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ABSTRACT
Currently, artificial intelligence (AI) is a ubiquitous technology that provides effective support across
all fields. In general, the pharmaceutical industry and drug production and development industry,
in particular, are enjoying a very good application for the opportunity when in silico models have
emerged as powerful platforms for designing new drugs. The aim of this project was to develop
new anticancer agents by designing novel triterpenoid derivatives from Paramignya Trimera and
predicting their efficacy against the Bcl-2 target receptor. The project used threemain in silicomod-
els: QSARMLR , QSARPCR and QSARANN . The models can be used to estimate IC50 values for novel
derivatives and for Escin extracted from Paramignya Trimera. Finally, the new good-value deriva-
tives were docked to the Bcl-2 receptor to assess responsiveness. As a result, 196 ewly designed
compounds from the structural framework of the triterpenoid compounds were designed by com-
bination with potential substituents. Screening by Veber identified 138 substances that met the
requirement of having the ability to make drugs. Similarly, the QSARMLR , QSARPCR , and QSARANN
models were constructed according to the following statistical values: R2 = 0.849, R2

ad j = 0.826,
and Q2

LOO = 0.789 for the QSARMLR model; the QSARPCR model, R2 = 0.860, R2
ad j = 0.831, and

Q2
LOO = 0.805 and the QSARANN model, R2

train = 0.941, R2
test = 0.915, and R2

cv = 0.912. The
use of models can help predict the effectiveness of newly engineered compounds. In the present
study, 20 compounds were found to be more effective than Escin. Molecular docking on the Bcl-2
receptor revealed that T.new7 had the most potential, with a binding energy E_binding = -7.933
(kcal.mol−1) and RMSD = 1.915 (Å). Research has achieved this goal by identifying T. new7, a newly
designed compound with better anticancer efficacy than natural Escin.
Key words: Bcl-2, HepG2, Molecular docking, Paramignya trimer, QSAR, Triterpenoid

INTRODUCTION
According to GLOBOCAN, liver cancer is one of the
5 deadliest cancers, with a high number of new cases
and deaths each year in 2020. Figure 1 shows that
liver cancer has the third highest number of deaths in
the world and the highest number of deaths in Viet-
nam1. Worldwide, liver cancer is the thirdmost com-
mon cause of cancer death, accounting for 8.3%, fol-
lowing lung and colorectal cancer. In Vietnam, liver
cancer is the leading cause of death, accounting for
20.6% of all deaths. These data indicate that with the
current situation of deaths from liver cancer, project
implementation is extremely necessary. Liver cancer
not only causes hundreds of thousands of deaths an-
nually but also imposes a significant socioeconomic
burden. Therefore, the search for liver cancer deriva-
tives is extremely urgent for patients and for humanity
in general.
Liver cancer is a type of cancer that starts in liver cells.
The liver is a football-sized organ located in the up-
per right quadrant of the belly, beneath the diaphragm

and above the stomach. The liver can develop several
types of cancer. Hepatocellular carcinoma (HCC) is
the most common type of liver cancer and is the main
type of liver cell (hepatocyte). Cancer that spreads to
the liver is more common than cancer that spreads to
liver cells. Cancer that develops in another part of the
body, such as the colon, lung, or breast, and spreads
to the liver is referred to as metastatic cancer rather
than liver cancer. This type of cancer is termed by the
organ in which it began; for example, metastatic colon
cancer describes cancer that begins in the colon and
travels to the liver.
Triterpenes are a class of terpenes made up of six iso-
prene units with the chemical formula C30H48. These
compounds can alternatively be thought of as three
terpene units. Triterpenes are produced by animals,
plants, and fungi and include squalene, the precursor
to all steroids. Triterpenes have a wide range of struc-
tures. Almost 200 distinct skeletons have been iden-
tified. These skeletons can be roughly classified based
on the number of rings present. Pentacyclic structures
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Figure 1: Estimated number of deaths by cancer in 2020; World & Vietnam; both sexes; all ages. Source: GLOBO-
CAN

