n\}$ such that $u_n \to u$ in $L^s(\Omega)$, so $u_n \to u$ in $L^s(\Omega_{m+1})$. From (1.5) and Lemma 2.1, one deduces that $f(.,u_n,\nabla u_n)$ is bounded in $L^s(\Omega_{m+1})$. Combining (3.10), we have (3.12). Hence

$$\lim_{n \to \infty} \int_{\Omega_{\text{in+l}}} f(x, u_n, \nabla u_n) w_n dx = 0$$
 (3.13)

From (3.11), (3.13), one deduces that $\lim_{n\to\infty} \int_{\Omega_{m+1}} a(x, u_n, \nabla u_n) \nabla w_n dx = 0$ or

$$\lim_{n\to\infty}\int\limits_{\Omega_{m+1}}a\left(x,u_{_{n}},\nabla u_{_{n}}\right)\nabla\left(\varphi_{_{m}}.\left(u_{_{n}}-u\right)\right)dx=0$$

Hence,

$$\lim_{n\to\infty} \int_{\Omega_{m,n}} a(x, u_n, \nabla u_n) [\phi_m \cdot \nabla (u_n - u) + (u_n - u) \cdot \nabla \phi_m] dx = 0$$
 (3.14)

Besides, since
$$p < s$$
, we get $u_n \to u$ in $L^p(\Omega_{m+1})$ (3.15)

Applying Lemma 2.1, we have $a(., u_n, \nabla u_n)$ is bounded in $\left[L^{p'}(\Omega_{m+1})\right]^N$. Combining with

(3.10), (3.15), we obtain
$$\lim_{n \to \infty} \int_{\Omega_{m+1}} a(x, u_n, \nabla u_n) (u_n - u) \cdot \nabla \phi_m dx = 0$$
 (3.16)

From (3.14), (3.16) we have
$$\lim_{n \to \infty} \int_{\Omega_{m+1}}^{\infty} a(x, u_n, \nabla u_n) \phi_m \cdot \nabla (u_n - u) dx = 0$$
 (3.17)

On the other hand, (1.2), Lemma 2.1, (3.15) imply

$$a(.,u_n,\nabla u) \rightarrow a(.,u,\nabla u) \text{ in } \left[L^{p'}(\Omega_{m+1})\right]^N$$

Combining with (3.10) and the boundedness of un in $W_0^{1,p}(\Omega_{m+1})$, one deduces that

$$\lim_{n\to\infty} \int_{\Omega_{md}} \left[a(x, u_n, \nabla u) - a(x, u, \nabla u) \right] \phi_m \cdot \nabla (u_n - u) dx = 0$$
 (3.18)

and due to the weak convergence of un to u in $W_0^{1,p}(\Omega_{m+1})$ also

$$\lim_{n \to \infty} \int_{\Omega_{m+1}} a(x, u, \nabla u) \phi_m \cdot \nabla (u_n - u) dx = 0$$
 (3.19)

It follows from (3.18), (3.19) that

$$\lim_{n\to\infty} \int_{\Omega_{m,n}} a(x, u_n, \nabla u) \phi_m \cdot \nabla (u_n - u) dx = 0$$
 (3.20)

Hence (3.17) together with (3.20) yield

$$\lim_{n\to\infty}\int_{\Omega_{m,d}} \left[a(x,u_n,\nabla u_n)-a(x,u_n,\nabla u)\right]\phi_m.\nabla(u_n-u)dx=0$$

Since $\phi_m \cdot [a(x, u_n, \nabla u_n) - a(x, u_n, \nabla u)] (\nabla u_n - \nabla u) \ge 0$, for all x in Ω_{m+1} , we get

$$\lim_{n\to\infty} \int_{\Omega_m} \left[a(x, u_n, \nabla u_n) - a(x, u_n, \nabla u) \right] \phi_m \cdot \nabla (u_n - u) dx = 0$$

The fact that $\phi_m(x) = 1, \forall x \in \Omega_m$ then implies

$$\lim_{n\to\infty}\int_{\Omega_{-}} \left[a(x,u_n,\nabla u_n)-a(x,u_n,\nabla u)\right]\nabla(u_n-u)dx=0 \quad \Box$$

