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Feature extraction semilearning and augmented representation
for image captioning in crowd scenes

Khang Tan TranMinh Nguyen*

ABSTRACT
Image captioning has been an interesting task since 2015. The topic lies in the gap between Com-
puter Vision and Natural Language Processing research directions. The problem can be described
as follows: Given the input as a three-channel RGB image, a language model is trained to gener-
ate the hypothesis caption that describes the images' contexts. In this study, we focus on solving
image captioning in images captured in a crowd scene, which is more complicated and challeng-
ing. In general, a semilearning feature extraction mechanism is proposed to obtain more valuable
high-level feature maps of images. Moreover, an augmented approach in the Transformer Encoder
is explored to enhance the representation ability. The obtained results are promising and outper-
form those of other state-of-the-art captioning models on the CrowdCaption dataset.
Key words: crowd scene, image captioning, transformer

INTRODUCTION
With the development of technology, automatic im-
age processing now plays an important role in many
fields in life to provide information to humans as
quickly as possible without increasing the number
of employees but guaranteeing accuracy. In paral-
lel, step-by-step deep learning has become the key
to solving many real-world problems to satisfy soci-
ety’s requirements. One of the most interesting tasks
worldwide is image captioning1. With the given im-
age, an automatic system can supply humans with a
description of its context, emphasizing some high-
lighted visual events. In addition, day-to-day crowd
scenes include much information for analysis in spe-
cific fields, such as the management and service of
smart cities, intelligent transportation, and public se-
curity risk2. We suppose that the most important
application of automatic description in crowd scenes
is security because of several highly possibly abnor-
mal occurrences, such as violence, stealing, and sex-
ual assault. However, crowd images are much more
complicated because of the large number of peo-
ple and activities involved in recognizing and ana-
lyzing them. Therefore, there is a high demand for
studying the problem of automatic description gen-
eration for crowd scenes. The large differences be-
tween usual image captioning and image captioning
in crowd scenes include objects, contexts, and inter-
actions. Images capturing crowd scenes include lots
of people in complicated and various contexts. More-

over, words describing the interactions between ob-
jects appear much more frequently. Therefore, there
is a need to explore approaches that effectively rep-
resent objects in images and contexts simultaneously
to help captionmodels more easily learn and generate
descriptions. Even with this, several techniques have
also been researched to increase the quality of these
representations to avoid underfitting because of the
complex information in crowd scenes.
To solve the image captioning problem, previous
studies model the problem as a machine transla-
tion problem. Given the input X as the image, the
trained model predicts the sequence of tokens Y =
{y1,y2,...,yn}, in which yt is the predicted word at time
step t and n is the maximum length of the predicted
sentence. From y1 to yn, there are two specific to-
kens <bos> and <eos> that indicate where the gen-
erated caption starts and ends, respectively. Most of
the studies considered an autoregressive approach to
solving this problem, which means that the next pre-
dicted word conditioned on the previous word can be
formulated as yt = model(X|yi<t ). In this study, we
also follow the autoregressive approach. Figure 1 il-
lustrates the input−output definition.
There are two common types of images in the model
space: region-based features and grid-based features.
Region-based features of images are extracted using
the Faster R-CNN model, which is a famous object
detection model. Once extracted, region-based fea-
tures are embedding vectors that represent objects de-
tected in images. In contrast, grid-based features in-
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Figure 1: Illustration of the input−output definition of image captioning.

volve high-level information extracted via convolu-
tional neural networks. Therefore, the embedding
vectors represented for grids on images, including
global information, are considered.
With respect to architecture, the earliest studies from
the latest studies usedRNN-basedmodels to solve im-
age captioning problems: long short-term memory
(LSTM), the transformer3, and the GPT. In the 2020s,
transformer-based models were most utilized to solve
image captioning problems because of their effective
parallel computing mechanism.
After surveying some previous studies2,4–9, we rec-
ognized three points: 1) Almost all current caption-
ing models use the visual features extracted from the
nonlearned pretrained feature extractor, whichmeans
that the feature extraction task is not updated dur-
ing the training process. 2) Neither grid-based fea-
tures nor region-based features are used; few stud-
ies have evaluated two of these features. 3) Recent
transformer-based models only use the feature maps
produced from the last encoder layer; however, there
are N encoder layers. Therefore, exploring all high-
level features from all encoder layers may yield better
results.