(5 rings) predominate in general. One of the uses of
Triterpenoids in the human body is to help prevent
and treat cancer as well as to combat cancer metasta-
sis. According to a 2011 study by Watchtel-Galor and
colleagues, the use of triterpenoids in genital mush-
rooms has anticancer effects in vivo according to an-
imal studies (mouse studies). In addition, the study
indicated that the ingredients also contain active sub-
stances that help prevent cancer cells from growing in
vitro (in the test tube). Thus, Triterpenoids help in-
hibit many types of cancer cells, such as lung cancer,
breast cancer, and skin cancer cells. In addition, can-
cer metastasis is quite complicated. Cancer cells sep-
arate from the primary tumor and begin to move to
other parts of the body. From there, small tumors—
secondary tumors—form 2.
Triterpenoids are of interest because of their anti-
inflammatory and analgesic properties, especially in
anticancer cell lines, including HepG2 cells. Artificial
intelligence facilitates the creation of virtual screen-
ing models for derivative compounds. This prospec-
tive study was designed to explore a synthetic com-
pound with superior cancer-fighting properties com-
pared to the natural substance found in Paramignya
Trimera. The triterpenoid of the oleanolic acid (OA)
subgroup, called escin (Figure 3), is extracted from
Paramignya trimera (Figure 2) of the familyRutaceae.
OAhas various benefits, including anti-inflammatory,
antiviral, and hypoglycemic effects, and has poten-
tial for use against cancer cells. A large number of
Triterpenoids are active against various human cancer
cell lines, such as HepG2, SMMC-772 (hepatocellu-
lar carcinoma), HL-60 (leukemia), A549 (hepatocel-
lular carcinoma),MCF-7 (breast cancer), and SW-480
(colon carcinoma)3.
Furthermore, oleanolic acid (OA) affects cancer cells
via many routes. Increasing Bcl-2 receptor inhibition

is a strategy that promotes the proliferation of OA-
treated HepG2 cancer cells. As a result, the Bcl-2 re-
ceptor was chosen as the target of interest. This re-
search used in silico algorithms to predict novel syn-
thetic chemicals. Chemicals that are more effective
at inhibiting HepG2 cells are being found. The topic
is focused on developing three models: QSARMLR,
QSARPCR, and QSARANN . Using virtual screening
procedures saves time, money, and human resources.
This research is likely to yield a result that speeds up
compound screening in research and new medicine
manufacture compared to experimental trials.

METHODOLOGY
Datamining from experiments
The data collected from the experiments are divided
into 2 datasets: the training subset and the external
evaluation subset. The two subsets are completely in-
dependent datasets. The condition is that the com-
pound has a Triterpenoid framework and was tested
on HepG2 cell carcinoma cells with an IC50 value.

Design of new compounds
Two R1 and R2 sites (Figure 3) in the structural frame
were selected for the attachment of substituents via
the maximum design method. The binding group,
which includes 14 cells labeled T1 to T14, has been
shown to have anticancer activity. Therefore, 196
novel compounds were synthesized using the max-
imum design technique. Multilevel design: This
method is used in drug design and helps generate a
list of design compounds based on various taxonomic
factors and material quantities6. The maximum de-
sign limits the possibility of missing significant com-
pounds, thereby providing a complete dataset of pos-
sible designs when combining taxonomic elements (2
positions selected on the frame Escin structure) and
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Figure 2: (a) Image of the Paramignya Trimera 4; (b) Escin structure from the Paramignya Trimera 5

corresponding materials (14 functional groups T1-14
were selected).

Figure 3: Structural framework for designing new
compounds

Optimization of the structures
New derivatives were created using the ChemDraw
program. Using molecular and quantum mechan-
ics, all novel and experimental derivatives have been
structurally optimized. These two types of software
used include HyperChem with an MM+ force field
and a gradient level of 0.05 and MOPAC with the
semiempirical PM7 approach. This approach helps
molecules determine themost stable structure and ac-
quire descriptive variables, including partial charge,
HOMO, LUMO, MW, DH, and so on.

