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ABSTRACT
Introduction: Surface-enhanced Raman scattering (SERS) has attracted enormous interest as a
robust vibrational spectroscopy technique with widespread applications, primarily for the ultra-
sensitive detection of low-concentration molecules and selective identification. Nevertheless, the
optimization of SERS efficiency has been impeded by limitations in controlling the size of nanopar-
ticles utilized in this technique. Method: In this study, the morphology, structure, chemical com-
ponents, and optical properties of the as-synthesized Ag nanoparticles (Ag NPs) via a hydrothermal
method were thoroughly investigated by sophisticated analyses. The synthesized Ag NPs were
characterized for their morphological characteristics using scanning electron microscopy (SEM),
energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffrac-
tion (XRD), UV−Vis absorption spectroscopy, and Raman spectroscopy and assessed for their SERS
performance in detecting organic substances, including crystal violet (CV) and rhodamine B (RhB).
Results: The results showed that Ag NPs with different sizes could be obtained from 15 to 40 nm.
These sizes corresponded to the duration of the hydrothermal method, which was 15, 20, and 25
hours. The optimal sample exhibited the capability to detect dyemolecule solutions at diluted-low
concentrations as low as 10−8 M. Conclusion: Through these results, we contribute to advancing
the understanding of tailored nanoparticle synthesis for superior SERS performance, thus opening
avenues for enhanced molecular detection in various applied analytical fields.
Key words: SERS, hydrothermal synthesis, silver nanoparticles, plasmonic materials

INTRODUCTION
Raman scattering is a credible analytical tool that
detects minuscule quantities of many different sub-
stances. This technique achieves this by accessing
the unique spectral fingerprint of a substance’s vibra-
tional modes through inelastic Raman scattering1,2.
Raman spectroscopy has gained widespread accep-
tance as it capitalizes on the advanced growth of
laser and detector technologies in the visible wave-
length range. However, the limitations induced by
the third-order nonlinear process resulted in low effi-
ciency and sensitivity of Raman signals. Thus, several
techniques have been developed to enhance Raman
detection3. One of themostwell-knownpowerful en-
hancement strategies currently in use is SERS, a po-
tential label-free and nondestructive tool for molecu-
lar and chemical analytical sensing owing to its high
sensitivity and ability to reach the single molecule de-
tection limit4–9. Over the past decade, most research
on SERS platforms has emphasized using noble met-
als based on the electromagnetic enhancement (EE)
mechanism10. This mechanism has attained note-
worthy Raman enhancement factors because of the
intense localized surface plasmon resonance (LSPR),