• Considering the three points mentioned above,
in this study, we adopt the Transformer-based
model as the primary captioning model and ad-
dress the main points listed below:

• We propose a feature extraction semilearning
approach (FES), which simultaneously uses the
feature maps extracted from a frozen pretrained
model and its counterpart extracted from a
learned model.

• We propose an approach that fuses two types of
representations, region-based features and grid-
based features; this proposed module is called
the grid-based and region-based feature fusion
mechanism (FGR).

• We propose a mechanism that aggregates high-
level features from all stacked encoder lay-
ers called augmented encoder representations
(AERs).

• The experimental results show thatmy approach
achieves promising results and achieves the
highest BLEU, METEOR, and ROUGE scores
on the CrowdCaption dataset.

We structure the rest of the paper as follows: Sec-
tion 2 describes my approach clearly; Section 3 re-
ports the experimental results on the CrowdCaption
dataset with careful discussion and analysis; and Sec-
tion 4 summarizes the contributions and raises some
problems for further research.

METHODOLOGY
Transformer-based architecture
In this subsection, we describe the Transformer-based
model as the base knowledge. First, the Transformer
architecture was proposed by Vaswani et al. 3 in 2017
and is still commonly used. We can formulate the
Transformer architecture as shown in Equations 1 and
2:

Z = Trans f ormerEncoder(X) (1)

Y = Trans f ormerDecoder(X) (2)

where X denotes the visual features of the input im-
ages and Z denotes the encoded information using the
transformer encoder. Then, Z is fitted into the Trans-
former Decoder to learn the decoding from the en-
coded features to the generated caption.
Both the Transformer Encoder and Transformer De-
coder include stacked layers. The outputs of the pre-
vious layers will be the inputs of the next layers.
Through stacked layers, deeper and deeper informa-
tion is encoded to explore the high-level information.
The key idea of the stacked transformer layers is the
self-attention mechanism, which is used to learn the
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relation between tokens in visual features and anno-
tated captions. Given the sequence of tokens (that is,
maybe visual features or annotated captions) S = {s1,
s2, ..., sk}, self-attention is formulated as Equations 3
and 4:

Q = SW Q; K = SW K ; V = SWV (3)

Z = so f tmax
(

QK√
dk

)
×V (4)

whereWQ, WK andWV represent the learned weight
matrices used to transform the dimensions of S to
fixed dimensions (called dmodel). Q and K are used to
calculate the attention weights, which indicate which
tokens are worth paying more attention to, and per-
formmatrix multiplication with V. Z is now the high-
level encoded latent space. However, there are h self-
attention heads used to calculate different attention
aspects; then, they are concatenated together. This is
called themultihead self-attentionmechanism, which
can be formulated as Equations 5 and 6:

headi = sel f −attention(Q,K,V ) (5)

Z =Concatenate(headi, . . . ,headh) (6)

The full architecture of the i-th encoder layer in a
Transformer Encoder can be formulated as follows
(Equations 7, 8 and 9):

Zi = MultiheadSel f Attention(Hi,Hi,Hi) (7)

Zi = LayerNorm(Zi +Hi) (8)

Zi = LayerNorm(FeedForward(Zi)) (9)

where Hi is the encoded feature from the previous
encoder layer. If i=0, then H=X. LayerNorm is the
normalization layer that scales the values included in
the encoded features. FeedForward is simply the fully
connected layer.
In the Transformer Decoder, the model learns the re-
lation features between the visual encoded features
and annotated captions. This can be formulated as fol-
lows (Equations 9, 10, 11, and 12):

Zi = MaskMultiheadSel f Attention
(Hi,Hi,Hi,Mask)