Calculation of molecular descriptors
After the structural optimization procedure, MOE
software was used to determine the molecular de-
scriptor for all the datasets. The selection and cal-

culation of all descriptors were investigated from 0
to 3D. When the results are made public. The vari-
able screening procedure was used to exclude vari-
ables that were not important. When combined with
the descriptor variables produced from the structural
optimization process, a dataset of descriptive charac-
teristics for eachmolecule is obtained, allowingQSAR
models to be built.

Estimation of QSARmodels
This study focused on the development of threeQSAR
models: multivariate linear regression (MLR), princi-
pal component regression (PCR), and artificial neural
network (ANN) models.

QSARMLR model
TheQSARMLR model predicts the dependent variable
Y based on the values of two or more independent
variables X. The model is represented as follows:
Y = 0 + 1×X1 + 2×X2 +… + k× Xk + e (1)
Here, Y is the dependent variable, and β 0, β 1, β 2…
β k are the regression parameters of the model. Xk

is the independent variable (k is the number of vari-
ables), and e is the random error. In this study, the
dependent variable was the IC50 value. The inde-
pendent variable is the molecular descriptor22. Re-
gression 200823 software was used to construct the
QSARMLR model.

QSARPCR model
Theset {X,Y}, where X is a data groupwithmobserva-
tions and n variables and Y is the dependent variable.
The information is gathered but not previously pro-
cessed. Although outcomeY has no direct association
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Figure 4: The substitution groups used in the design of newmolecules 7–21

with X, it does have a relationship with the principal
components, which is a property of principal compo-
nent regression22. To create the QSARPCR model, the
XLSTAT 2016 24 program was used.

QSARANN model
Artificial neural networks (ANNs) perform the same
learning process as the human brain22. The structure
of an artificial neural network I(m)-HL(n)-O(k) in-
cludes the following: the input layer I(m) is the de-
scriptive variable of the QSARMLR model, the out-
put layer O(k) is the IC50 value, and the hidden layer
HL(n) is investigated to determine the best QSARANN

model25. The QSARANN model was trained on the
MATLAB 201626 tool.

Drug-likeness
The rule of action for Lipinski-5, the earliest andmost
well-known rule for identifying substances with good
oral absorption, was proposed in 199727. Since then,
several analogous rules based onmolecular character-
istics, such as those given by Ghose 28 and Veber29,
have been established. According to Veber’s rule, sub-
stances in this study must meet the following two cri-

teria: rotatable bonds (nRB) ≤ 10 and polar surface
area (tPSA)≤ 140 Å2. Therefore, screening according
to the same rules is aimed at finding compounds that
have the potential to becomemore effective oral drugs
according to Veber’s rule under two conditions: rotat-
able bonds (nRB)≤ 10 and polar surface area (tPSA)
≤ 140 Å2. Reduced molecular flexibility, as measured
by the number of rotatable bonds and low polar sur-
face area or total hydrogen bond count (sumof donors
and acceptors), are important predictors of good oral
bioavailability. A reduced polar surface area corre-
lates better with an increased permeation rate than
does lipophilicity (C log P), and an increased rotat-
able bond count has a negative effect on the perme-
ation rate29.

Bioactivity prediction
Medicinal characteristics were determined by using
three QSAR models to predict the bioactivity at the
IC50 for new synthetic compounds, and esin is a nat-
ural triterpenoid derived from Paramignya Trimera.
Then, using Escin as a reference, we looked for deriva-
tives with greater biological activity than Escin. Cur-
rently, research predicts and discovers derivatives
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with higher bioavailability than natural chemicals and
the potential to become medications.

