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ABSTRACT
Hyperelastic materials are special materials that possess the non-linear material property. In these
materials, the stress-strain relation is derived from the strain energy density function. An interesting
property of these materials like rubber is the ability of elastic response when it is subjected to large
deformations. That means when the load is removed, the material can easily return to the initial
configuration. In addition, they also have some excellent mechanical properties like good tear and
abrasion resistance, flexibility at ambient temperature. So hyperelastic materials are widely used in
the industry. Due to this reason, it is needed to take a careful look at thesematerials, especially in the
field of mechanical behavior. Because hyperelastic materials usually work under large deformation
for almost all cases, their behavior is often considered in a highly non-linear elastic state. This paper
presents a meshless radial point interpolation method for hyperelastic bodies with compressible
and nearly-incompressible states. The weak form is obtained from the principle of minimum po-
tential energy, and the finite deformation analysis of non-linear behavior is performed under the
total Lagrange formulation. Radial point interpolation method shape functions are employed to
approximate field nodes and derivatives. Due to possessing the Kronecker delta function property,
the boundary conditions are imposed directly in the proposed method. Moreover, this method
also shows its advantage for non-linear analysis, especially when the large deformation is consid-
ered and the highly-distorted nodal mesh is inherent in the structure. Two numerical examples are
conducted with some distributed loads for both compressible and nearly-incompressible states.
The obtained results show good agreement with the reference solution. That clearly demonstrates
the efficiency and reliability of the proposed method for complex problems.
Key words: Large deformation, meshfree method, hyperelasticity

INTRODUCTION
Non-linear analysis is still a challenging issue in the
field of computational mechanics due to its complex-
ity. One of the typical representatives of non-linear
problems ismaterial nonlinearity, in which hyperelas-
tic materials are representative. For example, rubber-
like materials have non-linear mechanical responses
under even small loads. Moreover, hyperelastic mate-
rials have also possessed some useful properties in the
industry like supper deformation, high durability, and
lightweight. High durability is the key factor for de-
signers and buyers. So, it is necessary to evaluate the
strength of parts which is made from the mentioned
material in the structure.
There are various models of hyperelastic materials
like neo-Hookean, Mooney-Rivlin, Yeoh, Ogden,…
which are employed to describe the stress-strain re-
lationship. But generally, hyperelastic materials are
considered in large deformation conditions in which
it seems to be impossible to find the correct solu-
tion. In this case, numerical methods are usually used

to simulate the non-linear response of hyperelastic-
ity. Along with the development of numerical meth-
ods, finite element methods (FEM) are very strong
and popular in computational engineering. FEM has
beenwidely used for complex engineering and science
problems, including non-linear elastic problems1–3.
However, FEM and other mesh-based methods have
fallen into a disadvantage in the existence of the mesh
of elements. Especially in the case of large deforma-
tion, themesh of elements can be extremely distorted,
and it can not produce a good approximation. To
overcome the disadvantage of mesh-based methods,
meshless methods have been developed to be inde-
pendent of the nodal mesh to improve the accuracy
of the solution on the highly distorted nodal mesh.
There are some studies using the meshless method
for simulating the finite deformation that have been
performed and achieved significant results. Li et al.
in4 have proposed the reproducing kernel particle
method (RKPM) for the large deformation problem
of thin shell structures in 2000. The meshless local
Petrov-Galerkin (MLPG) method was introduced by
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Han et al. for solving non-linear problems with large
deformations and rotations5, and large deformation
contact analysis of elastomers6. In 2019, a strong-
form mesh-free method for stress analysis of hypere-
lasticmaterials was presented byKhosrowpour et al.7.
Ameshless radial point interpolationmethod (RPIM)
has been proposed for compressible states only by
Nha et al.8. This study develops the RPIMmethod for
large deformation analysis in both compressible and
nearly-incompressible states of hyperelastic 2D prob-
lems. The weak form of the non-linear elastic prob-
lem is obtained from the principle of minimum po-
tential energy9. To solve the non-linear equations,
the Newton-Raphson algorithm is applied with a tol-
erance value of 10−6.
The paper is constructed as follows. The constitu-
tive laws for hyperelastic material models and RPIM
meshless method for non-linear elasticity are pre-
sented in Section 2. Section 3 shows numerical ex-
amples and comparisons with the reference solution.
Some issues are discussed in Section 4. Finally, Sec-
tion 5 presents the main conclusions and remarks
about the presented method.

