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ABSTRACT
Recent advances in sensor technology have increased the ability of humans to measure a wide
range of phenomena and events. Nevertheless, in some cases, due to a variety of limitations, only a
few sensors can be deployed at a given site. Consequently, setting up enough sensors at the right
places to provide uniform monitoring can be difficult. In addition, virtual sensing, which is a set of
strategies for replacing a portion of physical sensors with virtual sensors, has recently been devel-
oped. Therefore, this work leverages the imputation capability of PGAIN-VS to develop a black-box
data-driven virtual sensing approach named sensor rotational measurement for the purpose of re-
ducing the number of physical devices to be used in realitywhile still ensuringmonitoring accuracy.
The approach takes advantage of the PGAIN-VS and Borda votingmethods to determine the subset
of real sensors that can take turns observing information within an interval of time. The approach is
seen as a black-box objective optimization problemwith constraints that is solved by the OpenBox
tool. We evaluated ourmethod on several real-world datasets and achieved promising results, with
the overall number of physical sensors reduced by up to 20%.
Key words: IoT, machine learning, virtual sensing, missing data imputation, optimal sensor
placement

INTRODUCTION
Currently, the terms Internet of Things (IoT) and
edge computing have appeared inmost areas and pro-
vided many benefits for businesses as well as people’s
lives because they have createdmany smart industries,
namely, smart villages, smart homes, smart farming,
and more. However, why is this the case? The answer
is because the utilization of numerous different phys-
ical sensor types in real-time data measurement and
analytics has provided a solution. Several market re-
searchers1 estimate that there aremore than 20 billion
connected devices at present, and by 2025, there will
be more than 70 billion IoT devices worldwide.
In general, sensors can be divided into two main cat-
egories: (1) physical sensors that can observe exter-
nal phenomena on their own and (2) virtual sensors
that are designed for processing data from various ob-
served sources to determine values approximated by
proper models2. To estimate the difficulty or expense
of measuring quantity, virtual sensing usually relies
on real physical sensor data collected and the use of
appropriate algorithms to integrate them. There may
be restrictions on the placement of data-collected de-
vices, and the cause may be either natural or econom-
ical. As a result, recent efforts to construct and ap-
ply virtual sensing solutions that make use of indirect
measurements3 have proven effective.

This paper proposes a novel data-driven virtual sens-
ing approach, named sensor rotational measurement
(SRM), which leverages the missing-data imputation
strength of PGAIN-VS4 and the impact weighting of
the Borda method 5 to find the best subset from an
original set of physical sensors.
Basically, PGAIN-VS is a deep learning virtual sensor
technique that can be used to generate data in place of
missing or incomplete data. It is based on generative
adversarial networks (GANs)6 and inspired by gen-
erative adversarial imputation networks (GAINs)7.
These networks consist of two neural networks: a gen-
erator that produces newdata and a discriminator that
distinguishes between observed and imputed data. In
PGAIN-VS, the generator is trained to generate data
that are consistentwith the observed data based on the
correlations among physical devices, while the dis-
criminator is trained to distinguish between real and
generated data. To apply the PGAIN-VS virtual sen-
sors to the SRM, we first collected the data from the
physical sensors. We then trained PGAIN-VS using
these data to generate imputed data that followed the
distribution of the observed data. These generated
data can be used to estimate the missing data from
physical sensors.
The Borda votingmethod involves assigning points to
different options based on their rank. In Borda voting,
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each voter ranks his or her choices in order of pref-
erence, and the choice with the highest rank receives
themost points. The points are then summed, and the
choice with the highest total number of points is de-
clared the winner. The preference in SRM is the pre-
diction error when particular sensors are present in a
group of predictors to estimate missing or incomplete
data. The smaller the error is, the greater the chance
that the sensors in the predictor group can be voted
on.
Combining the PGAIN-VS and Borda voting method
is a novel useful approach for selecting a subset of
real sensors that can take turns observing informa-
tion within an interval of time. After that, PGAIN-
VS itself continues to be applied to impute the miss-
ing data for the positions where physical sensors are
no longer present. To validate the accuracy of the vir-
tual sensor measurements, we compare them to the
actual measurements obtained from the physical sen-
sors through the root mean square error (RMSE).
The SRM is considered a black-box objective opti-
mization problem with constraints and is solved by
the OpenBox tool8, which is based on a Bayesian op-
timization algorithm. The proposed approach is eval-
uated on real-world energy, temperature and vehi-
cle speed datasets, and the results demonstrate that
the SRM is able to achieve high accuracy in predict-
ing the target variable and outperforms state-of-the-
art virtual sensing approaches. Additionally, an SRM
is able to identify the most informative physical sen-
sors for capturing the underlying dynamics of the sys-
tem, which can help reduce the cost of hardware in-
stallation andmaintenance. Overall, the proposed ap-
proach provides a promising solution for virtual sens-
ing in various industrial and engineering applications
in situations where physical sensors may be unavail-
able or unreliable.
This work has two important contributions:

• Practical contribution: This paper provides a
useful virtual sensing solution for replacing
physical sensors with virtual sensors when there
may be limitations from an environmental or
economical nature.

• Academic contribution: This paper introduces
a new dynamic measurement approach for col-
lecting data via sensors. In addition, this work
proves the ability of the proposed method to
address the multiple missing-data dimensions
problem via the imputation of PGAIN-VS.

This paper has six sections. The related work is dis-
cussed in Section 2. In Section 3, the materials, meth-
ods, and algorithms used to address the SRM are pre-
sented. Section 4 describes the experiments and re-
sults. Additionally, we discuss the experimental re-
sults further in Section 5. Section 6 discusses the
drawbacks of our work and proposes some future di-
rections to improve these issues.

RELATEDWORK
Virtual sensing has received a great deal of atten-
tion in recent years in a variety of fields, including
robotics, automation, transportation, agriculture, etc.
Virtual sensing modeling techniques can be catego-
rized into three groups based on the mechanism of
creation and data consumption: (1) the first princi-
ple, where virtual sensors are mathematically created
using the foundational laws of physics and extensive
domain knowledge; (2) the black box, where empir-
ical relations and correlation are present in the data
are used to construct virtual sensors; and (3) the gray
box, which is a combination of the two.
Virtual sensors were developed in9 for an optimiza-
tion problem. By selecting the most valuable subset
of sensors to keep in a particular indoor environment
and replacing unneeded sensors with virtual sensors,
the authors hoped to reduce the number of actual sen-
sors used in an indoor setting. Regarding the work
in10, for the example of heat exchanger systems, the
authors presented an ideal sensor selection and fusion
method using the minimum redundancy maximum
relevance (mRMR)method. Another sensor selection
method for the best fault detection and isolation (FDI)
tests in complicated systems was also discussed in the
study in11.
Regarding mobile sensing techniques, a method was
presented in12 based on reverse combinatorial auc-
tions, which required the concept of social welfare, in-
formation quality, and the cost incurred by each indi-
vidual user to provide an observation. At first glance,
our proposal looks similar to this mobile technique,
as physical sensors must be moved among some lo-
cations, but the positions in our solution are static.
Instead, in sensor scheduling problems, one or more
sensors must be chosen at each stage, as stated in 13,
was considered our motivation for this research. As
another instance of a sensor selection technique, the
authors in14 used a weighted function of the error co-
variances associated with the state estimates to trim
the search tree of all potential sensor schedules to
achieve their objective. The authors in 15 proposed
an algorithm to minimize the expected error covari-
ance for stochastic sensor selection by using Kalman
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filters with an underlying hidden Markov model. In
addition,modern techniques inmachine learning and
sparse samplingwere leveraged to design optimal sen-
sor locations for signal reconstruction, as presented
in16.
Sensor selection approaches are thought to be impor-
tant in the field of wireless sensor networks (WSNs).
WSNs can be briefly described as networks connected
to sensors and extending across large geographical
areas to collect and transmit data. To illustrate this
point, the research in 17 showed that by choosing an
appropriate event-triggering threshold, a sensor data
scheduler for linear systems was developed to achieve
the ideal balance between the communication rate
and estimation quality. A new method for select-
ing suitable sensors for WSNs was developed in 18,
in which Kalman filters, multiple cost functions, net-
work condition sets and an assumed time horizon
were determined in advance. Additionally, in re-
gard toWSNs, Kalman filters and interactingmultiple
model (IMM) filters were applied in 19 to minimize
energy usage. Furthermore, the researchers in 20 pro-
posed a solution to address the limitations of WSNs,
including memory, energy and processing capabili-
ties, by discrete cosine transform (DCT) and discrete
wavelet transform (DWT) image compression tech-
niques because they can be used on sensor nodes and
allow for an effective trade-off between the compres-
sion ratio and energy consumption. In21, a frame-
work for virtual sensing with optimal sensor place-
ment (OSP) was introduced. The framework is based
on information and utility theory, employs the model
expansion technique, and accounts for uncertainty.
The framework was created with the intention of han-
dling virtual sensing with output-only vibration mea-
surements.
In contrast to the aforementioned solutions, the SRM,
which is a novel combination variant of sensor selec-
tion and optimal sensor placement, simultaneously
answers two major questions: (1) how many sensors
should be used and (2) how can missing data be han-
dled at positions where sensors are not present?