(9)

Zi = LayerNorm(Zi +Hi) (10)

Zi = MultiheadSel f Attention(Z,Zi,Zi) (11)

Zi = LayerNorm(FeedForward(Zi)) (12)

where Hi is the encoded feature from the previous de-
coder layer; if i=0, then H = W = {w1, w2,... wn},
andW is the sequence of words in the annotated cap-
tion. MaskMultiheadSelfAttention is simply multi-
head self-attention. However, this approach masks
the positions of words in future time steps. Figure 2
fully illustrates the whole architecture of the Trans-
former.
In the Transformer Decoder, N stacked decoder lay-
ers produce high-level relation features between vi-
sual encoded features and embedding caption fea-
tures Z0 ∈ Rdmodel . It is then fit into a fully con-
nected layer followed by softmax activation to obtain
the probability vector of the predicted words at each
timestep:

Ŷ = logso f tmax(FC(Zo)) (13)

Transformer architectures are widely used to solve
machine translation problems; the most common ex-
ample is language translation. In language transla-
tion, the Transformer Encoder is used to learn the re-
lationships between words in sentences in the source
language at the same time; these relations are subse-
quently formed as high-level encoded features. The
Transformer Decoder takes those encoded features
and sentences in the target language to learn the re-
lationships between them, finds the patterns to learn,
and translates them. However, in the image caption-
ing problem, the Transformer encoder takes image
features as input whose shape is HxWxC. Then, the
approach learns the relation features between HxW
feature patches instead of words in language transla-
tion problems. After that, the encoded features are
processed in the same way as machine translation,
which is fitted into the Transformer Decoder along
with ground-truth captions to learn and generate hy-
pothesis captions for the new samples.
Existing common captioning models, such as the
Meshed-Memory Transformer5, AoANet8, and X-
Lan9, are based on the Transformer architecture. One
of the most prominent methods is the mesh-memory
transformer. In detail, the mesh-memory trans-
former introduces the memory self-attention mecha-
nism, which is used to enhance the quality of attention
weights via prior knowledge. Moreover, a meshed-
like computation was also presented to use all the fea-
tures computed by the Transformer encoder layers
in the Transformer Decoder. With N features from
the Transformer Encoder, Cornia et al.5 computed
N times to produce high-level features and applied
a weighted sum to obtain consistent features in the
Transformer Decoder. Our study proposes a new ap-
proach to feature fusion (namedAugmented Encoded

3130



Science & Technology Development Journal 2023, 26(4):3128-3138

Figure 2: An illustration of the transformer-based model receiving images as inputs.

Figure 3: Illustration of our whole framework
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Representation - AER), which combines features into
a unified form via the Transformer Encoder and uses
it to produce high-level features one time in the Trans-
former Decoder. Moreover, a feature fusion scheme
(FGR) is presented to combine two types of features
(region-based and grid-based) for better representa-
tion in the model space. With grid-based features, we
also introduce a semilearning scheme (FES), which is
used to effectively update a part of the feature extrac-
tion network to better fit the contexts in the experi-
mental dataset. Our whole architecture is illustrated
in Figure 3.

Fusion mechanism for region-based and
grid-based features (FGR)

Region-based and Grid-based Feature Ex-
traction
As mentioned in Section I. Introduction, there are
two types of features: region-based features and grid-
based features. Region-based features locally repre-
sent objects that appear in the image, while grid-based
features globally represent the whole context. To ex-
tract region-based features, we use a Faster R-CNN
model10 to detect all instances appearing in the input
image and subsequently obtain the embedding vec-
tors R ∈RN×2048. Each 2048-d vector represents one
detected instance, andN is the number of detected in-
stances.
To extract the grid-based features, we use a ResNeXt-
based convolutional neural network backbone11 to
extract high-level features. The featuremaps obtained
from the last convolutional layer areG ∈RH×W×2048.
Then, we use an adaptive average pooling mechanism
to compress (H×W) grids into (7×7 grids). Finally,
we obtain grid-based features G ∈ RN×2048, where N
is the number of grids (N=49).

