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ABSTRACT
With the growth and expansion of the internet, web attacks have becomemore powerful and pose
a significant threat in the cyber world. In response to this, this paper presents a deceptive approach
for gathering malicious behavior to understand the strategies used by web attackers. The harmful
requests collected through cyber traps or honeypots are analyzed and used to trainmachine learn-
ing (ML) models for web attack detection. Additionally, we implement an ML operations (MLOps)
pipeline to automate the continuous training and deployment of theseMLmodels in defensive sys-
tems. This pipeline trains the productionmodel with newly collected data by using predefined trig-
gers. Our experiments on two datasets, including Fwaf and our own, demonstrate that a proactive
and continuous approach to tracking adversary behavior can effectively detect zero-day attacks,
such as CVE-2022-26134 in web application servers.
Key words: Web attack detection, Cyber trap, Cyber attack detection, Cyber deception

INTRODUCTION
Daily life has seen a significant increase in the volume
and speed of data since the advancement of informa-
tion technology. Furthermore, the Internet has trans-
formed traditionalmethods of daily life. Web applica-
tions have become the most widely used applications
on the Internet. Web applications are used in differ-
ent areas and are important in people’s daily routines,
especially as more individuals transfer their applica-
tions and personal information to the cloud. Due to
the widespread use of web applications and the signif-
icant amount of personal data saved on servers, they
become attractive targets for attacks.
A recent report about cybersecurity1 incidents illus-
trated that 75% of attacks are detected in the applica-
tion layer, while web servers are the main targets of
hackers. There are two reasons why adversaries are
inclined to intrude and break into web servers. First,
because large amounts of private data are stored in
server databases, attackers can profit significantly by
selling that data. Second, the ability to inject mali-
cious code into server source files allows attackers to
hack and manipulate users who browse or download
these documents.
Obviously, safeguarding web applications from intru-
sions is essential. Typically, attacks are detected pri-
marily based on recognizable characteristics. This
method is useful for detecting known attack types,
but it necessitates human involvement in collecting
and analyzing attack data samples for identification.

Consequently, identity-basedwebsite attack detection
(WAD) is no longer adequate for detecting attacks
with novel exploits.
Additionally, with the rapid and significant advance-
ment in the field ofML, these algorithms have demon-
strated their effectiveness in numerous fields, includ-
ing web attack detection. Some research has achieved
desired results when incorporating ML into web pro-
tection systems. To automatically detect denial-of-
service (DoS) attacks, Francisco et al.2 proposed an
ML model to make inferences based on signatures
previously extracted from samples of network traffic.
The results of this model on four modern benchmark
datasets have achieved an online detection rate (DR)
of attacks above 96%.
In the same domain of WAD, Liang et al.3 proposed a
deep learning-based approach to classify anomalous
requests. Recurrent neural networks (RNNs) were
used to learn patterns of normal requests using only
unsupervised normal requests. Then, a neural net-
work classifier that takes the outputs from the RNNs
as input was trained in a supervised manner to dif-
ferentiate between anomalous and normal requests.
Similarly, Yunyi et al.4 suggested a WAD that applied
a long short-term memory (LSTM) network to ana-
lyze the malicious intentions hidden in user actions.
The experimental results on the CSIC 2010 dataset
achieved an accuracy of 99.87%.
In addition, the ML approach for detecting many
attack types needs administrators or data scientists
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to understand and select appropriate representation
data for the trainingMLmodel. These approaches use
datasets published on the internet or create a dataset
to train theMLmodel. Therefore, it has a limitation in
recognizing rare attacks that are much different from
existing attack patterns in datasets. It requires admin-
istrators to continuously collect new attack patterns to
enrich their datasets. However, there are difficulties
in updating data with new attack patterns, which con-
sumes more time and effort. In this context, an effec-
tive method for creating a training dataset was intro-
duced by Nikola et al. 5 to effectively improve the per-
formance of WAD without many false positives. They
combined hostile requests from cyber traps with good
requests from a typical website. Based on the features
of the deceptive network, a system is vulnerable to the
attack that entices an attacker to exploit the vulnera-
bility. It is easy to collect and update datasets with new
indicators to overcome the weaknesses of the ML sys-
tem.
Furthermore, to avoid forgetting the existing knowl-
edge when training the ML model with new data,
three incremental learning approaches are also imple-
mented for WAD and obtained good results during
testing. Moreover, to evaluate the use of deception in
the domain of web applications, Xiao et al.6 imple-
mented a web deception framework that allows us to
introduce deception in any web application. In their
experiments, the authors showed that over 36% of at-
tackerswhowere able to exploit a vulnerability did not
set off any of their traps. Their research has shown
that while deception is a useful complement to other
detection techniques, it is insufficient as a stand-alone
protection mechanism.
ML initiatives have produced fresh difficulties that
do not exist in conventional software development.
Keeping production deployment current, one of these
involves tracking input data, data versions, tuning pa-
rameters, etc. Meanwhile, MLOps was defined as in-
cluding three parts: ML, Development and Opera-
tions (DevOps), and data engineering. The largest ef-
fect onMLOps development came fromDevOps 7. To
map how MLOps is currently understood and how it
compares and differs from related techniques such as
DevOps, the article8 used meta-analysis, document
analysis, and triangulation. This research gives up
the comment that these related studies8–11 effectively
conceptualize MLOps and demonstrate that it lies at
the nexus of software engineering, data engineering,
DevOps, and ML. With this characteristic, MLOps
is considered a potential solution for continuing to
harden the robustness of WAD.

