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ABSTRACT
In this paper we consider a general set-valued optimization problem of the model
WInfx∈XF (x), where F : X ⇒ Y ∪ {+∞Y } is a proper mapping. The problem is then
embedded into a parametric problem and can be expressed as

(P) WInf
⋃
x∈X

Φ(x, 0Z)

whereΦ: X×Z ⇒ Y • is a proper set-valued perturbation mapping such thatΦ(x, 0Z) =
F (x). A representation of the epigraph of the conjugate mappingΦ∗ is established (Theorem
1) and it is used as the basic tool for establishing a general stable strong duality for the problem
(P) (Theorem 3). As applications, the mentioned general strong duality result is then applied
to a cone-constrained set-valued optimization problem (CSP) to derive three dual problems
for (CSP): The Lagrange dual problem and two forms of Fenchel-Lagrange dual problems
for (CSP). Consequently, three stable strong duality results for the three primal-dual pairs of
problems are derived (Theorems 4, 5), among them, one is entirely newwhile the others extend
some known ones in the literature.
Keywords: set-valued optimization problems, perturbation mapping, perturbation ap-
proach to set-valued optimization problems, stable strong duality for set-valued optimiza-
tion problems.

Introduction, Preliminaries, Nota-
tions and Basic Tools
Let X,Y, Z be lcHtvs with their topological
dual spaces denoted by X∗, Y ∗ and Z∗, re-
spectively. These dual spaces are endowedwith
their own corresponding weak*-topology. For
a setU ⊂ X , we denote by intU and linU the
interior and the linear hull of U , respectively.
We consider a general set-valued optimimiza-
tion problem

(P) WInf
⋃
x∈X

F (x)

whereF : X ⇒ Y ∪{+∞Y } is a propermap-
ping. The set-valued problem (P) is very gen-
eral which includes many models of practical
problem (see [2], [11] and references therein).

Like multi-optimization problems, different
concepts of optimality can be used for (P). In
this paper we focus on weakly efficient solu-
tions because they are preferable from com-
putational aspects and also because of the fact
that they allow to apply the elegant conjugate
duality theorywhich is themain tool of this pa-
per.

Conjugate duality become a popularmethod to
study scalar, vector optimization problems, for
instance, in [1]-[9], [10], [11], [13], [14] and
for set-valued optimization problems in many
works of the author R.I. Bot and his co-authors
and are collected in the book [2].

The perturbation approach has been used for
scalar optimization problems, vector optimiza-
tion problems (see [1], [2], [7], [8] and ref-

erences therein), and also for set-valued opti-
mization problems such as in [2], [15], [16].
In this paper the conjugate duality method is
used together with the perturbation approach
to study the duality for set-valued optimization
problems. We propose a new dual problem for
(P) and prove several duality results for (P).
Some among them are new and some extend
some known duality results in [2].

Following the perturbation approach, we now
embed (P) into a parametric problem

(Pz) WInf
⋃
x∈X

Φ(x, z)

where z runs on the parameter space Z with
Φ: X × Z ⇒ Y • being a proper set-valued
perturbation mapping such that Φ(x, 0Z) =
F (x) (0z denotes the null vector of Z). The
dual problem of (P0Z ) is [2, p.367]

(D) WSup
⋃

T∈L(X,Z)

[−Φ∗(0L, T )].

The basic tool for our study in this paper is
a representation of the epigraph of the con-
jugate mapping Φ∗ established in Section 2.
A general stable strong duality for the pair
(P) − (D) is established in Section 3. In
Section 4, the result is then applied to the
class of cone-constrained set-valued optimiza-
tion problems to derive three forms of dual
problems: The Lagrange dual problem and
two forms of Fenchel-Lagrange dual problems.
Consequently, three stable strong duality re-
sults for the three primal-dual pairs of prob-
lems are derived.
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Weak Ordering Generated by a Convex
Cone
Let K be a proper closed and convex cone in
Y with nonempty interior, i.e., intK 6= ∅. It
is worth observing that for such a cone it holds
K + intK = intK, which is equivalent to

(y ∈ K and y+y′ /∈ intK) =⇒ y′ /∈ intK.

We define a weak ordering in Y generated by
K as follows: for all y1, y2 ∈ Y ,

y1 <K y2 ⇐⇒ y1 − y2 ∈ − intK.

In Y we sometimes also consider the usual or-
dering generated by the coneK ,5K , which is

defined by y1 5K y2 if and only if y1 − y2 ∈
−K, for y1, y2 ∈ Y .