FusionMechanism
In this section, we describe an approach for fusing
these two types of features in the Transformer En-
coder.
There are N stacked layers in the Transformer
encoder{EncoderLayeri}N−1

i=0 . Suppose R are region-
based features and G are grid-based features; the pro-
posed calculation process is formulated as follows:

Zr
i = EncoderLayeri(R); i < l f

Zg
i = EncoderLayeri(G); i < l f

Zi =Concatenate
(
Zr

i ,Z
g
i
)

; i = L f

EncoderLayeri(Zi); i = L f

Zi = EncoderLayeri(Zi), otherwises

(14)

In the first l f layers, we calculate the high-level latent
space of region-based features and grid-based features

separately. In the lfth encoder layer, we concatenate
these two high-level representations achieved from
previous encoder layers and continue to perform op-
erations in the encoder layer. The remaining encoder
layers process the fused representations of region-
based and grid-based features.
However, R and G are both 2D representations (in-
clude K embedding vectors for representing K ob-
jects/grids). Therefore, we propose an approach to
provide information on the relationships between
grids or regions’ positions in an image (bounding box
coordinates).
GivenKbounding box coordinates of detected objects
or grids, we first calculate their center coordinates,
width, and height:

(cxi,cyi) =
xmin

i + xmax
i

2
,

ymin
i + ymax

i
2

(15)

wi =
(
xmax

i − xmin
i

)
+1 (16)

hi =
(
ymax

i − ymin
i

)
+1 (17)

Following4, the relation between bounding boxes
i and j or between grids i and j is represented by ri j ,
which is calculated as follows:

ri j =(
log

|cxi − cx j|
wi

, log
|cyi − cy j|

hi
, log

wi

w j
, log

hi

h j

)
(18)

Gi j = FullyConnectedLayer(ri j) (19)

λi j = ReLU
(
wT

g Gi j
)

(20)

where λ i j is the final representation of the relation
ri j between bounding boxes i and j. With region-
based features, λ i j is built based on detected bound-
ing boxes i and j, called λ r

i j . With grid-based features,
λ i j is constructed based on grids i and j, called λ g

i j .
Then, in the self-attention operation in stacked layers
in the Transformer Encoder, we follow the study 4 that
adds the relation weights to the attention weights:

Z = so f tmax
(

QK√
dk

+λ
)
×V (21)

This new self-attention mechanism helps the model
become aware of the relation information between
bounding boxes and between grids.
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Augmented encoded representation (AER)
In the Transformer Encoder, previous studies only
considered the final encoded features from the last en-
coder layer. To enhance the final representation in the
encoder, we use the approach to enhance the features
from the previous layer with previously encoded fea-
tures. The enhanced encoded representation is calcu-
lated by the following equations:

Z =Concatenate(Z1,Z2, ...,ZN) (22)

Z f inal = β ×MLP(Z)+ZN (23)

, Z ∈ R3×dmodel is the concatenated representation of
{Zi}N−1

i=0 . The multilayer perceptron is used to trans-
form 3×dmodel to dmodel dimensions. β is the trade-
off hyperparameter used to control the contribution
of Z to the final representation. Because ZN includes
more valuable information from previous stacked lay-
ers, β should be quite small to ensure a sufficient con-
tribution. In this study, we set β = 0.2.

Feature Extraction Semilearning (FES)
In crowd scenes, contexts are complicated. However,
previous studies commonly use a single pretrained
feature extractor to obtain high-level representations
of images. This pretrained model is frozen, which
means that it is only used for feature extraction, and
the weights are not updated during the training pro-
cess. Recognizing that learning more valuable infor-
mation can be disadvantageous for themodel, we pro-
pose the feature extraction semilearning scheme. In
detail, given two networks: Net1 and Net2. Net1 is a
frozen pretrained model, which is the Faster R-CNN
model mentioned in Section 2.1. Net2 is a learned
convolutional neural network model that is based on
the ResNet12 architecture. We do not update the
weights in Net1 because Net1 is well trained on a
large-scale dataset. Instead, we update the weights,
including those in the last ResNet-based convolution
block inNet1, and train themend-to-endwith the lan-
guage model (transformer-based model). Finally, the
feature maps extracted from Net2 are added to their
counterparts extracted fromNet1, but there is a trade-
off hyperparameter α to control the contribution of
the new high-level feature maps. The process can be
formulated as follows:

F1 = Net f rozen
1 (images) (24)

F2 = Netun f rozen
2 (images) (25)

F1+2 = F1 +αF2 (26)

where Fi is the grid-based feature, which means that
we perform only feature extraction semilearning with
a grid-based representation. α is set to 0.3 in this
study.

RESULTS ANDDISCUSSION
CrowdCaption dataset
Wang et al.2 suggested that although the image cap-
tioning task has attracted the most interest from re-
searchers worldwide, captioning for crowd scenes has
rarely been explored due to the shortage of relevant
datasets. To motivate the research community to
bridge the gap in crowd captioning in an image cap-
tioning task, Wang et al.2 constructed a novel and
high-quality dataset, the CrowCaption dataset. The
CrowdCaption dataset includes 11,161 images in to-
tal, with an average of 4.4 captions per image. The av-
erage length of the captions in this dataset is 20. In this
study, we use the official train-valid-test split to train
the captioning model and evaluate its performance.
Figure 4 shows some samples from the CrowdCaption
dataset. Figure 5 shows the statistics about the num-
bers of images and captions in the training, validation
and testing sets.
Evaluation metrics
We use four standard metrics to evaluate the per-
formance of my proposed approach, namely, BLEU
(B)13, METEOR (M) 14, ROUGE (R)15, and CIDEr
(C)16. The BLEU is a common metric used to eval-
uate machine translation tasks. The METEOR score
uses a fragmentation measure to assess the order of
unigrams between hypothesis and reference captions,
while the BLEU score considers only matching. The
ROUGE-L score is the ROUGE metric that considers
L-gram matching; this metric is designed as a recall-
related metric because the denominator used to cal-
culate the correct percentage is the total sum of the
number of L-grams appearing in the reference cap-
tions. In contrast, this number in the BLEU score is
the total number of n-grams that occur in hypothesis
captions. The CIDEr score considers distinguishing
the n-grams that are rare or common in the vocab-
ulary by vectorizing them using TF-IDF17 to obtain
their frequency weights. Since the CIDEr score evalu-
ates the diversity ofwords in generated captions, it was
considered the most crucial metric in previous stud-
ies.

Implemental Details
For training my proposed model, we follow the train-
ing scheme proposed by7, which includes two train-
ing stages: we first train the model using cross-
entropy (XE) loss:

lXE (θ) =−∑T
t=1 log

(
pθ

(
w∗

t |w∗
1:t−1

))
(22)

where θ denotes the parameters of the proposed
model and w∗

1:t−1 is the target ground-truth sentence.
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Figure 4: Some examples in the CrowdCaption dataset.

Figure 5: Stastistic of the number of images and captions in the CrowdCaption dataset.

Following7, we apply self-critical sequence training
(SCST) after training cross-entropy loss (XE) to refine
the generated captions:

LRL (θ) =−Ew1:T∼pθ [r (w1:T )] (23)

where the reward r(·) denotes the CIDEr score.
For more detail about the training configuration, we
set the maximum length of the generated captions to
50. There are 03 stacked encoder anddecoder layers in

theTransformermodel. dmodel is set to 512. Thenum-
ber of heads in multihead self-attention is 8. We used
Adam as the optimizer for updating the weights of the
models. In the first stage (training themodel using the
XE loss), we used a learning rate = 0.0001. In the sec-
ond stage (training the model using the SCST), we set
the learning rate = 5e-6. The beam search is used to
obtain the most suitable captions, and the beam size
is set to 3.
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Experimental Results