particularly up to ~1012 9. This effect is strongly de-
pendent on the shapes of plasmonic nanoparticles
that are mainly derived from the ”hot spots” at the ul-
trasmall interparticle gaps related to the noble met-
als11,12. Metallic nanostructures are essential for en-
hancing the sensitivity of SERS sensors. Most re-
searchers prefer silver nanoparticles as SERS-active
substrates due to their superior performance when
compared to gold and copper. The varied morpholo-
gies of silver nanoparticles significantly influence the
SERS performance of the sensor. Ag NPs are exten-
sively employed to create active substrates for SERS ef-
fects thanks to their controllable shape, allowing fine-
tuning of the LSPR properties. Therefore, this en-
ables optimization of the SERS responses in numer-
ous cases.
Currently, there are enormous synthesis protocols to
fabricate AgNPs, including techniques such as lithog-
raphy, laser ablation, chemical reduction, and sputter-
ing13–16. Cheng et al. created colloidal silver nanoag-
gregates (AgNAs) of various sizes. The consistent
SERS signal enabled accurate detection. Their so-
lution of AgNAs allowed precise identification of 5-
nitro-8-hydroxyquinoline at a concentration as low
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as 3 x 10−5 M17. Atta et al. developed a highly
stable solution of polyvinylpyrrolidone (PVP)-capped
bimetallic silver-coated gold nanostars (BGNS-Ag-
PVP) for SERS performance. This nanoprobe gener-
ated a robust and consistent SERS signal when ana-
lyzed with a portable Raman instrument. The SERS
sensor showcased the practical application of these
bimetallic nanoparticles by accurately detecting me-
thimazole (Mz), an antithyroid drug used as a model
analyte. They achieved an impressive detection limit
of 1 nM for Mz in human urine samples18. Despite
remarkable growth in these methodologies, the ne-
cessity for advanced equipment remains a challenging
aspect. Regrettably, a significant issue still persists:
the large sizes of these aggregated silver nanoparticles
lead to the formation of numerous substantial gaps
around them, considerably diminishing the effective
amount of electromagnetic active regions. Addition-
ally, all the aforementioned techniques employed to
create SERS platforms involve the integration of plas-
monic nanostructures through a method of fabricat-
ing Ag NPs. This results in intricate procedures,
consumes substantial time, and constrains their fea-
sibility. Among these, wet chemical reduction is a
widely used method in producing Ag NP solutions.
The mechanism of this method is to reduce silver
ions (Ag+) in silver salt using sodium borohydride
or sodium citrate as a reducing agent19, along with
the addition of a surfactant agent such as poly(vinyl
alcohol) (PVA)20, poly(vinyl pyrrolidone) (PVP) 21,
and cetyltrimethylammonium bromide (CTAB)22,23.
Thismethod offers several advantages, such as (i) easy
control of the morphology of the Ag NPs by utiliz-
ing various reducing factors and surfactants during
preparation and (ii) facile synthesis in the practical
growth process of the Ag NPs24. Most previous re-
search has primarily focused on the impact of reduc-
ing agents and surfactants on the final morphology
of Ag NPs, with little attention given to controlling
the hydrothermal time. Herein, Ag NPs with differ-
ent sizes will be synthesized using the hydrothermal
method with various reaction times.

EXPERIMENTAL SECTION
Chemicals and reagents
All chemicals and reagents used in this study
were high grade. Silver nitrate (AgNO3, 99.8%),
poly(vinyl pyrrolidone) (PVP, MW=40,000), crys-
tal violet (CV, C25H30N3Cl), and rhodamine
B (RhB, C28H31ClN2O3) were purchased from
Sigma−Aldrich. Ethanol (C2H5OH, 99.0%) was
supplied by Xilong Scientific. Deionized (DI) water
was used in all experimental processes.

Synthesis of Ag NPs with different shapes
Ag NPs ranging from 15 to 40 nm in diameter were
prepared through a one-step hydrothermal reaction
in ethanol as the solvent, with the presence of the sur-
factant agent PVP 25. PVP (0.17 g) was dissolved in
20 mL of ethanol for 10 minutes before adding 0.3 g
of AgNO3. The solution turned light-yellow with stir-
ring within 15minutes. Afterward, the abovemixture
was transferred to a Teflon-lined autoclave and incu-
bated at 100◦C for different reaction times (15 h, 20
h, and 25 h, denoted as Ag-15, Ag-20, and Ag-25, re-
spectively). After naturally cooling to ambient condi-
tions, the as-preparedAgNPswere purified by remov-
ing the excess agents by centrifugation at 12,000 rpm
for 20 minutes and washed in DI water several times.
The colloidal Ag NPs were then dispersed in 5 mL of
DI water for further optical and structural evaluation
(Figure 1).

Optical and surface morphological charac-
terization
To examine the morphological characteristics of the
synthesized samples, we used a field emission scan-
ning electron microscope (FE-SEM, S-4800, Hitachi)
and a transmission electron microscope (TEM, JEOL
1010, JEOL).The chemical composition was analyzed
using energy-dispersive X-ray spectroscopy (EDX).
X-ray diffraction (XRD) with Cu Kα radiation was
used to evaluate the phase and crystallinity. All
UV−Vis absorbance spectra presented in this study
were obtained using a UV−Vis spectrometer (V-690,
JASCO, Inc.) to explore the plasmon resonance peaks.
To study the SERS properties of the as-prepared Ag
colloidal solution, a confocal micro-Raman system
(Horiba XploRAPLUS)was usedwith an excited laser
of 532 nm. The system was calibrated using a silicon
wafer reference standard before collecting the spectra.
Each Ramanmeasurement involved a single exposure
of radiation for 1 second, followed by an integration
time of 2 seconds with a laser incident power of 1.5
mW with a 50 × objective lens. A series of CV and
RhBmolecule concentrations in standard ethanol was
used as probe molecules. These molecules were thor-
oughly mixed with a preprepared colloidal solution of
Ag NPs, and 10 µL of the resulting mixture was then
drop-cast onto a copper slide and allowed to dry un-
der ambient atmospheric conditions.