Moreover, S. Garg et al.12 discussed open research
problems and provided a detailed representation for
automation with DevOps in ML-based applications,
called MLOps. The pipeline seeks to achieve the
advantages of both contexts by keeping the De-
vOps pipeline’s trademark simplicity and incorpo-
rating new circular phases for updating ML. This
aims to produce a self-maintaining ML-based devel-
opment subsystem that may advance concurrently
with software development. The authors in Garg et
al. (2023) 13 also described the three tiers of MLops
andopen-source platforms that help users easilymon-
itor the workflow of the system, visualize operations,
and trace errors when building and operating the ML
model.
Unlike the above approaches, our work focuses on
web attack detection, which enables a continuous
training strategy based on cyber traps and MLOps.
Themain contributions in this article are summarized
as follows:

• First, an ML-based WAD using a stacking clas-
sifier is proposed to harness the capabilities of
detecting web attacks with better performance
than any single model in the ensemble.

• Second, we integrate the MLOps pipeline to for-
malize a strategy of automatic trainingMLmod-
els frequently.

• Finally, a honeypot system is deployed to collect
attack data to diversify the training dataset. In
addition, a ServiceWebsite is built to take on the
role of deploying ML-based WAD to users.

The remainder of this paper is structured as follows.
In Section 2, the methodology and detailed workflow
of our proposed system are described. The implemen-
tation and experiments are presented in Section 3. Fi-
nally, we conclude the paper in Section 4.

DESIGN
This section describes our approach to create an ML-
basedWADwith cyber traps to be proactive in collect-
ing training datasets for theMLprocess. After that, we
integrate the MLOps pipeline in our system detection
to enhance automation in the deployment and main-
tenance of ML models.

A. Overall Model
In this part, we introduce a WAD model consisting of
Kubeflow, Data Storage, Honeypot, and Serving Web-
site, as shown in Figure 1. Each of these parts per-
forms a different task and executes on separate hosts.
Theworkflow ofMLOps and the Deceptionmodel for
WAD can be summarized as follows:
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Figure 1: The overall architecture of our model.

• First, when executing the workflow, collected
logs in Kubeflow send a data flow signal to Trig-
ger.

• Next, a signal is sent to the honeypot to save all
the collected data during the trap’s working pe-
riod on data storage.

• Data saved in Data Storage are preprocessed in
the Preprocess block of Kubeflow to prepare for
the training step.

• Next, the pipeline flow signal is sent to the
train/retrain block.