Molecular Docking

Themain goal of molecular docking is to understand
and predict molecular recognition both in terms of
structure-finding bonds and energy-predicting affin-
ity. Currently, the application of molecular dock-
ing methods is very diverse and includes structure-
activity studies, optimization, and potential molecule
searches via virtual screening30. In this study, we
used the MOE2019 package to perform the molecu-
lar docking process.
Escin, a Triterpenoid derived from Paramignya
Trimera, belongs to the oleanolic acid group. This
process affects cancer cells in a variety of ways, includ-
ing inducing cyclic death, controlling the cell cycle,
and killing cancer cells. Bcl-2 normally prevents cell
cycle death (apoptosis). The target of action in this in-
vestigationwas chosen to be Bcl-2, which inhibits Bcl-
2 receptors, hence boosting cancer cell cyclic death 31.
The Bcl-2 receptor, encoded 4D2M, was obtained
from the Protein Data Bank (PDB)32.

RESULTS

The training and test datasets

Seventy-four chemicals were gathered from articles
published in reputable journals and PubMed. The
datawere utilized to developmodels and assess the ex-
ternal inhibitory concentration (IC50). The training
set of 60 compounds was used to developQSARmod-
els, and the external validation set of 14 compounds
was utilized to assess the predictive power of the bio-
logical activity of the model.

Design of the new compound

Using the multilayer design method and ChemDraw
tool, a total of 196 novel molecules were obtained.
All of these derivatives were optimized using the
proper molecular mechanics sequence, followed by
PM7 quantum mechanics. They are then calculated
descriptors in the following phase.

Optimization of the structure and calcula-
tion of descriptors

All the compounds, both experimental and newly cre-
ated, were subjected to structural optimization and
molecular descriptor computations. The findings
generated 310 descriptive attributes for eachmolecule
utilized to construct the QSAR model.

Construction of the QSAR-MLR models

The model yields the following equation: R2 = 0.849,
R2

ad j = 0.826, and Q2
LOO = 0.789:

IC50 (µM) = 3.739 + 2.247× x1 + 85.94× x2 + 24.36×
x3 (3.13)+ 0.156×x4 + 5.24× x5 – 0.03695× x6 +
0.933× x7 - 0.131× x8 (2)

Construction of the QSARPCR model

TheQSARPCR model was built based on the variables
of the QSARMLR model and yielded the following re-
sults: R2 = 0.860, R2

ad j = 0.831, and Q2
LOO = 0.805.

The equations are represented as follows:
IC50 (µM) = 8.406 + 2.48×x1 + 73.319×x2 +
25.836×x3 + 0.135×x4 + 3.965×x5 - 0.037×x6 +
1.250×x7 - 0.130×x8 (3)

Construction of the QSARANN Models

TheQSARANN model was built using the QSAR-MLR
model descriptors from equation (2). The training
of models uses a back-propagation algorithm with
transfer functions such as Logsig, Tansig and Pure-
lin. Therefore, the architecture of the ANNmodels in
this scenario is I(8)-HL(m)-O(1). QSARANN models
were developed in two stages. First, using the train-
ing dataset, multiple designs of MLP networks with
different m values were identified, and the results are
shown in Table 2.
Second, using the same external evaluation dataset
(Table 5) of the QSARMLR and QSARPCR models, the
best network was chosen based on theMARE (%) and
Q2

EV values. As a result, the best model was I(6)-
HL(6)-O(1) (Figure 5a), with the statistical parame-
tersQ2

EV−ANN = 0.866 andMARE= 62.1%, as shown
in Figure 5 and Figure 12, respectively, with the Pure-
lin transfer function.

Figure 6: The architecture of the QSPRANN I(8)-
HL(6)-O(1) model
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Table 1: Results of building the QSARMLR model

k Variables R2 R2adj Q2LOO SE Fstat PRESS

1 x1 0.250 0.233 0.192 4.139 18.890 1064.026

2 x1 | x2 0.626 0.613 0.569 2.938 47.792 568.351

3 x1| x2 | x3 0.710 0.694 0.651 2.613 45.626 460.183

4 x1| x2 | x3 | x4 0.756 0.738 0.693 2.418 42.577 403.963

5 x1| x2 | x3 | x4 | x5 0.785 0.765 0.720 2.291 39.363 368.313

6 x1 | x2 | x3 | x4 | x5

| x6

0.814 0.793 0.752 2.150 38.628 326.307

7 x1 | x2 | x3 | x4 | x5

| x6 | x7

0.829 0.805 0.764 2.084 35.894 310.581

8 x1 | x2 | x3 | x4 | x5

| x6 | x7 | x8

0.849 0.826 0.789 1.972 35.944 277.383

Notation
of
molec-
ular
de-
scrip-
tors

LUMO Lowest unoccu-
pied molecular
orbital

x1 vsurf_CW4 Capacity factor
at -2.0

x5

PEOE_RPC-Relative negative
partial charge

x2 SlogP_VSA3 Bin 3 SlogP
(0.00, 0.10]