RESULTS
XRD analysis systematically evaluated the crys-
tallinity of the Ag NPs. Figure 2(a) shows that the as-
synthesized samples exhibited XRD diffraction peaks
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Figure 1: Schematic depiction of the Ag NP fabrication process through the hydrothermal method

at 37.91◦ and 44.14◦, corresponding to the (111) and
(200) planes of Ag NPs (JCPDS No: 84-0713) (21).
The intensity of the (111) signal is significantly higher
than that of the other peak (200). This could be due
to the formation of Ag NPs without a perfect shape.
However, the (111) face signal was strong and dom-
inant in the XRD pattern, implying that the orien-
tation growth of Ag nanocrystals followed the (111)
planes, thereby indicating the successful fabrication
of the Ag solution through the hydrothermal method.
Notably, no peak corresponding to impurity states
was recorded in the XRD pattern, indicating that the
Ag fabrication process did not generate contaminants.
This result is consistent with published studies26,27.
To further examine the structure of the samples, Ra-
man spectra were obtained with a 532 nm laser line.
As shown in Figure 2(b), two Raman response modes
at 1364 cm−1 and 1544 cm−1 were identified as those
of the crystal phase of Ag NPs. These structural anal-
ysis results of the Ag NPs implied that the hydrother-
mal synthesis of Ag NPs could achieve high orienta-
tion and crystal growth 28,29.
Themorphological characteristics of the Ag NPs were
explored through SEM analysis, and the results are
shown in Figure 3, revealing that the average diame-
ter of Ag-15 was 15-20 nm. Increasing the reaction
time to 20 and 25 hours resulted in larger Ag NPs
with diameters of 20-30 nm and 30-40 nm, respec-
tively. These findings indicated that as the hydrother-
mal reaction time increased, there was a correspond-
ing growth in the diameter of the Ag NPs, as demon-
strated in Figure 3 (a-c). The results underscored the
substantial impact of the hydrothermal reaction on
the size of the Ag NPs. Moreover, the shape of the

Ag NPs may remain mostly the same with different
reaction times and retain their spherical shape. To
clearly observe the size and shape of Ag NPs, TEM
analysis of the Ag-20 and Ag-25 samples was carried
out (Figure 3 (d,e)); the analysis revealed the presence
of Ag nanoparticles that were spherical in shape and
varied in size from 20 to 30 nm and 30 to 40 nm, re-
spectively. This result is consistent with the SEM im-
age mentioned above. The change in Ag size followed
by the hydrothermal time significantly influences the
SERS behavior for detecting organic dyes at low con-
centrations based on the Ag NP-supported control-
lable diameter.
To further analyze the chemical composition of the
as-synthesized Ag NPs, we conducted an EDX analy-
sis on a representative sample, with the correspond-
ing results presented in Figure 4. The analysis indi-
cated the appearance of distinctAg, C, andOelements
within the sample, and the corresponding weight per-
centages are provided in the table inset within Fig-
ure 4. The incorporation of C and O elements might
be associated with the compositional characteristics
inherent to PVP-capped Ag NPs.
In Figure 5, the UV−Vis absorbance spectra of var-
ious colloids containing Ag NPs are presented. This
method allowed for the characterization of the LSPR
profile of the substrates based on the position and
width of the peak, suggesting that the LSPR proper-
ties of the materials also undergo changes with their
morphology30,31. Figure 5 exhibits an absorption
band range from 410 nm to 450 nm, attributed to the
LSPR of spherical Ag NPs32–34. Additionally, the ab-
sorbance intensity of the Ag NPs and the LSPR peak
shifting also correlate with the reaction time. When
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Figure 2: Structural and compositional characterizations of the Ag solution. (a) XRD pattern of the as-prepared
Ag-25 sample, (b) FT-Raman spectra of the Ag-25 sample.