• Finally, a new ML model is deployed on Data
Storage. A serving flow signal is sent to the web-
site serving to update the new model.

B. ML-basedWeb Attack Detection

In this study, ourWADmodel is built based on the en-
semble method to reduce the uncertainty in the gen-
eralization performance of using a single algorithm 14.
In the ensemblemodel, we use 3well-knownMLalgo-
rithms in classification, including support vector ma-
chine (SVM), logistic regression (LR), and K-nearest
neighbors (KNN). In addition, we also built a convo-
lutional neural network (CNN)model to compare the
performance of the ensemble method with that of a
neural network.

Ensemble Learning (Stacking Classifier)
model

Stacking, also known as a voting classifier, is an en-
semble learning method. This method improves the
model’s performance by combining differentML clas-
sifiers for classification. Majority voting, a popular
voting technique, is used in this approach. It has three
scenarios based on unanimous voting, simple major-
ity voting, and plurality voting. Furthermore, hard
voting usually refers to plurality voting.
We assume that the decision of the tth classifier is
dt,c ∈ 0,1, t = 1, ...,T and c = 1,…,C, where T is the
number of classifiers and C is the number of classes.
If the t^th classifier chooses class c, then dt;c = 1, and
0 otherwise. Finally, mathematical representation-
based plurality voting is computed to choose the class
desired c∗ as follows:

∑T
t=1 dt;c∗ = max

c
∑T

t=1 dt;c (5)

CNNmodel

In this study, the architecture of the CNN model
contains 2 convolutional blocks, as shown in Fig-
ure 2. The input x contains features that indicate
whether this is a good or bad. x is passed through
2 convolutional blocks denoted as ConvBlock1 and
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ConvBlock2, respectively, as in (6).

h1 =ConvBlock1(x)
h2 =ConvBlock2(x)

(6)

Then, the output value of the 2nd convolution block
will be flattened as in (7).

f = Flatten(h2) (7)

This result f goes through a fully connected layer, as in
(8).

c = FC1 ( f ) (8)

Finally, the Softmax layer transforms the result c into
values between 0 and 1 as the probability ỹ (9).

ỹ = So f tmax(c) (9)

The cross-entropy function is used to optimize the
loss value between the vector output ỹ and vector y
containing the actual label values.

C. MLOps for Web Attack Detection
In this study, we proposed amethodology for aWAD-
based MLOps pipeline to create an automatic train-
ing rule for continuously updating ML models. The
pipeline workflow is shown in Figure 3.

Figure 3: The workflow of WAD in integration
with theMLOps pipeline.

The Log Collection Process
The log collection process as in Figure 4 is explained
as follows:
The honeypot’s daily process is located outside the in-
ternet to collect logs.
After an activation signal from Kubeflow, Honeypot
turns on the firewall allowing only administrator ac-
cess, and each step of the log processing is executed
sequentially:

• Collect good requests: the process of simulating
web page interactions as normal users to collect
labeled datasets is normal.

• Collect bad requests: This process will collect
the malicious exploit code attacked by the ad-
ministrator.

• Parse and push log: process collected logs and
send them to the Data storage.

Figure 4: Log Collection Process.

Data Acquisition and Processing
Data acquisition is responsible for collecting enough
data to train the ML model. The tasks for data acqui-
sition and processing can be summarized as follows:

• Data Extraction and Analysis: Analyzing data
to understand the data schema and integrating
relevant data to maximize model performance.

• Data Preparation: is responsible for cleaning
and splitting datasets into training, validation,
and test sets. For instance, these outliers de-
tected by the local outlier factor algorithm will
be removed from the dataset, or NULL values
are transformed to zero. This step results in for-
matted data for training ML models.

When there is not enough data to train or retrain the
ML model, two main approaches allow for overcom-
ing the issue as follows:

• Data Augmentation: This technique aims to
balance non-IID (nonindependent and identi-
cally distributed) data. More specifically, when
the difference ratio between the attack and nor-
mal labels is more than 20%, the conditional
generative adversarial network (CGAN) will
generate data with a minority label to keep the
difference within 20%.
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Figure 2: The architecture of the CNNmodel.