x6

21C Partial charge of
C position num-
ber 21

x3 vsurf_EWmin1 Lowest hy-
drophilic energy

x7

vsurf_DD13vsurf_EDmin1,
vsurf_EDmin3
distance

x4 SlogP_VSA4 Bin 4 SlogP
(0.10, 0.15]

x8

The external validation
External evaluation is considered a test to validate the
predictive ability of the built models. From there, the
model that gives the closest prediction results to the
experimental results is selected. The external evalu-
ation dataset includes 14 compounds obtained from
experiments and is an independent set from the set
used to construct the QSAR model. Detailed infor-
mation on these derivatives is presented in Figure 7.
The predicted values of the QSAR models for 14 sub-
stances in the external evaluation dataset are pre-
sented in Table 3.

Drug-likeness
After screening the drug likeness of all 196 com-
pounds using Veber’s criteria, we found 138 com-

pounds that met these criteria.

Bioactivity prediction
The study predicts the IC50 for 138 newly designed
substances and Escin. Then, 20 compounds with IC50s

less than Escin were obtained, ordered from small to
large based on QSARANN for the best predictability.
The structures of the 20 potential substances are pre-
sented in Figure 8.
The detailed prediction results of 20 compounds from
each model are presented in Table 4.

Molecular Docking
To test the inhibitory ability of the peptides onHepG2
cancer cells, 20 drugs were docked with the appropri-
ate IC50 values for the Bcl-2 receptor. This docking

7
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Table 2: The results of initial screening for the ANN architecture

Ord. QSARANN
model

Transfer
func-
tion

R2train R2test R2cv Training
error

Test er-
ror

Validation
error

Training
algo-
rithm

1 I(8)-HL(6)-
O(1)

Logsig 0.986 0.988 0.988 1.201 3.367 0.983 BFGS
42

2 I(8)-HL (6)-
O(1)

Tansig 0.957 0.984 0.998 0.961 2.739 1.186 BFGS
63

3 I(8)-HL(10)-
O(1)

Logsig 0.965 0.987 0.97 0.948 2.084 1.752 BFGS
39

4 I(8)-HL(10)-
O(1)

Tansig 0.975 0.992 0.99 2.249 2.589 0.721 BFGS
13

5 I(8)-HL(5)-
O(1)

Purelin 0.907 0.967 0.973 2.790 2.246 1.003 BFGS
17

6 I(8)-HL(6)-
O(1)

Purelin 0.941 0.916 0.912 0.822 1.389 0.795 BFGS
36

7 I(8)-HL(10)-
O(1)

Purelin 0.911 0.921 0.975 1.658 2.326 1.896 BFGS
43

8 I(8)-HL(4)-
O(1)

Purelin 0.917 0.977 0.936 2.567 2.238 1.326 BFGS
69

Table 3: The predicted IC50,pred values of the threemodels in the external evaluation set

Symbol IC50,exp (µM) IC50,pred (µM)

QSARMLR QSARPCR QSARANN6

TPN1 8.900 5.777 6.196 5.311

TPN2 29.700 10.388 10.573 11.069

TPN3 3.300 3.754 3.613 2.562

TPN4 17.660 6.408 6.462 7.848

TPN5 11.600 5.995 6.276 4.827

TPN6 15.500 8.868 9.065 7.713

TPN7 17.700 7.547 7.519 7.264

TPN8 22.400 8.867 9.065 7.714

TPN9 25.000 9.353 10.069 8.772

TPN10 23.700 7.547 7.519 7.264

TPN11 22.300 8.485 9.184 7.403

TPN12 21.000 10.116 10.320 10.313

TPN13 26.700 9.860 10.266 10.054

TPN14 0.660 3.750 4.015 1.5943

8
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Figure 7: The experimental values of IC50,exp in the external evaluation dataset