The next lemma is useful in the sequel.

Lemma1. [3, Lemma2.1 (i)] For all y, y′ ∈ Y
and k0 ∈ intK , there is µ > 0 such that
y − µk0 <K y′.

We enlarge Y by attaching a greatest element
+∞Y and a smallest element −∞Y w.r.t. <K ,
which do not belong to Y , and denote Y • :=
Y ∪{−∞Y ,+∞Y }. We understand, by con-
vention, that−∞Y <K y <K +∞Y for each
y ∈ Y and

−(+∞Y) = −∞Y , −(−∞Y ) = +∞Y ,

(+∞Y)+y = y+(+∞Y) = +∞Y , ∀y∈Y ∪ {+∞Y },
(−∞Y)+y = y+(−∞Y) = −∞Y , ∀y∈Y ∪ {−∞Y }.

Moreover, forM ⊂ Y ,

M + {−∞Y } = {−∞Y }+M = {−∞Y },
M + {+∞Y } = {+∞Y }+M = {+∞Y }.
The sums (−∞Y ) + (+∞Y ) and (+∞Y ) +
(−∞Y ) are not considered in this paper.

The following notions ([2, Definition 7.4.1],
[13]) will be used throughout the paper.

Definition 1. LetM ⊂ Y •.

a) An element v̄ ∈ Y • is said to be a weakly
infimal element ofM if{
v 6<K v̄, ∀v ∈ M,

∀ṽ ∈ Y •, v̄ <K ṽ, ∃v ∈ M : v <K ṽ.

b) An element v̄ ∈ Y • is said to be a weakly
supremal element ofM if{
v̄ 6<K v, ∀v ∈ M,

∀ṽ ∈ Y •, ṽ <K v̄, ∃v ∈ M : ṽ <K v.

c) The set of all weakly infimal elements of
M (weakly supremal elements of M , resp.)
is called the weak infimum of M (the weak
supremum of M , resp.) denoted by WInfM
(WSupM , resp.).

d) The weak minimum of M is the set
WMinM = M∩WInfM and its elements are
called theweakly minimal elements ofM . Sim-
ilarly, theweakmaximum ofM isWMaxM =
M ∩WSupM and its elements are the weakly
maximal elements ofM .

The next properties related to the sets weak in-
fimum, weak minimum, weak supremum, and
weakmaximumof a subsetM ofY • are traced
out from [2, 4, 6] and [7, Proposition 2.1].

Proposition 1. Assume further thatM ⊂ Y andWSupM 6= {+∞Y }. Then it holds:

(i)WSupM − intK = M − intK ,

(ii)The following decomposition1 of Y holds

Y = (M − intK) ∪WSupM ∪ (WSupM + intK),

(iii)WSupM = cl(M − intK) \ (M − intK).

Remark 1. It is clear that WInfM =
−WSup(−M) for allM ⊂ Y • and so, Propo-
sition 1 holds true also whenWSup,+∞Y ,K ,
and intK are replaced by WInf, −∞Y , −K ,
and− intK , respectively.

The Structure (Pp(Y )•,4K)

Let P0(Y
•) be the collection of all non-empty

subsets of Y •. The ordering “4K” onP0(Y
•)

is defined [6] as, forM,N ∈ P0(Y
•),

M 4K N ⇐⇒ (v 6<K u, ∀u ∈ M, ∀v ∈ N) .
(1)

Other orderings on P0(Y
•) are also proposed

in the literature (see, e.g., [11]).

Proposition 2. [6, Proposition 2] For all
M,N ∈ P0(Y

•), if M 4K N then
WSupM 4K WInfN.

Definition 2. We say that a subset U ⊂ Y is
1By the term “decomposition”, we mean that the subsets in the right hand side are disjoint.
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a (Y,K)-partition style set if the following de-
composition of Y holds

Y = (U − intK) ∪ U ∪ (U + intK).

Thecollection of all (Y,K)-partition style sub-
sets of Y is denoted by Pp(Y ).

Denote also, Pp(Y )• := Pp(Y ) ∪

{{+∞Y }, {−∞Y }}. Clearly that ifM ⊂ Y •

then ±WSupM ∈ Pp(Y )•, ±WInfM ∈
Pp(Y )• and (by (1)), for anyU ∈ Pp(Y ), one
has U 4K {+∞Y } and {−∞Y } 4K U .
Moreover, (Pp(Y )•,4K) is a partially or-
dered space [6]. It is worth noting that in
Pp(Y )•,4K coincides with the ordering rela-
tion4 introduced in [15] and [16].