• Incremental Learning (IL): which reuses most
of the weights of a trained neural network.

Training, Testing, andDeploying theML (ML)
Model
The process of training ML models is an iterative pro-
cess in which data scientists work with several algo-
rithms, data features, and hyperparameters. The out-
put of this step is a set of metrics for evaluating the
quality of the model. Once the best ML model has
been chosen, it is saved and deployed to the serving
website. Our primary objective is to ensure that we
monitor all testing experiments, provide the reusabil-
ity of code, and uphold the ability to continue updat-
ing the robustness of ML-based WAD.

Building Honeypot System and Service
Website

Honeypot SystemOverview
In this study, we apply the Web Honeypot to simu-
late specific web services and attract particular types
of attacks by specific web technologies, as in Figure 5.

Figure 5: Overview of the honeypot system.

Honeypot runs potentially attractive web applications
on the Nginx server using Java programming lan-
guage. The system records all requests to the above
web applications. At the same time, honeypots are al-
ways listening for trigger signals from Kuberflow to
perform tasks of collecting datasets, processing data,
and pushing data to Data Storage.

Trigger Processing
A trigger is a flag that tells the systemwhen a recurring
run configuration spawns a new run. The following
types of run triggers are available:

• Access Management: allows objects based on
the IP address to access the web application.

• Nginx website server management: format-
ting log data by getting the properties from the
HTTP request packet sent by the user, as in Fig-
ure 6.

• Access Log Processing: As shown in Fig-
ure 7, each formatted access log is classi-
fied and sorted, and duplicates in the above-
formatted dataset are removed. Finally, both
goodrequest.txt and badrequest.txt files are
pushed to the Data Storage.

DeployingMLModels to theServingWebsite:
Weare constructing a servingwebsite designed in Fig-
ure 8, which continuously listens for updating new
machine learning models. Additionally, the serving
website will receive files in both.txt and.csv formats,
containing good and bad requests. Subsequently, the
serving website employs a machine learning model to
classify these requests. To achieve the goal of detect-
ing new attacks and avoiding false negatives, we se-
lected a detection threshold of 0.5 for identifying bad
requests. Therefore, the predicted label of the detec-
tion model is 1 (indicating a bad request) if the pre-
dicted value is greater than 0.5, and vice versa.

IMPLEMENTATION AND
EXPERIMENT
In this section, we carried out a performance evalua-
tion of the MLOps pipeline in a variety of scenarios.
First, we describe data resources and partitions. Then,
we concentrate on experimental settings, such as en-
vironmental conditions, baseline studies, and perfor-
mancemetrics. Finally, we ran a series of experiments
to compare the MLOps pipeline’s performance with
various ML models.
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Figure 6: The process of log formatting.

Figure 7: The workflow of processing the access log.
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Figure 8: Serving website for classifying requests.

A. Dataset
In our experiment, we evaluated the proposed model
on 2 datasets in the same feature extraction step. More
specifically, we used the public Fwaf dataset to eval-
uate the effectiveness of the model. We also simu-
lated the model on the real scenario with the dataset
collected by our honeypot. We also separated these
datasets into 3 parts, including 80% for training, 10%
testing and 10% validating, as shown in Table 1 and
Table 2. In more detail, the validating dataset is used
to evaluate the performance of the model after each
epoch in the training and retraining process, as shown
in Figure 3. The testing dataset will re-evaluate the
model after training, as shown in the test-model block
of Figure 3.

Feature extraction
In theWADscenario, we use queries or requests to de-
tect attacks. Furthermore, we extract all records based
on the TF-IDF (Term Frequency - Inverse Document
Frequency) numerical statistical method. As in Fig-
ure 9, we count the frequency of eachword in every re-
quest (TF) and count the number of queries/requests
in which this word occurs (IDF). These words are the
features of the dataset that are equal to the ratio of TF
and IDF.