Ablation studies
To evaluate the performance of the proposed mod-
ules, we conduct an ablation study and report the
results in Table 1. With the default setting of the
transformer architecture using grid-based features
as a visual representation, we achieved 29.58 B@4,
22.19 METEOR, 48.42 ROUGE-L, and 62.30 CIDEr,
which are the lowest among the experiments. The
region-based and grid-based feature fusion mecha-
nism (FGR) helps to improve the results for all B@4,
METEOR (+0.06), ROUGE-L (+0.47), and CIDEr
(+0.84) models. This proves the effectiveness of the
proposed fusion mechanism. The Transformer-based
model is now aware of specific regions, including ob-
jects in images, leading to more knowledge and gen-
erating better-quality captions. The augmented en-
coded representation (AER) in the Transformer En-
coder also obtains better results when combined with
FGR. AER helps explore some hidden valuable in-
formation stored in previous encoder layers and add
this information to the encoded features from the last
encoder layer. This helps to enhance the represen-
tation ability of encoded features before fitting them
to the Transformer Decoder. Using AER boosts the
results on the CIDER metric (+1.73). Finally, the
experiments using the semilearning feature extrac-
tion mechanism along with FGR and AER improve
the performance on all the metrics except for CIDEr
(B@4 + 0.14, METEOR + 0.12, ROUGE-L +0.16).
These results are promising because they prove that
the semilearningmechanismhas the ability to provide
additional knowledge to the captioning model. Up-
dating learned parameters in the last ResNet convo-
lution block means adjusting awareness of feature ex-
traction along with generating captions, which helps
to recognize more patterns related to texts. Then, the
results are improved.

Comparison to state-of-the-art models.
In this section, we report my achieved results com-
pared to those of other state-of-the-art models in Ta-
ble 2, including the following:

• Show, attend and tell18: The fundamental base-
line used a convolutional neural network to ex-
tract high-level features of the image. The main
captioning model was based on long short-term
memory (LSTM). N stacked LSTM layers are
used to decode the high-level features to gen-
erate captions. In addition, an attention mech-
anism was proposed to assign high weights to
crucial pixels.

• ConceptualCaptions6: The baseline uses
ResNetv2 as the feature extractor and the
Transformer model as the main captioning
model.

• Up-Down10: The updownmethod uses a Faster
R-CNN model to extract region-based features.
Then, LSTM layers are used to train the caption-
ing task.

• Meshed-Memory Transformer5: A
Transformer-based model that uses the
proposed Memory Self-attention mechanism
in encoder layers. The memory self-attention
mechanism expands the keys and values in
the self-attention mechanism with learned
slots. These learned slots are used to learn
prior knowledge via an attention operation. A
connectivity mechanism between multilevel
encoder outputs and multilevel decoder layers
was also proposed.

• AoANet8: AoANet is a transformer-based
method that uses a new self-attention mecha-
nism called attention on attention. After per-
forming a self-attention operation, the results
are concatenated with the value matrices and
then divided into two fully connected layers to
learn the transformation representation. One
of these two layers produces the representation
called the “information vector.” The other layer
is followed by the sigmoid function and gen-
erates the representation called the “attention
gate.” These layers are subsequently combined
via elementwise multiplication with the aim of
obtaining more useful knowledge.

• X-LAN9: X-LAN is a transformer-based
method that leverages the X-linear attention
block as a self-attention mechanism. This
new self-attention mechanism helps to build
second-order interactions and jointly fuses the
representations of visual features and hidden
states. An X-linear attention block is used in
both the Transformer Encoder and Transformer
Decoder to exploit higher-order intra- and
intermodal interactions between multimodal
representations.