Proposition 3. [7, Proposition 3.2, Lemma 3.1] Let U, V ∈ Pp(Y ). Then

(i) If U ⊂ V then U = V ,

(ii)The following decompositions hold:

Y =(U − intK) ∪ (U +K)=(U −K) ∪(U + intK),

(iii)WSupU = WInfU = U .

Set-valued mappings and Repre-
sentationof theConjugatesofPer-
turbationMappings
Let F : X ⇒ Y • be a set-valued mapping.
For any nonempty subset D ⊂ X , we write

F (D) =
⋃

x∈D F (x). The domain and the
K-epigraph of F are defined by, respectively

domF :=
{
x ∈ X : F (x) 6= ∅ and F (x) 63 +∞Y

}
,

epiKF := {(x, y) ∈ X × Y : y ∈ F (x) +K}.

For (a single-valued mapping) f : X → Y •,
the sum f + F stands for a set-valued map-
ping fromX intoY • defined by (f+F )(x) :=
{f(x) + y : y ∈ F (x)}, for each x ∈ X . The
next notations are quoted from [2].

Definition 3. Let C be a non-empty subset of
X .

a) We say that F is proper if −∞Y /∈ F (X)
and domF 6= ∅.

b)We say thatF isK-convex if epiKf is a con-
vex subset ofX × Y .

c) We say that F is K-convexlike on C if for
all y1, y2 ∈ F (C) ∩ Y and µ ∈ (0, 1) there is
x̄ ∈ C such thatµy1+(1−µ)y2 ∈ F (x̄)+K.

d)We say thatF isweaklyK-upper bounded on
C if there is ȳ ∈ Y such that ȳ ∈ F (x) +K
for all x ∈ C.

e)We say that F is lower continuous at x0 ∈ X
if for all open set D ⊂ Y satisfying D ∩
F (x0) 6= ∅ there exists a neighborhood U of
x0 such that F (x) ∩D 6= ∅ for all x ∈ U .

Associated with F , we define another set-
valued map F ∗ : L(X,Y ) ⇒ Y • defined by

F ∗(L) := WSup[(L− F )(X)]

which is called the conjugate (also, conjugate
mapping) of F (see [2, p.363], [13], [14]).

Proposition 4. Assume that F : X ⇒ Y • is proper and (L, y) ∈ L(X,Y )× Y . Then

(L, y) ∈ epiKF ∗ ⇐⇒
(
y − L(x) /∈ −F (x)− intK, ∀x ∈ X

)
.

Proof. Without loss of generality, we can as-
sume that F ∗(L) 6= {+∞}. Then, as
F ∗(L) = WSup[(L − F )(X)] ∈ Pp(Y )•,
the next decompositions hold

Y=(F ∗(L) +K)∪{WSup[(L−F )(X)]−intK}
=(F ∗(L) +K)∪{[(L− F )(X)]−intK}

(2)

(by Proposition 3 (iii) and Proposition 1(i)).

We now have

(L, y) ∈ epiF ∗

⇐⇒ y ∈ F ∗(L) +K

⇐⇒ y 6∈ [(L− F )(X)]− intK (by (2))
⇐⇒ y − L(x) 6∈ −F (x)− intK, ∀x ∈ X,

which completes the proof.

We now consider a proper set-valued pertur-
bationmappingΦ: X×Z ⇒ Y • (the name of
this mapping will be explained in the next sec-
tion). Note that Φ∗ : L(X,Y )× L(X,Z) ⇒
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Y • and in the sequel, the conjugate of themap-
ping Φ(·, 0Z) : X ⇒ Y • will be denoted by
Φ(·, 0Z)∗ (instead of (Φ(·, 0Z))∗).

The mapping Φ: X × Z ⇒ Y • is called K-
convexlike-convex if for all z1, z2 ∈ Z , y1 ∈
Φ(X, z1), y2 ∈ Φ(X, z2), and µ ∈ (0, 1)
there is x̄ ∈ X such that

µy1+(1−µ)y2 ∈ Φ(x̄, µz1+(1−µ)z2)+K.

We now introduce a qualifying condition asso-
ciated with Φ which will be used throughout

this paper.

(CQ) ∃x̂ ∈ X such that Φ(x̂, .) is weakly
K − upper bounded on some
neighborhood of 0Z .

The next theorem is the basic tool in establish-
ing the main results of this paper.

Theorem 1. Assume that Φ is K-convexlike-
convex and (CQ) fulfills. Then, it holds

epiKΦ(., 0Z)
∗ =

⋃
T∈L(X,Z)

epiKΦ∗(., T ).