Simulating and collecting attack datasets in
Cyber Traps (Our dataset)
As in Figure 5, to realize attacks, we built a honeypot
based on 3 web applications:

• Spring boot web application is a well-known
website built based on the Java programming
language.

• Confluence: is a web-based corporate wiki that
was created in the Java programming language
and released for the first time in 2004.

• Liferay is a Java-based web app-location plat-
form that provides a toolset for the development
of customizable portals and websites.

Furthermore, these access logs in honeypot will be
statistics and recorded byNginx. All bad requests col-
lected belong to XSS, SQLi, Path Traversal, RCE, and
Command Injection. Next, they are processed and la-
beled with Bad and Good classes as in Section II.D.2.
The created dataset consists of 26,020 good records
and 32,757 bad records.
Furthermore, to prove the effectiveness of the MLOps
pipeline in retraining the model with new data, we
separated our dataset into 2 phases based on the data
collection timeline of honeypots. Each phase that rep-
resents the new data update period is also split into
3 sets, including training, validating and testing sets.
Detailed data are presented specifically in Table 1.

Fwaf -Web-Application Firewall dataset
Our experiments are also evaluated on the Fwaf
dataset. In this dataset, all collected records contain
benign traffic and the most up-to-date common at-
tacks related to real-world scenarios. The data were
labeled by two types: Bad and Good. Approximately
1,350,000 records have been captured and processed
for CSV structure format. Furthermore, with the ra-
tio of good and bad labels less than 2.5%, as shown
in Table 2, the Fwaf dataset is completely a non-IID
dataset.

Experimental settings
We implemented the MLOps pipeline with the Ten-
sorFlow framework. The designed CNN model and
3 ML algorithms are implemented using Keras and
Scikit-learn (SKlearn). Our experiments are con-
ducted on a Kali 2022.1 virtual machine (VM) with
the CPU AMD Ryzen 5 3500U 4 cores 3.7 GHz with 8
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Figure 9: Examples of query/request extraction with the TF-IDF statistical method.

Table 1: Number of samples in 2 phases of our dataset.

Dataset Phase Labels Number of Samples

Total (100%) Train (80%) Valid (10%) Test (10%)

Our 1 Good 13,010 10,408 1,301 1,301

Bad 16,375 13,100 1,637 1,638

2 Good 13,010 10,408 1,301 1,301

Bad 16,382 13,106 1,638 1,638

Table 2: The number of samples in the training, testing, and validating data of the Fwaf dataset

Dataset Labels Number of Samples

Total (100%) Train (80%) Valid (10%) Test (10%)

FWAF Good 48,126 38,500 4,813 4,813

Bad 1,294,513 1,035,610 129,452 129,451

GB RAM and 100 GB Disk. Furthermore, the honey-
pot configuration is built based onUbuntu 20.04With
Intel(R) Xeon(R) Platinum 8171 M CPU 4 cores 2.6
GHz, 50 GB Disk and 12 GB RAM. Kuberflow uses
the cloud version of Arrikto’s trail, which is imple-
mented on Ubuntu Server 2020.4 with Intel Xeon E5-
2660 CPU 4 cores 2.3 GHz, 60 GB Disk.

In the training process with CNN, we train the model
in 2 epochs with a batch size of 128. The loss func-
tion is binary cross entropy, and the Adam optimizer
is also used with a learning rate of 0.001. In addition,
the ML-based attack detectors based on KNN, SVM
and LR are described in Table 3.

C. PerformanceMetrics
In this part, 4 common metrics are used to evaluate
the performance of the ML-based detection model,
including accuracy, precision, recall, and F1-score.

• Accuracy: the results of the model to predict
the correct proportion with total samples in the
dataset as in Eq. (10).

Accuracy =
ntrue

ntotal
(10)

• Precision: the proportion of samples identified
as attacks (attacktrue + attack f alse) that are in-
deed attacks attacktrue, as in Eq. (11).
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Table 3: List of hyperparameters used in KNN, SVM and LR

Algorithm Param Value

KNN weights uniform

algorithm auto

leaf_size 30

n_neighbors 3

SVM cache_size 200

kernel rbf

gamma 20

decision_function_shape ovr

LR class_weight balanced

Precision =
attacktrue

attacktrue +attack f alse
(11)

• Recall is the proportion of all attack samples
(attacktrue + normal f alse) correctly identified as
exact types of attacks attacktrue, as in Eq. (12).