Table 4: The predicted IC50,pred values of new derivatives from three QSARmodels

Symbol IC50, pre (µM) Symbol IC50, pre (µM)

QSARMLR QSARPCR QSARANN QSARMLR QSARPCR QSARANN

T.new1 1.754 2.15 2.675 T.new11 4.025 4.277 1.817

T.new2 2.848 2.7 1.532 T.new12 5.571 5.589 2.502

T.new3 2.905 4.159 1.477 T.new13 4.11 4.786 1.672

T.new4 0.807 0.973 2.094 T.new14 3.906 4.175 1.955

T.new5 5.013 5.616 2.254 T.new15 5.042 5.325 2.201

T.new6 4.48 4.687 2.056 T.new16 1.229 2.004 2.279

T.new7 0.938 1.764 1.187 T.new17 5.299 5.871 2.686

T.new8 6.115 6.803 2.719 T.new18 2.863 3.642 1.573

T.new9 2.369 3.11 1.496 T.new19 1.818 2.746 1.306

T.new10 6.277 7.156 1.356 T.new20 3.685 4.609 1.957

Escin 3.391 3.534 2.752

9
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Figure 8: The structures of the 20 new compounds

process helps evaluate the binding ability of the com-
pound to the Bcl-2 target receptor by simulating the
3D structure of both the receptor and the compound.
Substances that are considered well bound have an
RMSD < 2.0 Å and an E_binding < -7.0 kcal.mol−1.
The results for the 6 compounds with good binding
energies and RMSD values are presented in Figure 5.

DISCUSSION
QSARmodels
Table 1 and Figure 10 show that the R2, R2

ad j , and
Q2

LOO values are proportional to the number of
variables. This shows that when the number of vari-
ables increases, the model improves. This change was
accompanied by a significant change from 7 to 8 vari-
ables, although before each increase, the variables did
not change much. Therefore, 8 variables are needed,
indicating that this is the most promising QSARMLR

model. The model consists of 8 variables as follows:
LUMO, PEOE_RPC- 21C vsurf_DD13 vsurf_CW4

SlogP_VSA3 vsurf_EWmin1 and SlogP_VSA4.
LUMO is the lowest unoccupied molecular orbital;
PEOE_RPC- is a relatively negative partial charge;
21C is the partial charge at position 21; vsurf_DD13
is the vsurf_EDmin1 – vsurf_EDmin3 distance;
vsurf_CW4 is the capacity factor at -2.0; logP_VSA3
is the bin 3 SlogP (0.00, 0.10]; vsurf_EWmin1 is the
lowest hydrophilic energy; and SlogP_VSA4 is the
bin 4 SlogP (0.10, 0.15].
The QSARMLR model results for R2 = 0.849 > 0.6(47)
showed that the model encoded 84.9% of the biologi-
cal activity variables in the dataset. AnR2

ad j =0.826 >
0.5 represents an encoding of 82.6% of the active value
variable in the data, andQ2

LOO =0.789 > 0.5(47). As a
result of these findings, the model produced relatively
good prediction outcomes.
Moreover, the QSARPCR model results for R2 = 0.860
> 0.6(47) demonstrated that the model encoded 86%
of the biological activity variables in the dataset. An
R2

ad j = 0.831 > 0.5 represents an encoding of 83.1%

10
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Figure 9: Docking results of six compounds with the 3U6J–Bcl-2 system

of the variable to the active value in the data. Q2
LOO

= 0.846 > 0.5(47). Based on these findings, the model
produces accurate predictions.
The architecture of ANN I(8)-HL(6)-O(1) using the
Purelin transfer function for R2

train = 0.941, R2
test =

0.916 andQ2
cv = 0.912 shows that themodel has good

predictability with high correlation values. The results
with an external evaluation set of 0.866 show that the
predictive ability of this model is closest to reality.