(3)

Proof of the inclusion `` ⊃ ". Take (L, y) ∈
⋃

T∈L(X,Z) epiKΦ∗(·, T ). Then, there is T ∈
L(X,Z) such that (L, y) ∈ epiKΦ∗(·, T ), or equivalently, (L, T, y) ∈ epiKΦ∗, and hence,
by Proposition 4,

y − L(x)− T (z) /∈ −Φ(x, z)− intK, ∀(x, z) ∈ X × Z.

In particular, when z = 0Z , one has y − L(x) /∈ −Φ(x, 0Z) − intK for all x ∈ X, which,
again by Proposition 4, yields (L, y) ∈ epiKΦ∗(·, T ).

Proof of the inclusion `` ⊂ ". Take (L̄, ȳ) ∈ epiKΦ(., 0Z)
∗. By Proposition 4,

ȳ /∈ L̄(x)− Φ(x, 0Z)− intK, ∀x ∈ X. (4)

We will show that there exists T̄ ∈ L(X,Z) such that (L̄, ȳ) ∈ epiKΦ∗(., T̄ ). Set

∆L̄ :=
⋃

(x,z)∈domΦ

((
L̄(x)− Φ(x, z)−K

)
× {z}

)
.

As Φ isK-convexlike-convex, it is easy to check that∆L̄ is a convex subset of Y × Z .

Step 1. Prove that int∆L̄ 6= ∅. As (CQ) holds, there exist an open neighborhood V̂ of ẑ and
ŷ ∈ Y such that

ŷ ∈ Φ(x̂, z) +K, ∀z ∈ V̂

=⇒ L̄(x̂)− ŷ ∈ L̄(x̂)− Φ(x̂, z)−K, ∀z ∈ V̂

=⇒ L̄(x̂)− ŷ − intK ⊂ L̄(x̂)−Φ(x̂, z)−K, ∀z ∈ V̂

=⇒ (L̄(x̂)− ŷ − intK)× V̂ ⊂ ∆L̄

=⇒ (L̄(x̂)− ŷ − intK)× V̂ ⊂ int∆L̄. (5)

So int∆L̄ 6= ∅ (as V̂ 3 0Z and intK 6= ∅).

Step 2. Prove that (ȳ, 0Z) /∈ int∆L̄. Assume on the contrary that (ȳ, 0Z) ∈ int∆L̄. Then,
there exists a neighborhood U × V of (0Y , 0Z) such that (ȳ + U) × V ⊂ ∆L̄. If we take
k̄ ∈ U ∩ intK then one gets (ȳ + k̄, 0Z) ∈ ∆L̄. This yields the existence of (x̄, 0Z) ∈ domΦ
such that ȳ + k̄ ∈ L̄(x̄) − Φ(x̄, 0Z) − K , leading to ȳ ∈ L̄(x̄) − Φ(x̄, 0Z) − intK, which
contradicts (4). Thus, (ȳ, 0Z) /∈ int∆L̄.

Step 3. As (ȳ, 0Z) /∈ int∆L̄, apply the convex separation theorem ([12, Theorem 3.4]) to the
point (singleton) (ȳ, 0Z) and the convex set∆L̄ in the spaceY ×Z , one gets (y∗

0 , z
∗
0) ∈ Y ∗×Z∗

such that
y∗
0(ȳ) < y∗

0(y) + z∗0(z), ∀(y, z) ∈ int∆L̄, (6)

and consequently,
y∗
0(ȳ) ≤ y∗

0(y) + z∗0(z), ∀(y, z) ∈ ∆L̄. (7)

Next, we show that
y∗
0(k

′) < 0, ∀k′ ∈ intK. (8)

Indeed, take k′ ∈ intK . With L̄(x̂) − ŷ ∈ Y (appear in Step 1) and k′, ȳ ∈ Y , by Lemma 1,
there is µ > 0 such that ȳ − µk′ ∈ L̄(x̂)− ŷ − intK . Hence, by (5), (ȳ − µk′, 0Z) ∈ int∆L.
In turn, (6) leads to y∗

0(ȳ) < y∗
0(ȳ − µk′) + z∗0(0Z), or y∗

0(k
′) < 0, and (8) holds.
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Step 4. Take k0 ∈ intK such that y∗
0(k0) = −1 (it is possible by (8)) and T : Z → Y defined by

T (z) = −z∗0(z)k0 for all z ∈ Z (z∗0 exists by the separation theorem in Step 3). It is easy to see
thatT ∈ L(Z, Y ) and for all z ∈ Z , it holds

(
y∗
0 ◦T

)
(z) = y∗

0(−z∗0(z)k0) = −y∗
0(k0)z

∗
0(z) =

z∗0(z).Thus, (7) can be rewritten as

y∗
0(ȳ) ≤ y∗

0(y) + (y∗
0 ◦ T )(z), ∀(y, z) ∈ ∆L̄,

or equivalently,
y∗
0(y + T (z)− ȳ) ≥ 0, ∀(y, z) ∈ ∆L̄.