Recall =
attacktrue

attacktrue +normal f alse
(12)

• F1-score: This is calculated by taking the har-
monic mean of precision and recall as in Eq.
(13).

F1 − score = 2× Precision×Recall
Precision+Recall

(13)

D. Experimental Results

Evaluation of MLOps Pipeline with data aug-
mentation scenario:
In this part, to evaluate the effectiveness of theMLOps
pipeline in the data augmentation scenario, we com-
pleted a total of 2 experiments.
In the first experiment, we trainMLmodels with non-
IIDdata. Then, in the second experiment, we train the
ML model with augmented data. More specifically, in
this scenario, we evaluate these ML models with the
non-IID Fwaf dataset.
Each experiment has the same circumstances with 5
ML models. The numerical results, which are shown
in Table 4, illustrate the performance of the ML mod-
els in terms of the accuracy, precision, recall and F1-
score. It can be easily seen that five types of ML mod-
els have also affected the performance of the MLOps

pipeline on the dataset with augmentation, with accu-
racy and F1-score above 99%. However, the perfor-
mances of the 5 models were significantly decreased
when training on the dataset without augmentation,
with a lower F1-score of 91.892%. Although the CNN
model is the most effective model on the augmenta-
tion dataset, with 4metrics of approximately 99.982%,
the CNN model on the dataset without augmentation
is not efficient, with precision and F1-scores of ap-
proximately 70.117% and 80.607%, respectively. In
addition, when training with augmented data, the dif-
ferences in performance between the CNNmodel and
ensemble are negligible, with less than 0.003% in 4
metrics. Therefore, the ensemble model has proven
to be effective and stable in both experiments, with 4
metrics greater than 91%.

EvaluationofMLOpsPipelinewith Incremen-
tal Learning scenario:
In addition, to determine the effectiveness of theseML
models in the first training, we also train and test these
models with the dataset in phase 1. With the results
shown in Table 6, it is easy to see that the performance
of 5 models when trained and tested with our dataset
on phase 1 has been very high with values of over 97%
on 4 metrics.
In the experiment of model training without IL, when
testing a large amount of new testing data in phase 2,
the numerical results in Table 5 have proven that the
effectiveness of thesemodels has reduced significantly
by at least 8% in 4 metrics. The results in Table 5 il-
lustrate the effectiveness of IL in retraining the model
with new data. More specifically, when testing with
new data in phase 2, the performance of all retrained
models reached more than 97% in all metrics.
Furthermore, with the results in Table 5 and Table 6,
the Ensemble model has proven stability and effect in
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Table 4: The performance of 5 MLmodels on Fawf