Fix $\varphi \in C_c^{\infty}(\Omega)$, there exists m in \mathbb{N} such that supp $\varphi \subset \Omega_m$. Applying Lemma 2.5, Lemma 3.2, we have $\nabla u_n \to \nabla u$ in $L^p(\Omega_m)$ for some subsequence. Since $u_n \to u$ in $L^p(\Omega_m)$ also, together with Lemma 2.1, we obtain

$$\int_{\Omega_{m}} a(x, u_{n}, \nabla u_{n}) \nabla \phi dx \rightarrow \int_{\Omega_{m}} a(x, u, \nabla u) \nabla \phi dx$$

$$\int_{\Omega_{m}} f(x, u_{n}, \nabla u_{n}) \phi dx \rightarrow \int_{\Omega_{m}} f(x, u, \nabla u) \phi dx$$

So

$$\int\limits_{\Omega}a\left(x,u,\nabla u\right)\nabla\phi dx+\int\limits_{\Omega}f\left(x,u,\nabla u\right)\phi dx=\int\limits_{\Omega_{m}}a\left(x,u,\nabla u\right)\nabla\phi dx+\int\limits_{\Omega_{m}}f\left(x,u,\nabla u\right)\phi dx=0$$

Therefore, we get the main theorem:

Theorem 3.1. Under the conditions (1.2)-(1.6), equation (1.1) has at least a generalized solution u in $W_0^{1,p}(\Omega)$, that is, for any $\varphi \in C_c^{\infty}(\Omega)$

$$\int\limits_{\Omega}\!a\big(x,u,\nabla u\big)\nabla\phi dx+\int\limits_{\Omega}\!f\big(x,u,\nabla u\big)\phi dx=0$$

SỰ TỔN TẠI NGHIỆM CỦA PHƯƠNG TRÌNH ELLIPTIC QUASILINEAR VỚI ĐIỀU KIỆN KÌ DỊ

Chung Nhân Phú, Trần Tấn Quốc Trường Đại học Khoa học tự nhiên, ĐHQG-HCM

TÓM TẮT: Trong bài báo này, chúng tôi khảo sát sự tồn tại nghiệm suy rộng của một lớp phương trình elliptic kì dị:

$$-\operatorname{diva}(x, u(x), \nabla u(x)) + f(x, u(x), \nabla u(x)) = 0$$

Sử dụng phương pháp xấp xỉ Galerkin trong [2,10] và hàm thử được Drabek, Kufner, Nicolosi nêu trong [5], chúng tôi mở rộng một số kết quả về phương trình elliptic trong [2,3,4,6,10].

REFERENCES

- [1]. Adams A., Sobolev spaces, Academic Press, (1975)
- [2]. Browder F. E., Existence theorem for nonlinear partial differential equations, Pro.Sym. Pure Math., Vol XVI, ed. by Chern S. S. and Smale S., AMS, Providence, p 1-60, (1970).
- [3]. Dinca G., Jebelean P., Some existence results for a class of nonlinear equations, involving a duality mapping, Nonlinear Analysis 46, p 47-363, (2001).
- [4]. Dinca G., Jebelean P., Mawhin J., Variational and Topological Methods for Dirichlet problems with p-Laplacian, Portugaliae Mathematica, Vol 58, Num 3, p 340-378, (2001).
- [5]. Drabek P., Kufner A., Nicolosi F., Quasilinear Elliptic Equations with Degenerations and Singularities, De Gruyter Series in Nonlinear Analysis and Applications, Berlin – New York (1997)
- [6]. Duc D. M., Loc N. H., Tuoc P. V., Topological degree for a class of operators and applications, Nonlinear Analysis Vol 57, p 505-518, (2004).
- [7]. Fucik S., John O., Necas J., On the existence of Schauder bases in Sobolev spaces, Comment. Math. Univ. Carolin. 13, p 163-175,(1972).
- [8]. Krasnoselskii M.A., Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, (1964).
- [9]. Singer I., Bases in Banach spaces I, Springer, (1970)
- [10]. Skrypnik I.V., Methods for Analysis of Nonlinear Elliptic Boundary Value Problems, AMS (1994)