So, by (8), y + T (z)− ȳ 6∈ intK , yielding

ȳ /∈y + T (z)− intK, ∀(y, z) ∈ ∆L̄. (9)

Now, as
(
L̄(x)−Φ(x, z), z

)
∈ ∆L̄ for all (x, z) ∈ domΦ, it follows from (9) that

ȳ /∈ L̄(x)− Φ(x, z) + T (z)− intK, ∀(x, z) ∈ domΦ. (10)

By Proposition 4, (L̄, T, ȳ) ∈ epiKΦ∗, or equivalently (L̄, ȳ) ∈ epiKΦ∗(., T ) and we are done.

Duality for Set-Valued Optimiza-
tion Problems: A Perturbation Ap-
proach
Let X,Y , Z and K be as in Section 2. The
same way as with Y , we also enlarge Z by at-
taching a greatest element+∞Z and a smallest
element−∞Z , which do not belong to Z , and
define Z• := Z ∪ {−∞Z ,+∞Z}.

We consider a general set-valued otimization
problem of the model

(P) WInf
⋃
x∈X

F (x)

whereF : X ⇒ Y ∪{+∞Y } is a propermap-
ping. The set-valued problem (P) is very gen-
eral which includes many practical problems
(set-valued, vector-valued) problems (see [2],
[11] and references therein).

We now embed (P) into a parametric problem

(Pz) WInf
⋃
x∈X

Φ(x, z)

where z runs on the parameter space Z with
Φ: X × Z ⇒ Y • being a proper set-valued
perturbation mapping such that Φ(x, 0Z) =
F (x) (0z denotes the null vector of Z), and
so, (P0z ) coincides with (P) and it can be ex-
pressed as

(P) WInf
⋃
x∈X

Φ(x, 0Z).

Assume that domΦ(., 0Z) 6= ∅.

The dual problem of (P) is [2, p.367]

(D) WSup
⋃

T∈L(X,Z)

[−Φ∗(0L, T )].

The values of (P) and (D) are denoted by val(P)
and val(D), which means

val(P) = WInf
⋃
x∈X

Φ(x, 0Z)

and

val(D) = WSup
⋃

T∈L(X,Z)

[−Φ∗(0L, T )].

We say that “strong duality holds for the pair
(P)− (D)” if val(P) = val(D) and (D) attains
at any points from its value.

Denote by (PL) the problem (P) perturbed by
a linear operator L ∈ L(X,Y ). Then (PL)
and its corresponding dual problem (DL), are

(PL) WInf
⋃
x∈X

[Φ(x, 0Z)− L(x)],

(DL) WSup
⋃

T∈L(X,Z)

[−Φ∗(L, T )].

It is said that stable strong duality holds for the
pair (P) − (D) if the strong duality holds for
the pair (PL)− (DL) for all L ∈ L(X,Y ).

The next theorem covers [2, Proposition
7.4.16] and can be seen as a perturbation ex-
tension of [15,Theorem3.25] (or [16,Theorem
2.6]) .

Theorem 2 (Weak duality). For any L ∈
L(X,Y ) and T ∈ L(Z, Y ), it holds:

(i)−Φ∗(L, T ) 4K val(PL),

(ii) val(DL) 4K val(PL).

Proof. Firstly, let us denote

M :=
⋃

T∈L(X,Z)

(
− Φ∗(L, T )

)
,

N :=
⋃
x∈X

[Φ(x, 0Z)− L(x)].
(11)

Then, it is easy to see that val(DL) = WSupM
and val(PL) = WInfN .

(i) Take x̄ ∈ X and ȳ ∈ −Φ∗(L, T ). As−ȳ ∈
Φ∗(L, T ) = WSup{L(x)+T (z)−Φ(x, z) :
(x, z) ∈ X × Z}, one has −ȳ /∈ L(x) +
T (z)−Φ(x, z)− intK for all (x, z) ∈ X×Z
(by Proposition 1(ii)), and hence, with x = x̄
and z = 0Z , one gets ȳ /∈ Φ(x̄, 0Z)−L(x̄)+
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intK. So, −Φ∗(L, T ) 4K N . Consequently,
−Φ∗(L, T ) = WSup[−Φ∗(L, T )] 4K

WInfN = val(PL) (by Proposition 3 (iii) and
Proposition 2).