Based on the above reasons, the QSAR models were
chosen to develop the new design and Escin.
The contributions of the variables in the model were
also investigated, and the results are presented in Fig-
ure 11. All the descriptors contributed significantly
to various degrees the most significant contributor
was PEOE_RPC-, and the least significant contribu-
tor was vsurf_EWmin1, with contributions of 42.3%
and 1.6%, respectively. The remaining variables also

11
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Figure10: The variation in the SE, R2
train , andQ2

LOO
values in response to the k value

contributed to the QSARMLR model in the follow-
ing order: PEOE_RPC- > vsurf_CW4 > SlogP_VSA3
> LUMO > 21C > vsurf_DD13 > SlogP_VSA4 >
vsurf_EWmin1.

Figure 11: The contributions of the variables to the
QSARMLR model

The external validation
As mentioned above, external evaluation is used to
construct the MLR and PCR models. In addition, the
best ANN model was identified from the initial sur-
vey models, as shown in Table 2. The two values used
as a basis for evaluation are Q2

EX (>0.5) and MARE
(%). The results are fully presented in Figure 12. The
results show that the linear regression models meet
the requirements, and the 6th neural network model
(ANN6) is selected for the project because the Q2

EX

value is 0.866, which is the highest, while the MARE
(%) value is comparable to that of the other models.
As depicted in Figure 13, the Q2

EX values of the
QSARMLR model for the relationships between the
IC50,pred and experimental IC50,exp values are shown,

Figure 12: The MARE (%) and Q2
EX values of the

QSAR models

for a value of 0.840. Similar to the QSARPCR and the
external evaluation set, the result is Q2

EX = 0.846, and
the QSARANN6 gives a result of 0.866. The conclusion
that the above three models all give good correlation
index results for the external evaluation set shows that
the evaluation ability is reliable and can be used to pre-
dict a wide range of design substances.
Furthermore, one-way ANOVA showed that the dif-
ferences between the experimental and predicted val-
ues from the threemodels, QSARMLR, QSARPCR, and
QSARANN , were not significant when the results were
F = 0.0269 < F0.05 = 3.2381. Therefore, the predictive
ability of the three models is appropriate.

Bioactivity prediction
Under the same calculation conditions, the same
models predicting the results obtained above for the
20 substances had better IC50 values than did those of
Escin. The present study used Escin as a base to select
compounds with better biological activity to prove
that this potential new substance has superior cancer
cell inhibitory ability compared to natural active sub-
stances.
Prediction results of new molecules and predicted
Escin values from three QSAR models, QSARMLR,
QSARPCR, and QSARANN6. There was no significant
difference in the analysis of variance (F = 0.71595 <
F0.05 = 3.07606). Therefore, the predictive ability of
the three models is consistent and reliable.

Molecular Docking
The full interaction results of the six new compounds
on the Bcl-2 receptor are presented in Table 5. Among
the six compounds that gave good results
T.new1 binds to the Bcl-2 receptor via a hydrogen ac-
ceptor bond to ARG74 (distance = 2.97 Å, energy =

12



Science & Technology Development Journal 2024, 26(Special issue):1-16

Figure 13: Correlations of experimental and predicted values on the external dataset of QSAR models