MATERIALS ANDMETHODS
Suppose the space where sensors are placed in an area
creates a wireless sensor network (WSN) with a d-
dimensional space S = S1 x ... x Sd . Let Y = (Y1 ...,Yd)
be an observed variable of sensor (continuous due to
environmental sensors) having values in S. P(Y) is the
denotation for the distribution of the variable Y.
As specified in the PGAIN-VS architecture, there is
a random variable with values of {0,1}d, M = (M1

...,Md), derived from Y, which is the data vector ob-
served by sensor , and M is the mask vector.
We define a new space (

∼
S1) = Si ∪ {∗} where ∗ is

simply a point that does not belong to any S i. In other
words, it is a value at the period of time that a specific
location is not equipped with sensor S, with i ∈ {1...,
d}. Let

∼
S = S̃1 × ...× S̃d .

∼
Y =

(
Ỹ1, ...,Ỹd

)
∈
∼
S is a

new random variable and is defined in the following
way Eq. (1):

Ỹi =

{
Yi i f observed
∗ i f unobserved

(1)

Obviously, M can be recovered from
∼
Y.

The generator, G, in PGAIN-VS takes the three vari-
ables

∼
Y with the Pearson correlation (Pc) arrange-

ment, M and noise N as inputs and produces the pre-
diction

_
Y.

Basically, the random variables are defined
_
Y and Ŷ

as shown in Eq. (2) and Eq. (3):

_
Y = G

(
∼
Y|Pc,M,(1−M)⊙N

)
(2)

Ŷ = M⊙N+(1−M)⊙
_
Y (3)

where ⊙ is the elementwise multiplication.
_
Y is the

imputed value vector for which the data points are
predicted by PGAIN-VS. Ŷ is the complete data vec-
tor obtained by combining the observed data vector
in a period of time extracted from the combination of
complete and incomplete observation

∼
Y and replacing

∗with the corresponding value of
_
Y. The noise passed

into the generator is (1−M)⊙ because the target dis-
tribution is P(Y|

∼
Y)

The discriminator D in PGAIN-VS is considered an
adversary for training G to determine the observed or
predicted components. D: Y→ [0,1]d with the com-
ponent D(Ŷ) at the i-th position following the prob-
ability that the value of Ŷ at the i-th position is ob-
served by sensor .
PGAIN-VS still uses the “hint” defined in 7 in the pro-
cess ofmissing data imputation. Ŷ andH are accepted
as the inputs passed to D. H is formed as follows:

H = U⊙M+0.5⊙ (1−U) (4)

where U ∈ {0,1}d is defined by uniformly sampling k
from {1, 2, ..., d} at random and then setting Eq. (5):

U j =

{
1 i f j ̸= k
0 otherwise

In PGAIN-VS, D is trained to increase the likelihood
that it will accurately predict M, and G is trained to
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decrease the likelihood thatDwill predictM.The gen-
eral objective function and loss function are briefly
described as Eq. (6) and Eq. (7) below:

L(D,G) =

{
min(G)

max(D)
(6)

L(D,G) = EŶ |Pc,M,H [M
T logD(

Ŷ|Pc,M,H
)
+(1−M)T

log
(

1−D
(

Ŷ|Pc,H
)) (7)

In general, the PGAIN-VS algorithm can be expressed
in detail by the following pseudocode (pseudocode for
the PGAIN-VS algorithm):
Algorithm. Pseudocode of the PGAIN-VS algo-
rithm
Pearson correlation and sensor arrangement calcu-
lations
Input: Missing data of sensor Sf and data frame of
other sensors Sc
Output: Numpy 2-dimensional array with Pearson
arrangement
for i = 0.nSc do
pi← Pc(Sf,Sci)
end for
The sc list was rearranged in descending order based
on Pearson’s
Convert the Sc data frame to a 2-d numpy array
Begin training of PGAIN-VS
Input: D is the size of batch nD, G is the size of batch
nG. Output: Imputed data.
Stochastic gradient descent (SGD) is applied.
while until the training loss converges:
(A) Optimize D
Generate nD samples through {ỹ|pc,m}, noise and
hint
for i = range(nD):
yi← G(ỹi|pc,mi,ni)

