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ABSTRACT
Introduction: The use of conductive powders in electrodischarge machining (EDM) holds great
potential for improving the machining process. This study investigated the addition of tungsten
powder alloy to a dielectric liquid during an EDM process called powder mixed EDM (PMEDM) to
process heat-treated SKD61 steel. The aim of this study comprises (i) considering the influence of
essential process parameters, including pulse-on time (Ton), peak current (Ip), and amount of pow-
der (Ap), on tool wear rate (TWR) and material removal rate (MRR) and (ii) finding an optimized
coalescence of process variables for enhancing the MRR and reducing the TWR. Methods: For
this purpose, the Box–Behnken matrix was adopted for the experimental design to obtain em-
pirical data. Subsequently, adequate mathematical models and analysis of variance (ANOVA) for
MRR and TWR were used to assess the adequacy of these models. Finally, gray relational analy-
sis (GRA) was adopted for multiattribute optimization. Results: The results revealed that the Ip
had the most robust influence on the MRR and TWR. However, the factors influencing TWR are
Ap and Ton, while the reverse is true for MRR. The predictive models of MRR and TWR were con-
structed and validated for adequacy/precision through coefficients (comprising ``R2'', ``R2(pred)'',
and ``R2(adj)''). From the predictive models, the optimal responses and process variables, includ-
ing MRRmax of 0.003397818(g/min), TWRmin of 0.000481408(g/min), peak-current of 5(A), pulse-on
time of 150(µs), and powder concentration of 15(g/l) were found. In addition, microdefects at the
optimum electrical mode were compared between the powder mode and the no-powder mode.
As a result, the surface obtained with the powder mode has fewer microcracks, voids, droplets, and
smaller globules of debris than the surface obtainedwith the powderlessmode. Conclusions: The
results of this studywere obtained by evaluating the influence of process parameters onmachining
performance, establishing a predictionmodel for machining performance, and optimizing process
parameters; these results can be applied in factualmoldmanufacturing and help technologists and
researchers make the most suitable choices. In addition, the methods applied in this study can be
applied in the PMEDM process to study different powders and workpiece materials.
Key words: EDM, PMEDM, tungsten powder alloy, MRR, TWR

INTRODUCTION
Powder mixed into electrodischarge machining
(PMEDM) was developed based on electrodischarge
machining, and PMEDM has emerged as a potential
machining method for enhancing machining per-
formance and surface quality to process cut-difficult
materials and ensure the execution of complex
shapes 1,2. PMEDM was born approximately four
decades ago, and different powders were investigated.
The influence of powders such as C, Fe, Cu, and Al
on discharge properties, machining efficiency, and
surface quality was first reported in 1981 by Erden
et al.3. Subsequently, different powders, such as
Si, SiC, Gr, Mo, Cr, Ti, TiC, Al, Ni, and C, were