-1.7 kcalmol−1), E_binding = -7.158 (kcalmol−1) and
RMSD = 1.539 (Å).
T.new4 binds to the Bcl-2 receptor via a pi-cation
bond to ARG154 (distance = 3.58 Å, energy = -
1.6 kcalmol−1), E_binding = -7.817 (kcalmol−1) and
RMSD = 1.696 (Å).
T.new7 binds to the Bcl-2 receptor via a hydrogen
donor bond to CYS174 (distance = 3.37 Å, energy =
-1.2 kcalmol−1), E_binding = -7.933 (kcalmol−1) and
RMSD = 1.915 (Å).
T.new11 binds to the Bcl-2 receptor via a pi-cation
bond to TYR79 (distance = 3.78 Å, energy = -0.9
kcalmol−1), E_binding = -7.166 (kcalmol−1) and
RMSD = 1.388 (Å).
T.new12 binds to the Bcl-2 receptor via a hydrogen
donor bond to CYS174 (distance = 3.23 Å, energy = -
0.8 kcalmol−1), E_binding = -7.869 (kcalmol−1) and
RMSD = 1.279 (Å).
T.new19 binds to the Bcl-2 receptor via a pi-cation
bond to ILE146 (distance = 3.65 Å, energy = -0.9
kcalmol−1), E_binding = -7.367 (kcalmol−1) and
RMSD = 1.846 (Å).
The full interaction results of the six new compounds
on the Bcl-2 receptor are presented in Table 5. Among

the six compounds that gave good results, T.new7
had the best results: T.new7 binds to the Bcl-2 recep-
tor by a hydrogen donor bond to CYS174 (distance =
3.37 Å, energy = -1.2 kcalmol−1), E_binding = -7.933
(kcalmol−1) and RMSD = 1.915 (Å).
T.new7 had the best results: T.new7 binds to the Bcl-2
receptor by a hydrogen donor bond to CYS174 (dis-
tance = 3.37 Å, energy = -1.2 kcalmol−1) E_binding
= -7.933 (kcalmol−1) and RMSD = 1.915 (Å).
On the BCL-2 receptor, the amino acids consid-
ered essential are ARG74, ARG154, CYS174, TYR79,
CYS174, and ILE146 when sequentially linked by the
6 most potential compounds.
Since then, QSARMLR, QSARPCR, and QSARANN6

models have been successfully constructed to predict
new engineered substances. Finally, the T.new7 com-
pound was selected to inhibit HepG2 cancer cells.

CONCLUSION
This study applied the QSAR model to screen and
develop new drugs, specifically triterpenoids, for use
on HepG2 cancer cells. The final selected compound
T.new7 showed better bioavailability than the nat-
urally occurring substance and met the conditions
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Table 5: Detailed interaction results of new compounds on the Bcl-2 receptor

Compounds Ligand Receptor Interaction Distance (Å) E (kcal/mol)

T.new1 O 58 NE ARG 74 (A) H-acceptor 2.94 -1.7

T.new4 5-ring NH2 ARG 154 (A) pi-cation 3.58 -1.6

T.new7 O 20 SG CYS 174 (A) H-donor 3.37 -1.2

T.new11 6-ring CD1 TYR 79 (A) pi-H 3.78 -0.9

T.new12 O 48 SG CYS 174 (A) H-donor 3.23 -0.8

T.new19 5-ring CG2 ILE 146 (A) pi-H 3.65 -0.9

for use as a drug according to Veber’s rule. Biolog-
ical activity prediction based on the screening pro-
cess and statistical statistics is fair and reliable. This
study provides the foundation for future T.new7 ex-
perimental studies. Based on these findings, T.new7
was created using the Escin structural framework,
with R1 as morpholine and R2 as coumarin. T.new7
has an IC50 (µM) of 0.938, 1.764, and 1.187 ac-
cording to the 3 models QSARMLR, QSARPCR, and
QSARANN, respectively. In this case, QSARANN pro-
duces the best prediction results, and all three values
are lower than those of the natural parent chemical
Escin. The results of molecular docking showed that
E_binding = -7.933 kcal.mol−1 and RMSD = 1.915
Å. The T.new7 compound binds to the Bcl-2 recep-
tor via an H-donor. Specifically, T.new7 gives amino
acid CYS174 a hydrogen (distance d = 3.37 Å, energy
= -1.2 kcal.mol−1). Therefore, T.new7 was selected
as the best inhibitor of HepG2 cancer cells. This cur-
rent study is limited by the fact that it involved only
virtual screening. Despite its exploratory nature, this
study offers T.new7 for further experiments. Con-
sequently, further experimental studies are necessary
to confirm the effectiveness of T.new7 against HepG2
cancer cells.
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