ŷi← mi⊙ ỹi +
_
yi⊙ (1−mi)

hi← ui⊙mi +0.5⊙ (1−ui)

end for
Use SGD to update D.
(B) Optimize G
Generate nD in the same way as above
for i = range(nG):
hi← ui⊙mi +0.5⊙ (1−ui)

end for
Use SGD to update G.
end while

a. Sensor rotational measurement descrip-
tion
In theory, there is always a correlation among col-
lected data, which indicates relationships and simi-
larities among spatial positions. Thus, we define C =
(C1...,Cd) as a correlation variable of sensor Si with
the remaining values in the range [0,1]d and then
apply PGAIN-VS to the dataset with its features ar-
ranged by Pearson correlation C to obtain imputed
values

_
Y. R = (RS1 ...,RSd) is defined as a ranking vari-

able calculated with the Borda votingmethod, and the
weight of sensor Si is determined by Ri. We define a
formula to calculate the weight of a single sensor Si as
shown in Eq. (8):

wi = 1−

(
ε

maxi∈{1,...,d}
εi

)
(8)

where υ i is determined by adding the 95th percentile
of the absolute errors. Then, the vote is defined as Eq.
(9):

RSi = ∑d
i=0,i̸= j [nsensors− posi ( j)]wi (9)

where posi(j) represents the position of sensor j, the
total number of sensors used is nsensors = d, and wi is
the weight calculated.
The whole set of rotational measurement data can be
described as follows (Eq. (10)):

Mat =
y

RS1
1 ∗ y

RS3
1 ∗ . . . y

RSd
1

y
RS1
2 ∗ y

RS3
2 ∗ . . . y

RSd
2

∗ y
RS2
3 ∗ y

RS4
3 . . . y

RSd
3

. . . . . . . . . . . . . . . . . .

∗ y
RS2
n ∗ y

RS4
n . . . y

RSd
n


(10)

where y
RSi
i are normal observed values with the i-th

rank arranged in descending order from left to right
and ∗ are unobserved values during the time when
sensor was not present. The number of ∗ on each fea-
ture and the number of features having ∗ are deter-
mined by solving the optimization mentioned in Eq.
(11). Ambitiously, we want to have more ∗ appearing
in the dataset, but the reliability of our solution is still
preserved.

b. Objective
SRM is considered a black-box optimization (BBO)
with constraints, as PGAIN-VS is a machine learning
model; thus, there is no analytical form for the objec-
tive function. PGAIN-VS is the vector-valued black-
box function for the SRM BBO described as f (x): X
→ Rd, where X is the search space of interest and has
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Figure 1: Sensor rotational measurement architecture

the same d-dimension as S defined earlier. Identify-
ing the set of Pareto optimal solutions is themain goal
presented in Eq. (11):

P∗ = f (x)s.t.∄x′ ∈ X : f (x′)< f (x) (11)

such that every advancement in one objective implies
a decline in another. We calculate the finite Pareto set
P from the observed data {(xi)}n

i=1 to estimate P∗ .
In this paper, the PGAIN-VS virtual sensor inspired
by GAIN [7] was used as the main mediator to im-
pute missing values. The Borda count22 method was
applied to determine the weight of the sensors before
solving the SRM BBO. The SRM BBO is considered
the objective optimization method because the mini-
mum RMSE is set as the main objective function, the

maximum number of reduced physical sensors is set,
and the maximum measurement interval is set.
Mathematically, the equation of the SRM can be writ-
ten as follows:

OSRM =


f min
e (x) gmax

n (x) hmax
i (x) : x ∈ F

fe (x)≤ c1

0 < gn (x)≤ c2

0 < hi (x)≤ c3

(12)

where x is the solution, F is the feasible set, fe is the
minimum RMSE objective function, the two others
are gn, the maximum number of physical sensors pos-
sibly involving the SRM, and hi, the maximum ob-
servation interval. c1, c2 , and c3 are the threshold
constraints of the functions, andmin/max is the com-
bined object operation.
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c. Sensor rotational measurement algo-
rithm
The following approach, described in pseudocode,
was used to evaluate the ranking supported by Pear-
son correlation using PGAIN-VS on the 20% of test
data that were missing to automatically choose a se-
lection of sensors to be utilized as predictors.
Algorithm. Pseudocode for the sensor ranking
Input: Data of the whole sensors in the list Sl
Output: The rank of the sensors in descending order
foreach sen in Sl do i i← 0
for k = 0.nSl − 1 do
Discarded sensors: Sdiscarded ← Sl[0: k]
Remaining sensors: Sremain
remain← set(Sl)− set(Sdiscarded)− set([sen])
errori← PGAIN-VS(Si, Sremain)
Empirical cumulative distribution function at the 95%
percentile:
ecdf_95i← ecdf(percentile(95, errori))
end for

i++
end foreach
for i = 0..npredicted_sensors do
Weight: wi← sum(ecdf 95,
groupby(predicted_sensor))
Borda vote for sensors: bi← Borda(nSremain, wi)
end for
As previously noted, the SRM is regarded as a black-
box optimization problem; hence, OpenBox, an
open-source and general-purpose BBO service, was
utilized to resolve this problem. The authors claim
that OpenBox implements a wide variety of optimiza-
tion algorithms to achieve excellent performance in
diverse BBO issues and that it is able to select the ap-
propriate algorithms and settings based on the param-
eters of the incoming assignment. Because it can han-
dle situations where the input space has conditions,
there are more parameters in the input space, or there
are more trials than hundreds of times, we selected
the probabilistic random forest (PRF)23 to solve the
problem in this study.
The top influencing sensors can be selected as can-
didates for applying SRMs to the data. By being ar-
ranged very close to one another, the entire data dis-
tribution of datasets can be learned and preserved bet-
ter. Based on this fact, the algorithm for finding the
expected results can be defined by the following SRM
pseudocode.
Algorithm. Pseudocode of SRM
Input: Data of the whole sensors, Sl, arranged by the
Borda ranking
Output: RMSE, number of SRM sensors and interval

Definition of the configuration space
d← len(SI)
srm_num← 1..(d/2)
miss_rate← 0.01..0.2

Add the srm_num and miss_rate variables to the
OpenBox space cs
Definition of the RMSE objective function with
configuration space cs
(srm_num, miss_rate)← cs.get()
ỹ← create_rotation_data(srm_num, miss_rate)
_
y← PGAIN VS (ŷ)
rmse ← rms_ loss ỹ
return objs[rmse]
Run OpenBox with the objective
result← optimizer.run()
Calculation of results
Min RMSE value: min(results.get(rmse))
Number of locations: result.get(srm_num)
Interval: result.get(miss_rate) x interval2 adja-
cent_observation

RESULTS
To evaluate PGAIN-VS, we conducted experiments
on the Solar Power (21 sensors)24,25, Traffic (207
detectors; 50 random sensors were selected) 26 and
Rasipihat temperature (12 sensors; 50000 random
samples were extracted) 9 datasets, which were also
widely used in other works. The details of the datasets
are described in Table 1.
The answers for the SRMproblemare given inTable 2.
We reported the RMSE and R2values to show the ac-
curacy and reliability of our approach when used to
predict missing data with two parameters, the num-
ber of reduced sensors and the measurement interval
found byOpenBox. We set 100 trials as themaximum
number of runs, and the time limit per trial was 180
seconds. A probabilistic random forest was used as
the surrogate model for OpenBox to solve the SRM
optimization problem.
We extracted the top three feasible results for each ex-
periment corresponding to each dataset with different
values of RMSE and R2, but they were still guaranteed
to be within an ideal boundary of approximately 0.10.
In addition, to highlight the effectiveness of arranging
sensors based on Borda counting, we listed both the
ranking and nonranking results for visual compari-
son. The output shows that the RMSE andR2obtained
using the Borda voting arrangement tend to be signif-
icantly better. More importantly, the number of sen-
sors can be reduced, and the time required for a ro-
tation turn seems to increase. This can be clearly ob-
served in the Solar dataset when there is a large dis-
tance between the minimum value and the maximum
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Table 1: Characteristics of the datasets