METHODOLOGY
Constitutive equations of hyperelastic ma-
terial
Consider a hyperelastic material that is subjected to
forces. The geometry is changed from the unde-
formed to the deformed state. In the initial unde-
formed geometry, a particular pointM ismapped into
a point N in the current deformed geometry. These
mentioned points are identified by vectors X and x,
respectively. The deformation gradient tensor denot-
ing the relation between X and x is defined as

Fi j =
∂xi

∂ X j
=

∂ui

∂X j
+δi j (1)

Also, volume change between current and initial con-
figuration is the determinant of deformation gradient
tensor

J = det (F) (2)

In addition, the right Cauchy-Green deformation ten-
sorC and Lagrangian strain are introduced as follows

C = FT F

E =
1
2
(C− I)

(3)

where I is the identity matrix, the strain energy den-
sity function ψ can be constructed by deformation
gradient tensor F. The second Piola-Kirchhoff stress S

and the Cauchy stress (real stress) σ can be obtained
by relationship as bellow

S =
∂ψ
∂E

=
2∂ψ
∂C

; σ =
1
J

FSFT (4)

In this paper, the strain energy density function ψ
obeys the neo-Hookean model10. This model has
been considerably used to reproduce the mechani-
cal response of rubber-like materials due to the good
agreement with experiments. It was given as

ψ =
κ
2
(J−1)2 +

µ
2
[I1 −3−2ln(J)] (5)

where κ and µ are parameters of material (bulk and
shear modulus, respectively). I1 is the first invariant
of the right Cauchy-Green deformation tensor. Based
on Eq. (5), the non-linear stress-strain relation for the
compressible neo-Hookean model can be written as

S = κ
(
J2 − J

)
C−1 +µ

(
I −C−1) (6)

In addition, the constitutive tensor D can be obtained
by differentiating the second Piola-Kirchhoff stress S

D =
∂S
∂E

(7)

Large deformation in RPIMmethod
Consider a hyperelastic solid denoted by the contin-
uum domain Ω, subjected to external forces t∗ on the
boundary Γt , body force b, displacement u∗ on the Γu

boundary as shown in Figure 1.

Figure 1: Boundary conditions of hyperelastic ma-
terial

The potential energy can be obtained from the strain
energy and work done by applied forces as

Π(u) = Πint (u)−Πext (u)
=

∫
Ω W (E)dΩ−

∫
Ω ubdΩ−

∫
Ω ut∗dΓ

(8)
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The weak form of the non-linear elastic problem can
be achieved from the principle of minimum potential
energy∫

Ω S :
_
EdΩ−

∫
Ω

_
ubdΩ−

∫
Γt

_
uT t∗dΓ = 0 (9)

where _
u is similar to virtual displacement in the prin-

ciple of virtual work. With the non-linear state of
weak form due to the effect of energy form, it is neces-
sary to apply the linearization into Eq.(9). This leads
to the following equation∫

Ω

( _
E : D : △E +S : △

_
E
)

dΩ
−
∫

Ω
_
ubdΩ−

∫
Γt

_
uT t∗dΓ = 0

(10)

In this paper, RPIM shape functions ϕ and nodal dis-
placement in the local support domain are employed
to approximate the displacement field u. Formore de-
tails of RPIM shape functions, readers can refer to11.
The approximation of displacement field u and _

u are
written as

u = ∑N
i=1 ϕiui;