(ii) It follows from (i) that M 4K WInfN ,
and hence, one gets val(DL) = WSupM 4K

WInf[val(PL)] = val(PL) (again by Proposi-
tion 3 (iii)).

Theorem 3 (Stable strong duality). Assume
that Φ is K-convexlike-convex and (CQ) ful-
fills. Then, the stable strong duality holds for the
pair (P)− (D).

Proof. Take arbitrarily L ∈ L(X,Y ). Denote WMax(DL) = WMax
⋃

T∈L(X,Z)

[−Φ∗(0L, T )].

We will show that
val(PL) = val(DL) = WMax(DL). (12)

Firstly, as domΦ(., 0Z) 6= ∅, one has val(PL) 6= {+∞Y }. If val(PL) = {−∞Y } then, byThe-
orem 2, val(DL) = {−∞Y }, and so,−Φ∗(L, T ) = {−∞Y } for T ∈ L(X,Z). Consequently,
WMax(DL) = {−∞Y } = val(VPL), and (12) holds.

Assume now that val(PL) ⊂ Y and we will show that

val(PL) ⊂ WMax(DL). (13)

Take y ∈ val(PL), we prove that y ∈ WMax(DL).

Let M and N be the sets as in (11) (in the proof of Theorem 2). It follows from Theorem 2 (i)
that

M 4K WInfN. (14)

Next, since y ∈ val(PL) = WInfN , by Proposition 1(ii) and Remark 1,

y /∈ Φ(x, 0Z)− L(x) + intK, ∀x ∈ X,

which means (L,−y) ∈ epiKΦ(., 0Z)
∗ (see Proposition 4). Observing that, under the current

assumption, (3) holds (see Theorem 1). So, (L,−y) ∈
⋃

T∈L(X,Z) epiKΦ∗(., T ), and hence,
there is T̄ ∈ L(Z, Y ) such that

−y − L(x)− T̄ (z) /∈−Φ(x, z)− intK,∀(x, z)∈X × Z,

which is equivalent to

−y /∈
{
L(x) + T̄ (z)− Φ(x, z) : (x, z) ∈ X × Z

}
− intK

= Φ∗(L, T̄ )− intK. (15)

Now as Φ∗(L, T̄ ) ∈ Pp(Y ),

Y =
(
Φ∗(L, T̄ )− intK

)
∪
(
Φ∗(L, T̄ ) +K

)
,

which, together with (15), yields

−y ∈ Φ∗(L, T̄ ) +K. (16)

Combine (14) and (16), one gets

−y∈(Φ∗(L, T̄ )+K) \ (Φ∗(L, T̄ ) + intK)=Φ∗(L, T̄ )

(by Proposition 1(iii)), and hence, y ∈ −Φ∗(L, T̄ ) ⊂ M . This, together with (14), yields
y ∈ M \ (M − intK) = WMaxM = WMax(DL) (again by Proposition 1(iii)). So, (13) has
been proved and then

val(PL) ⊂ WMax(DL) ⊂ WSup(DL). (17)

This leads to val(PL) = val(DL) (by Proposition 3 (i) and the fact that val(PL), val(DL) ∈
Pp(Y )•) and we obtain val(PL) = WMax(DL).

Remark 2. Theorem 3 is a stable extension
of Theorems 7.4.20 and 7.4.27 in [2]. Ob-
serving that if (CQ) holds then the set-valued
Ψ: Z ⇒ Y •, with Ψ(z) :=

⋃
x∈X Φ(x, z)

is K-upper bounded on some neighborhood
of 0Z and 0Z ∈ int(domΨ). So the assump-
tion of Theorem 3 is slightly stronger than the
one in [2, Theorem 7.4.27] while the strong
duality in the conclusion of Theorem 3 is sta-

ble strong duality under linear perturbations
(stronger than the conclusion in [2, Theorem
7.4.27]), and hence, this theorem somehow ex-
tends [2, Theorem 7.4.20].