The experimental results show that our proposed
module outperforms other state-of-the-art methods
on the BLEU@4, METEOR, and ROUGE-L metrics.
Lee et al.18 andUp-Down10 used only LSTM layers to
learn to decode from high-level features to captions.
Like RNN-based architectures, LSTM cannot pro-
cess sentences in parallel; instead, the next predicted
word should be computed by the previous hidden
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Table 1: Ablation studies using FGR, AER and FES

Methods Grid-based
network

B@1 B@2 B@3 B@4 METEOR ROUGE-
L

CIDEr

Transformer X101 66.42 50.16 38.43 29.58 22.19 48.42 62.30

Transformer + FGR
(proposed)

X101 66.17 50.49 39.19 30.51 22.27 48.89 63.14

Transformer + FGR
+ AER (proposed)

X101 66.31 50.54 39.16 30.47 22.33 48.89 64.87

Transformer + FGR
+ AER + FES (pro-
posed)

X101
(frozen)
+ R101
(unfrozen)

66.86 50.92 39.46 30.61 22.45 49.05 64.26

Transformer + FGR
+ AER + FES (pro-
posed)

X152
(frozen)
+ R152
(unfrozen)

66.03 50.24 38.98 30.41 22.22 48.69 65.0

Table 2: Comparison with other state-of-the-art methods

Methods BLEU@4 METEOR ROUGE-L CIDEr

Show, attend and tell 18 28.29 21.47 44.71 61.78

ConceptualCaptions 6 28.36 21.36 43.58 63.22

Up-Down 10 29.70 22.01 45.04 64.79

Meshed-Memory 5 29.33 21.55 43.74 63.89

AoAnet 8 29.11 21.73 44.44 65.01

X-LAN 9 29.59 22.06 44.69 66.07

The proposed approach (X101) 30.61 22.45 49.05 64.26

units. Although gates are designed to avoid the lack of
memory through the decoding step, information has
still not been fully explored to generate high-quality
captions. ConceptualCaptions6, Meshed-memory5,
AoANet8, and X-LAN 9 are all transformer-based ar-
chitectures. However, they have the same disadvan-
tages: only region-based features are used to represent
images; these features provide only foreground infor-
mation and lack background signals. For example, to
clearly describe the interactions between people, peo-
ple should use not only the features of people but also
the general high-level features of the scenes around
them. Despite the significant improvement in the self-
attention mechanism, these models cannot perform
well on the CrowdCaption dataset.
The BLEU@4, METEOR, and ROUGE-L metrics are
used to evaluate the similarity between two sentences.
These higher values of these metrics prove that the
captions generated from my proposed modules are
closer to the ground-truth sentences. However, the
diversity of words may still be limited, which is the

reason why the CIDER score is lower than that of
other methods.

Qualitative Results
To provide a better illustration of how much of my
proposedmodules help the Transformer-basedmodel
more effectively, we show some generated captions
compared to ground-truth sentences in Figure 6.
Words that describe the context nearly accurately are
highlighted in green. In contrast, red text is unsuit-
able for expressing events or characteristics appearing
in images. By observation, we explore whether our
model is better at increasing awareness of objects’ po-
sitions. In the third example picture in Figure 6, our
proposed approaches describe exactly the man’s po-
sitions and the shirt’s color. For example, in the sec-
ond picture, our model recognized that only a group
of women standing in front are holding the tennis.
In contrast, the Transformer model wrongly supposes
that the men on the back are holding it. With an un-
clear context similar to that of the first example pic-
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ture, our model seems to be more sensitive when the
group of people is taking photos, which is the most
suitable description for this picture.

CONCLUSION
In this paper, we propose a region-based and grid-
based feature fusion mechanism for taking advantage
of these representations in the Transformer-based
model (FGR). In addition, augmented encoded rep-
resentation (AER) is investigated to provide valuable
transformer information produced from all the en-
coder layers. Finally, the proposed semilearning ap-
proach (FES) helps the captioning model learn to ad-
just the feature extraction task, aiming to produce
better-quality high-level features that improve perfor-
mance. All of these proposed modules are used to
enhance the results for image captioning in crowd
scenes. The experimental results show that my pro-
posed approach is promising and comparable with
other existing state-of-the-art methods. In the fu-
ture, we aim to address some current drawbacks by
proposing graph-based representations for images or
embedding semantic features in captioning models to
capture more valuable information between humans
in various contexts.
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