_
u = ∑N

i=1 ϕi
_
ui (11)

The variation of Largrangian strain
_
E and the incre-

mental Largrangian strain can be written as
_
E = B

_
d; △

_
E = B△

_
d (12)

Where
_
d is the variation of nodal displacements, and

B is the non-linear displacement-strain matrix

B3×2N = F11ϕ1,1 F21ϕ1,1

F12ϕ1,2 F22ϕ1,2

F11ϕ1,2 +F12ϕ1,1 F21ϕ1,2 +F22ϕ1,1


... ... F11ϕN,1 F21ϕN,1

F12ϕN,2 F22ϕN,2

F11ϕN,2 +F12ϕN,1 F21ϕN,2 +F22ϕN,1


(13)

The first and the second term of energy form can be
written as∫

Ω
_
E : D : △EdΩ = d−T (∫

Ω BT DBdΩ
)
△d (14)

∫
Ω S : △

_
EdΩ = d−T (∫

Ω HT ⊕HdΩ
)
△d (15)

where

H4×2N =


ϕ1,1 0 ... ϕN,1 0
ϕ1,2 0 ... ϕN,1 0

0 ϕ1,1 ... 0 ϕN,1

0 ϕ1,2 ... 0 ϕN,2

 (16)

⊕4×4 =


S11 S12 0 0
S12 S22 0 0
0 0 S11 S12

0 0 S12 S22

 (17)

So the energy form of weak form can be rewritten as

∫
Ω

( _
E : D : △E +S : △

_
E
)

dΩ
= d−T (∫

Ω BT DBdΩ
)
△d

+d−T (∫
Ω HT ⊕HdΩ

)
△d

= d−T [(∫
Ω BT DB+HT ⊕H

)
dΩ

]
△d

= d−T K△d = d−T f int

(18)

In addition, work done by applied forces can be ap-
proximated as∫

Ω
_
uT bdΩ+

∫
Γt

_
uT t∗dΓ

= ∑N
i=1

_
uT

i
{∫

Ω ϕibdΩ+
∫

Γt
ϕit∗dΓ

}
=

_
d

T
f ext

(19)

The difference between the left-and right-hand sides
of Eq. (10) is defined as a residual and it can be solved
by the Newton-Raphson method

R =
_
d

T (
f ext − f int) (20)

NUMERICAL EXAMPLES
Two numerical examples of compressible and nearly-
incompressible states are presented in this section
to analyze the large deformation of solids. With
the purpose of validation, parameters and model of
the material are chosen the same as10, and the re-
sults then are compared with 10. The bulk mod-
ulus is given as 120.291 N/mm2 in the compress-
ible state and 400889.806 N/mm2 for the nearly-
incompressible state. The shear modulus is assumed
as 80.194 N/mm2. In considering the accuracy of the
non-linear solution, an error value of 10−6 is applied
for the Newton-Raphson algorithm.

Inhomogeneous compression problem
In the first example, the inhomogeneous compres-
sion problem is studied. The objective of this prob-
lem is to investigate the stability of the result due to
the high compression level. The problem is shown in
Figure 2, a rectangular plate subjects a constant dis-
tributed force f. The horizontal displacement at the
top edge and vertical displacement at the bottom edge
is set to be zero. It should be noted that due to the
symmetry, only half of the plate is studied.
The convergence analysis of this problem is conducted
in vertical displacement of point M. to investigate the
convergence rate of the proposed method, four nodal
distributions are chosen. The percent of compression
at point M is computed with four cases of distributed
force for compressible (f = 50; 100; 150 and 200
N/mm2) and nearly-incompressible states (f = 100;
150; 200 and 250N/mm2). Figure 3 andFigure 4 show
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the rate of convergence. In these figures, the percent
of compression at point M versus to the total number
of nodes of compressible and nearly-incompressible
states are plotted and compared with the variational
differential quadrature (VDQ) 10 method that used 45
× 45 nodes for simulations.