Duality for Cone-Constrained Set-
Valued Optimization Problems
In this section, we will apply the strong dual-
ity results for the set-valued problem (P) given
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in a perturbation form in the previous section
to a class of cone-constrained set-valued otim-
imization problems of the model

(CSP) WMin
⋃
x

F (x)

subject to x ∈ C, G(x) ∩ (−S) 6= ∅,

where X,Y, Z are as in previous sections,
F : X ⇒ Y ∪ {+∞Y } and G : X ⇒
Z ∪ {+∞Z} are proper mappings, C is a
nonempty convex subset ofX and S is a non-
empty closed convex cone in Z . Let us denote

A = {x ∈ C : G(x) ∩ (−S) 6= ∅}

and assume throughout this section that A ∩
domF 6= ∅.

For T ∈ L(Z, Y ) andG : X ⇒ Z∪{+∞Z},
the composite functionT ◦G : X ⇒ Y • is de-
fined by (T ◦ G)(x) := {T (z) : z ∈ G(x)}

ifG(x) ⊂ Z and (T ◦G)(x) := {T (z) : z ∈
G(x) ∩ Z} ∪ {+∞Y } ifG(x) 3 +∞Z .

The cone of positive operators and the cone of
weakly positive operators from Z to Y [4] are
defined respectively

L+(S,K) := {T ∈ L(Z, Y ) : T (S) ⊂ K},
Lw

+(S,K):={T ∈ L(Z, Y ) :T (S) ∩(− intK)=∅}.

When Y = R, both these cones collapse to the
usual (positive) dual cone S+ of S.

Now, as illustrations, we will give three ways to
define perturbation mappings for (CSP). The
first two ones were already proposed in [2, Sec-
tion 7.2.1]. As it is shown below, each pertur-
bationmapping will define a dual problem and
so, with these three perturbation mappings,
when applying to the problem (CSP), the sta-
ble strong duality results in Section 3 (Theorem
3), one gets three corresponding stable strong
duality results for (CSP).

•TheLagrange perturbationmapping: TakeZ as the space of perturbation variables andΦ1 : X×
Z ⇒ Y ∪ {+∞Y } by

Φ1(x, z) =

{
F (x), if x ∈C and z∈−G(x)− S,

+∞Y , otherwise.

Associated with the perturbation mapping Φ1 is the Lagrange dual problem of (CSP)

(CSD1) WSup
T∈Lw

+(S,K)

WInf ∪
(x,s)∈C×S

[F (x)+(T ◦G)(x)+T (s)].

• The first Fenchel-Lagrange perturbation mapping: Take X × Z as the space of perturbation
variables and Φ2 : X × Z × Z ⇒ Y ∪ {+∞Y } by

Φ2(x, x
′, z) =

{
F (x+ x′), if x ∈ C , z ∈ −G(x)− S,

+∞Y , otherwise.

This perturbation mapping leads to the First Fenchel-Lagrange dual problem of (CSP)

(CSD2) WSup
L′∈L(X,Y )
T∈Lw

+(S,K)

WInf
[
− F ∗(L′)− (IC + T ◦G)∗(−L′)− I∗−S(T )

]

• The second Fenchel-Lagrange perturbation mapping: Let Z̃ := X × X × Z be the space of
perturbation variables and we define the perturbation mappingΦ3 : X× Z̃ → Y ∪{+∞Y } as
Φ3(x, x

′, x′′, z) = F (x+ x′) if x+ x′′ ∈ C , z ∈ −G(x)− S and Φ3(x, x
′, x′′, z) = +∞Y ,

otherwise.

By an easy calculation, we get

Φ∗
3(L,L

′, L′′, T ) = WSup
[
F ∗(L′) + I∗C(L

′′) +

+(T ◦G)∗(L− L′ − L′′)

+I∗−S(T )
]
,

for all (L,L′, L′′, T ) ∈ L(X,Y )3 × L(X,Z).

Recall that if T /∈ Lw
+(S,K) then I∗−S(T ) =

{+∞} and hence Φ∗
3(L,L

′, L′′, T ) =
{+∞}. So, the dual problem (D) with

Φ = Φ3 gives us a new dual problem of (CSP):

(CSD3) WSup
L′,L′′∈L(X,Y )
T∈Lw

+(S,K)

WInf
[
− F ∗(L′)− I∗C(L

′′)

− (T ◦G)∗(−L′ − L′′)− I∗−S(T )
]
.
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This type of dual problem of (CSP), to the
best of knowledge of the authors, has never ap-
peared in any works for set-valued optimiza-
tion problems in the literature, and so, the sta-
ble strong duality stated in Theorem 4 below
is new. It is also worth observing that in the
case where F and G are (single-value) vector-
valued functions, (CSD3) collapses to the dual
problem (VD3) in [7] for vector optimization
problems.