Algorithms Without Augmentation With Augmentation

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

SVM 0.98376 0.85145 0.85724 0.85434 0.9998 0.99979 0.99979 0.99979

LR 0.98254 0.83671 0.8489 0.84276 0.9967 0.99941 0.99716 0.99828

KNN 0.97999 0.86152 0.80265 0.82636 0.9979 0.99958 0.99687 0.99822

Ensemble 0.99096 0.91581 0.92205 0.91892 0.9998 0.99979 0.99979 0.99979

CNN 0.98113 0.70117 0. 94788 0.80607 0.9998 0.99982 0.99982 0.99982

Table 5: The performance of 5 MLmodels on phase 1 of our dataset

Algorithms Accuracy Precision Recall F1-Score

SVM 0.98129 0. 98474 0. 98174 0. 98324

LR 0.98469 0. 98474 0. 98775 0. 98624

KNN 0. 98809 0. 99084 0. 98783 0. 98933

Ensemble 0. 98979 0. 99084 0. 99084 0. 99084

CNN 0. 97958 0. 98168 0. 98168 0. 98168

Table 6: The performance of 5 MLmodels on our dataset

Algorithms Without Incremental With Incremental

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

SVM 0.88091 0.90842 0. 88152 0.89477 0.97652 0.98168 0.97632 0.97900

LR 0.87615 0.89867 0.88144 0.88996 0.97686 0.97985 0.97866 0.97926

KNN 0.86662 0.86203 0.89480 0.87811 0.98027 0.98352 0.98112 0.98232

Ensemble 0.90201 0.91514 0.90959 0.91236 0.98197 0.98352 0.98412 0.98382

CNN 0.86458 0. 87790 0.87897 0.87844 0.97822 0.97985 0.98105 0.98045

the context ofWAD even under the condition that the
model is neither retrained nor regularly updated, with
Accuracy and F1-score always greater than 90%.
Moreover, to demonstrate the effectiveness of the sys-
tem in terms of predictability, we also summarize
some experimental evaluation results in this realis-
tic scenario with the ensemble model. According to
the comparison of Real and Predicted (Pred) Label in
Table 7, all the abnormal requests are classified cor-
rectly. In particular, the 11th record is one of the Con-
fluence’s latest exploits assigned as CVE-2022-26134.
It has been detected by our system.

CONCLUSION
To effectively detect unknown web attacks, ML mod-
els must be trained using a large, up-to-date dataset.
As such, deceptive tactics such as installing honeypots
and cyber traps within the network can prove to be
a valuable strategy for attracting attackers to exploit

vulnerable servers. The logs and requests obtained
from these deceptive resources can then be used to
train the ML-based web attack detection model. The
experimental results on two datasets demonstrate the
feasibility and effectiveness of the proposed method
for constructing high-performance machine learning
models for detecting web attacks. In particular, our
ensemble model also proves more efficient and sta-
ble than SVM, KNN, LR and CNN and is perfectly
suitable for deployment on the Serving website. Fur-
thermore, by utilizing triggers defined in the MLOps
pipeline, these models can be regularly updated with
new indicators identified in the cyber trap system, en-
abling them to recognize harmful requests directed
toward web servers. Our experiments involving the
setup of a web honeypot, an MLOps pipeline, and
evaluations on two datasets demonstrate the benefits
of proactive, deceptive, and ongoing approaches in
the realm of web attack detection.
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Table 7: The experimental evaluation results

# Request Labels

Real Pred

1 post/rest/tinymce/l/content/65628
/comment?actions=true&html=l
<set/xmlns=’urn:schemas-mic...

Bad Bad

2 post/pages/doenterpagevariables
.action?querystring=\\ u0027+{ class.forname(\\u0027javax. script...

Bad Bad

3 get/admin Good Good

4 get/images/-min.jpg Good Good

5 get/admin/browseshortcuts.action Good Good

6 get/c/portal/logout Good Good

7 post/rest/tinymce/l/content/65628
/comment?actions=true&html=
<a href=”javas\\x02cript:javasc...

Bad Bad

8 get/c/portal/layout Good Good

9 get/ Good Good

10 get/images/bg-01.jpg Good Good

11 get/${(#a=@org.apache.commons
,io.IOUtils@toString(@java.lang.
Runtime@getRuntime().exec(”ic..

Bad Bad

12 post/api/jsonws/invoke?cmd={”/
expandocolumn/add-column”:{}}
&p auth=o3lt8qlf&formdate=lE...

Bad Bad

13 get/css/edit-info.css Good Good

14 get/css/buy-product.css Good Good

15 get/images/icons/avatar group 48.png Good Good

ABBREVIATIONS
CGAN: conditional generative adversarial network
CNN: convolutional neural network
DR: detection rate
KNN: K-nearest neighbors
LR: logistic regression
LSTM: long short-term memory
ML: Machine learning
MLOps: ML operations
non-IID: nonindependent and identically distributed
RNNs: recurrent neural networks
SVM: support vector machine
TF-IDF: Term Frequency - Inverse Document Fre-
quency
VM: virtual machine
WAD: website attack detection
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