Figure 2: Inhomogeneous compression problem

Figure 3: Percent of compression at point M for var-
ious values of distributed force in the compressible
inhomogeneous compression problem

It is clear to see that the proposedmethod can produce
a stable result of good accuracy. Like VDQ method,
the convergence rate of the nearly-incompressible
state is lower than the compressible state.
Figure 5 and Figure 6 show the deformed config-
urations of the plate under f = 200 N/mm2 and
f = 250 N/mm2 for the compressible and nearly-
incompressible state, respectively. The colors indicate
values of the norm of stress ||P|| =

√
PiIPiI at each

node
Figure 7 shows each component of the first Piola-
Kirchhoff stress for compressible state with f = 200
N/mm2.

Figure 4: Percent of compression at point M for
various values of distributed force in the nearly-
incompressible inhomogeneous compressionprob-
lem

Figure 5: Deformed configuration of the plate in
the compressible state with f = 200 N/mm2 (black
grid indicates the undeformed configuration of the
plate)

Figure 6: Deformed configuration of the plate in
the nearly-incompressible state with f = 250 N/mm2

(black grid indicates the undeformed configuration
of the plate)
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Figure 7: The first Piola-Kirchhoff stress in the compressible state with f = 200 N/mm2

Curved beam problem

As the second example, a curved beam with a com-
pressible state under bending load is considered. The
geometry and load conditions are shown in Figure 8.
The right edge is subjected to a constant distributed
force while the bottom edge is clamped.

Figure 8: Curved beam problem

Similar to the previous example, the convergence
analysis of this problem is performed in vertical dis-
placement of point O under four values of distributed
force (f = 0.2; 0.3; 0.4 and 0.5N/mm2). Figure 9 shows
the vertical displacement of point O, and it is com-
pared with the VDQmethod that used 23× 23 nodes
for the simulation.

Figure 9: Vertical displacement at point M for var-
ious values of shearing force in the compressible
curved beam problem
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Figure 10: The first Piola-Kirchhoff stress in the compressible state with f = 0.5 N/mm2

As expected, there is a good result given by the
proposed method when compared with the VDQ
method. Figure 10 shows each component of the first
Piola-Kirchhoff stress with f = 0.5 N/mm2.

DISCUSSION
As shown in Section 3, although the proposedmethod
produces a good and stable solution for various prob-
lems of compressible and nearly incompressible be-
haviors in a simple way, some issues need to be dis-
cussed in this section. For example, in VDQmethod,
the fine mesh at edges is utilized for all cases while
the regular node distribution in domains is employed
to approximation in the RPIM method. Due to this,

it also leads to using a smaller number of nodes in
the VDQ method for some cases. Moreover, differ-
ent from the proposed method, the energy function
is discretized in a direct approach by the generalized
differential quadrature operator in the VDQmethod.
Because of these reasons, there is a slight difference in
the result compared with the reference solution.

CONCLUSION
In this paper, we have introduced a meshless method
based on RPIM shape functions and successfully ap-
plied it to analyze the behavior of compressible and
nearly-incompressible states of hyperelastic solid un-
der finite deformation. The results under the high de-
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formation level of the proposedmethod are compared
with the VDQmethod. As expected, they show valid-
ity with good accuracy and stable results. The pro-
posed method does not need the mesh of elements,
so there is no meshing task required, and distorted
elements can not be generated when large deforma-
tion is considered. The meshless method seems full
of hope and promise for advanced analysis such as
fracture problems of hyperelastic materials in which
the discontinuity is considered under large deforma-
tion. However, like the conventional meshfree meth-
ods, the proposed method still has some restrictions.
One of them is the requirement of “the background
cell” to perform the numerical integrations. In addi-
tion, determining the local support domain also af-
fects the computation cost. These limitations should
be improved in further studies.
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