Proposition 5. It holds that val(CSD3) 4K

val(CSD2) 4K val(CSD1) 4K val(CSP).

Proof. Use the same argument as in the proof
of [7, Proposition 6.1].

The qualifying condition (CQ) associated
with the perturbationΦ, when specified toΦi,
i = 1, 2, 3, turns to be the following ones:

(CQ1) ∃x̂∈C∩domF : G(x̂)∩int(−S) 6= ∅.
(CQ2) ∃x̂∈C : G(x̂)∩int(−S) 6= ∅ and F is

weaklyK-upper bounded on some
neighborhood of x̂.

(CQ3) ∃x̂∈ intC : G(x̂)∩int(−S) 6= ∅, F is
weaklyK-upper bounded on some
neighborhood of x̂ andG is lower
continuous at x̂.

It is easy to see that

(CQ3) =⇒ (CQ2) =⇒ (CQ1). (18)

Theorem 4. Let F be K-convex, G be S-
convex, and assume that (CQ3) holds. Then,
stable strong duality holds for the pair (CSP)−
(CSD3).

Proof. It is worth observing firstly that when
F is K-convex, G is S-convex and C is a
convex subset of X then Φ3 is K-convexlike-
convex. We now assert some points:

•By the assumption (CQ3), there are a convex
neighborhood U1 of 0X and ŷ ∈ Y such that

ŷ ∈ F (x) +K, ∀x ∈ x̂+ U1. (19)

• As x̂ ∈ intC , there is a neighborhood U2 of
0X such that

x̂+ U2 ⊂ C. (20)

• As G(x̂) ∩ (− intS) 6= ∅, there exist ẑ ∈
G(x̂) and an open neighborhood W of 0Z
such that

ẑ +W ⊂ −S. (21)

•On the other hand, asG is lower continuous
at x̂ and ẑ+ 1

2
W is an open subset ofZ satisfy-

ing (ẑ+ 1
2
W )∩G(x̂) 6= ∅, there is a neighbor-

hoodU3 of 0X such that (ẑ+ 1
2
W )∩G(x) 6= ∅

for all x ∈ x̂+U3. Then, for each x ∈ x̂+U3,

there is zx ∈ G(x) such that zx ∈ ẑ + 1
2
W ,

and hence

zx +
1

2
W ⊂ ẑ +

1

2
W +

1

2
W

=
1

2
(ẑ +W ) +

1

2
(ẑ +W ) ⊂ −S

(by (21) and the convexity of S). So

1

2
W ⊂ −zx−S ⊂ −G(x)−S, ∀x ∈ x̂+U3.

(22)
• Finally, take

V = [x̂+(U3∩
1

2
U1)]× (

1

2
U1)×U2×

1

2
W.

For (x, x′, x′′, z) ∈ V , it follows from (20)
and (22) that Φ3(x, x

′, x′′, z) = F (x +
x′). This, together with (20), yields ŷ ∈
Φ3(x, x

′, x′′, z) +K .

We have just shown that Φ3 is weakly K-
upper bounded on some neighborhood of
(x̂, 0X , 0X , 0Z). This ensures that the qualify-
ing (CQ) holds withΦ = Φ3. The conclusion
now follows fromTheorem 3.

Theorem 5. The next assertions are true.

(i) If F × G is K × S-convexlike on C and
(CQ1) holds then the stable strong duality
holds for the pair (CSP)− (CSD1).

(ii) If F isK convex,G is S-convex,C is a con-
vex set, and (CQ2) holds then the stable strong
duality holds for the pair (CSP)− (CSD2).

Proof. Use a similar argument as in the proof
of Theorem 4.

Remark 3. (a) Theorem 5 (i) and (ii) can be
considered as the stable versions of [2, Theo-
rems 7.5.6 and 7.5.10], respectively. On the
other hand, Theorem 5 (i) is similar to [15,
Theorem 3.26] or [16,Theorem 2.7]. However,
the dual problem defined in these works is a bit
different from (CSD1). There, the weak supre-
mumwas taken operatorsT of the special form
T (z) = 〈λ, z〉c with λ ∈ Z∗ and c ∈ intS
instead of T ∈ L(X,Z) as in (CSD1) (i.e, in
these works, it is also required that intS 6= ∅).

(b) As (18) always holds, if (CQ3) holds, then
(byTheorem 5), the stable strong duality holds
for both the pairs (CSP)−(CSD1) and (CSP)−
(CSD2).
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