Parameters Solar Raspihat Traffic

Samples 24000 50000 34272

Mean 9601 30.2 53.0

STD 19789 2.0 20.1

Min 0 11.9 0

Max 307891 44.4 70

25% 0 29.5 51.3

50% 1393 30.1 61.6

75% 10170 30.8 65.6

value, as well as for the other parameters described in
Table 1. For the two remaining datasets, especially for
Raspihat, we cannot see equivalence because ofminor
differences in the observed data among positions, but
generally, the expectation was still preserved.
Instead of providing the best output for the SRM opti-
mization problem, our approach also yields a few pos-
sible results, as shown in Table 2, from which a suit-
able choice can be selected depending on the needs of
the real circumstances. For example, in the case of the
Solar dataset, removing fewer than 4 sensors may be a
better selection, but 6 sensors with an RMSE of 0.077
and an R2 of 0.829 should be selected when consider-
ing economic considerations (up to an approximately
28% reduction). Similarly, a list of possible combi-
nations was given with up to 5 sensors removed (ap-
proximately 45% reduction) for the Raspihat dataset
and up to 6 sensors (approximately 12% reduction)
for the Traffic dataset. Therefore, depending upon the
decision to implement a trade-off strategy, the greater
the prediction error accepted is, the more sensors can
be saved.
Figures 2, 3 and 4 show images of the imputed and
actual data of the sensors applying the SRM after solv-
ing the BOO problem. We can easily realize that the
distance between the predicted and observed data is
not too large. The imputed data still assure the overall
data distribution of the datasets, so the SRM virtual
sensing solution is potentially able to produce accu-
rate data. Obviously, the results found in OpenBox
for the optimization problem are reliable. We chose
the results of each dataset reported in Table 2 with all
the sensors involving the SRM to construct the perfor-
mance graph. Three sensors with imputed data were
selected to illustrate the accuracy of the data.

DISCUSSION
Thepromising results can be explained by the fact that
GAN-based approaches are machine learning mod-

els in which two neural networks compete with each
other to increase the accuracy of their predictions.
Hence, arranging the most impactful sensors adja-
cent helps the data distribution of the whole dataset
be learned and preserved better. In addition, as de-
signed, OpenBox is able to recognize the distribution
of datasets after several iterations, so it tends to con-
verge at a point; then, the minima of the RMSE are
found with different adjustments of the duration and
the number of physical sensors to be cut off.
The experimental results affirm the potential benefit
for businesses when the number of sensors used in
reality can be lower, so the deployment and manage-
ment costs are surely lower, and the productivity is
greater. In addition, the ability of the PGAIN-VS to
impute multiple missing-data dimensions was trans-
parently demonstrated through the SRM.
More importantly, a new introduction to rotational
measurements may lead to more and more ideas for
dynamic observation in the future. Nevertheless,
our approach is expected to work well with continu-
ous environmental data, so it requires measurements
taken on an interval scale. In contrast, the accuracy of
these methods may not be guaranteed.

CONCLUSIONS AND FUTUREWORK
In this paper, a novel dynamic sensor rotation mea-
surement approach, SRM, which takes advantage of
PGAIN-VS to determine the best subset of physical
sensors, was introduced. Various experiments with
real-world datasets show that the SRM is capable of
finding and replacing real sensors with virtual ones
when limitations may arise from its economical or
natural nature. The SRM allows dynamic data obser-
vation when physical sensors can be moved around
positions to perform their jobs. More importantly,
SRM provides businesses with a financially beneficial
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Figure 2: Performance on the Raspihat dataset for three sensors; RMSE = 0.032.
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Figure 3: Performance on the Solar Power dataset for three sensors; RMSE = 0.077
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Figure 4: Performance on the traffic dataset for three sensors; RMSE = 0.096
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trade-off strategy, as it helps reduce the cost of equip-
ment and the deployment andmanagement of a num-
ber of physical sensors to be installed in a spatial area.
Finally, the SRM proves the ability of PGAIN-VS to
impute multiple missing-data dimensions.
Future work will investigate how to add deeper time
series analysis to the solution since it includes tempo-
ral information; thus, more valuable information can
be extracted and used in the process of training vir-
tual sensors. In addition, for data compression tech-
niques for optimal sensor placement, other correla-
tion metrics should be considered because they help
reduce the need for more physical sensors and work
with various types of data.
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Table 2: The results of SRM solved as black-box optimization by openbox

Dataset No. sensors reduced ⇓ RMSE R2

Ranking Nonranking Ranking Nonranking
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6 0.096 0.147 0.848 0.711

7 0.146 0.265 0.665 0.047
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