Figure 3: Morphology of the as-synthesized AgNPs. (a-c) SEM images of the Ag-15, Ag-20, and Ag-25 samples.
(d-e) TEM images of the Ag-15, Ag-20, and Ag-25 samples, respectively.

the reaction time is increased, there is a more pro-
nounced redshift in the absorbance spectra of the Ag
NPs. In particular, the LSPR intensity of the Ag-20
sample was the highest among all the samples. The
intensity, width broadening, and shift of the Ag ab-
sorbance peaks can be explained by the alterations in
size and shape of the Ag samples, as demonstrated in
Figure 3. An interesting observation is the higher red-
shift trend observed in the Ag-25 sample, which can
be attributed to the significant increase in nanoparti-
cle size, consistent with themorphological analysis re-
sults mentioned above. This phenomenon is thought
to be explained by plasmon coupling with the sur-
roundingNPs, and the higher concentration of neigh-
boring NPs seems to influence Ag-25 behavior in this
regard35. As a result, the efficiency of detecting or-
ganic dyes based on Raman scattering can be signifi-

cantly affected.
The primary purpose of this study was to prepare
and optimize SERS-active substrates, wherein CV and
RhB were used as the reporter molecules in a stan-
dard solution with a series of concentrations to eval-
uate the SERS performance of the platforms. As de-
picted in Figure 6, the SERS data within the spectral
range reveal significant fluctuations in the Raman sig-
nals for the as-synthesized samples at different hy-
drothermal time intervals. The typical peaks of CV
molecules were clearly observed at the low concentra-
tion of 10−6 M(presented in Figure 6(a)). Certain CV
characteristic peaks have been identified at wavenum-
bers 800, 908, 1166, and 1611 cm−1, which result
fromC-H bending vibrations, radical-ring skeletal vi-
brations, C-Ccenter-C bonding, andC-C stretching vi-
brations of the phenyl ring, respectively36,37. The Ra-
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Figure 4: EDX elemental component of the as-prepared Ag-25 sample

Figure 5: UV−Vis absorbance spectra of the various Ag NP samples with different hydrothermal times
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man characteristic peaks of the CV target molecules
have been observed on the Ag-15 platform, show-
ing relatively lower intensity compared to other sam-
ples. In contrast, the Ag-20 substrates exhibit a dis-
tinguishable Raman signal of CV molecules with the
highest signal intensity. In comparison, the signal
indicated by the Ag-25 platform shows a downward
trend. Based on the results mentioned above, the
Ag-20 substrate demonstrates themost effective SERS
capability among the samples, which is attributed to
the LSPR property of Ag-20 NPs being in maximum
alignment with the molecular resonance condition of
CV molecules. This implies that SERS-based sensors
can be optimized for specific analytes by fine-tuning
the particle size to match a specific resonance condi-
tion of the reporter molecules38. To assess the SERS
enhancement factor of the three Ag samples using CV
as the reagent, we focused on the characteristic peak
at 1611 cm−1. The enhancement factor (EF) was cal-
culated employing the following equation:
EF = (ISERS × Cnormal)/(Inormal × CSERS)
Here, ISERS and Inormal represent the intensities of the
Raman signals obtained from theAgNP substrate and
bulk CV powder, respectively. Similarly, CSERS and
Cnormaldenote the concentrations of the probed solu-
tion in SERS and normal Raman, respectively.
Utilizing the provided equation, the EFs for the CV
Raman resonance peak at 1611 cm−1 were approxi-
mately calculated to be 9.7× 104, 19.5× 104, and 15.4
× 104 for Ag-15, Ag-20, and Ag-25, respectively.
The Ag-20 sample, which demonstrated superior
SERS performance compared to the other samples
with CV target molecules, was selected as the SERS
platform for evaluating various concentrations of RhB
solutions. As shown in Figure 6(b), the Raman spec-
tral results revealed distinct characteristic peaks cor-
responding to the RhB molecules at 622, 1196, 1362,
and 1648 cm−1. According to a previous report,
these Raman vibrational peaks are attributed to C-C-
C stretching, C-H in-plane bending, stretching of the
bridge C-C aromatic, and C=C stretching vibrations,
respectively39. The concentration of RhB varied from
10−6 to 10−8 M, and the intensity of the obtained
Raman peaks decreased gradually. The SERS peaks
were still clearly observed even at the lowest concen-
tration of 10−8 M RhB dye. Therefore, these findings
strongly suggest that the as-synthesized Ag NPs via a
hydrothermal strategy proved remarkably efficient in
recognizing organic dyes with diverse compositions
and concentrations. This indicates that the ability to
fine-tune the hydrothermal synthesis times to achieve
Ag nanoparticles with optimized sizes further facili-
tates the detection of trace amounts of target analytes.

DISCUSSION
According to the preceding findings, the
hydrothermal-supported Ag substrate suggests
a possible mechanism of SERS behavior. The in-
creased Raman signals observed for CV and RhB
with the Ag NPs could be attributed to a strengthened
electromagnetic field. This phenomenon, known as
the EE effect, causes a substantial amplification of
Raman signals for analytes when positioned at/or
close to nanostructures composed of coinage metals.
This amplification could reach several orders of
magnitude. In addition to the EE effect, the resonant
excitation of charge transfer (CT) between the metal
and adsorbed molecules also plays a critical role
in SERS signals22. As depicted in Figure 7, the
addition of Au nanoparticles to create the metal level
establishes new CT routes. The lowest unoccupied
molecular orbital (LUMO) and the highest occupied
molecular orbital (HOMO) levels of CV molecules
are situated at −4.1 and −6.2 eV. Meanwhile, the
EF level of Ag is situated at −4.84 eV. When the
molecules absorb light on the surface of Ag NPs
excited by the laser, electrons can be initiated to
move from the HOMO state of the CV molecules
to the Ag NPs and then transfer to the LUMO state.
The electrons in the LUMO state then return to
the HOMO state, leading to the enhancement of
the SERS signal. In particular, when the excitation
energy of the laser corresponds to the transition
from the Fermi level of Ag to the LUMO of the CV
molecules (∆E = 0.74 eV) or from the HOMO levels
of the absorbed molecules to the metal level (∆E
= 1.36 eV), significant SERS enhancement can be
achieved5. An excited laser with a wavelength of
532 nm (equivalent to 2.33 eV) could generate hot
electrons and excite these transitions, resulting in
enhanced SERS responses.

CONCLUSION
In this study, we employed a practical approach to fab-
ricate AgNPs through a carefully designed hydrother-
mal pathway and clarified the mechanisms respon-
sible for the SERS effects. Through controlled syn-
thesis, we obtained Ag NPs with varying sizes, each
possessing distinct plasmonic properties that played a
pivotal role in enhancing the performance of the EM,
thereby amplifying the SERS effects. Furthermore, an
aspect of our findings was the discernible impact of
analyte interactions, leading to significant CT transi-
tions between dye molecules and the metal nanopar-
ticles. This dynamic interplay between analytes and
Ag NPs fostered a conducive environment, resulting
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Figure 6: (a) SERS response of the CVmolecules with the various as-prepared Ag samples. (b) SERS spectra of RhB
molecules with different concentrations from 10-6 to 10−8 M.

Figure 7: The electromagnetic enhancement of the Ag NP-supported SERS sensor for trace-molecule detection.

in intensified SERS effects and ultimately enhancing

the sensing capabilities. The results revealed a clear

trend: the diameter of the Ag NPs varied as the hy-

drothermal time was extended from 15 to 25 hours.

Notably, the Ag NPs synthesized at the 20 hour mark

exhibited sizes ranging from 20-30 nm, showcasing

superior discernment of Raman signals compared to

other samples. Moreover, the achieved Ag substrates

demonstrated impressive capabilities in detecting so-

lutions of CV and RhB at low concentrations, from

10−6 to 10−8 M,which can be further applied to other

interdisciplinary fields.
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