investigated for their ability to enhance machining
properties and surface quality 4. However, few studies
on tungsten powder alloys subjected to EDM have
been performed.
The types of materials used during the EDM process
were also investigated with various powders, includ-
ing SS304, Ti64, AISI D2 steel, AISI W1 steel, SKD61
steel, and AISI P20 steel, which are regularly used in
industry. SKD61 steel is a kind of tool steel. In par-
ticular, its mechanical properties are evaluated to be
superior to those of other steels treated with heat5–7.
In themanufacturing sector, heat-treated SKD61 steel
is applied in hot stamping dies, blow molds, plas-
tic molds, etc.8. However, other machining meth-
ods, such as turning and milling, have difficulty cut-
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ting and obtaining low efficiency when this material
is machined in the heat-treated state. The electro-
electrical discharge (EDM) method has emerged as a
potential machining method for this material state1.
With respect to SKD61 steel, there are several stud-
ies on this material with different powders. For in-
stance, the surface attributes of SKD61 steel, includ-
ing the surface roughness and thickness of the recast
layer, were explored under conditions of EDM with
added Al and surfactant powders9. The results re-
vealed that the impact of Al and surfactant powders
on the surface roughness (SR) and thickness of the
recast layer is meaningful for improving the surface
roughness. Another study of SKD61 steel with Cr
and Al added to various dielectrics was reported 10.
This study revealed that factors such as peak current,
pulse-on time, dielectric type, grain size, and the ra-
tio of Al to Cr powder influenced the material re-
moval rate (MRR), tool wear rate (TWR), SR, andmi-
crohardness (MH). Recently, tungsten carbide pow-
der was investigated during EDM by Le et al.11,12.
These investigations have comprehensively explored
surface attributes such as variations in compositional
chemistry, SR, microcracks, MH, and the generation
of alloy phases in surface layers and considered the
electrical parameter domains where this powder has
a positive or negative effect on surface modification.
However, the material state of the abovementioned
studies is the non-heat-treated state. Moreover, heat-
treated SKD61 steel is commonly processed by the
EDM method before further operation to obtain the
complete set of molds.
As mentioned above, most of these investigations
involve heat-untreated SKD61 steel, which is not
amenable to practical manufacturing. Moreover,
heat-treated SKD61 steel is commonly processed by
the EDM method before further operation to ob-
tain a complete mold set. In addition, in this study,
the EDMprocess combined with tungsten compound
powder suspended in an insulating solution has prac-
tical significance. Tungsten has very good physical
and chemical properties at high temperatures when
penetrating the surface. However, to date, this issue
has received little attention from the research com-
munity. To fill the missing gap with tungsten powder
alloy in the EDM process used to process heat-treated
SKD61 steel, the obtained results provide and enrich
necessary insights for the research community and
are applied in the mold and component manufactur-
ing industry. Hence, this study focused on develop-
ing predictive models of machining efficiency (TWR
andMRR) by utilizing response surface methodology
(RSM) for the machining of heat-treated SKD61 steel

by an EDM process with the addition of a tungsten
powder alloy. From the obtained prediction models,
the impact of crucial process parameters on machin-
ing performance can be analyzed and evaluated. Ad-
ditionally, RSM-Gray relational analysis (GRA) was
performed to determine the optimal machining per-
formance, which helps technologists and researchers
determine the proper option in the manufacturing
sector.

MATERIALS ANDMETHODS
In Figure 1b, entire SKD61 steel specimens were ma-
chined to a size of 45x19mm(height×diameter)with
the nominal compositional chemistry given as 0.4Mn,
0.38C, 1 V, 1Si, 1.25Mo, 5Cr, and balanced Fe (in
wt. %), and heat was applied to achieve a hardness of
50±2HRC. The trials were implemented on an EDM
machine (CNC-460)-Aristech brand, and a reverse
electrode of copper (99%Cu) was applied as a tool, as
indicated in Figure 1a and Figure 1c. The grain size
of the tungsten powder alloy is less than 31 µm, and
the titular compositional chemistry is 82.5W-11.9Co-
5.56C- 0.02Fe-0.02 other composition (wt.%), which
was evenly mixed into the dielectric fluid (EDM fluid
2 from Shell Company), as indicated in Figure 1d and
Figure 1e.
The peak current (Ip) and pulse-on time (Ton) of the
EDM process strongly influence the machining per-
formance9. Therefore, Ip and Ton were considered
to have a priming effect on machining performance,
while the pulse-off time and current-voltagewere held
constant at 120 V and 50 µs, respectively. In addition,
the amount of powder (Ap) also has a significant im-
pact on machining performance. Hence, the essential
parametric variables, namely, Ton, Ip, and Ap, were
investigated in the experimental design. The empiri-
cal strategy was conducted on the Box−Behnken plot
of the RSM to reduce the number of experiments and
reduce the empirical cost. Compared to other empiri-
cal statisticalmethods, the capability of Box–Behnken
is to construct accuratemodels, themost preferable of
which involve three factors and levels13. The levels of
the machining parameters are described in Table 1.
The selection of the levels of Ip and Ton was depen-
dent on the specifics of the CNC-460 EDM machine,
according to prior works9,12,14 and pilot trials. The
levels of Ap were based on pilot experiments and the
thermal and electrical attributes of the powders.
MRR&TWR: MRR and TWR are computed by Eqs.
(1) and (2), respectively. Here, W1 and W2 are the
initial and finishing weights of the workpiece, respec-
tively, and w1 and w2 are the tool electrode (g), re-
spectively. The weights of the specimen and electrode
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Figure 1: Experimental diagram of investigation.

Table 1: The levels of process parameters

Variables of process parametric Levels

Ip (A) 5 7 9

Ton (µs) 50 100 150

Ap (g/l) 0 15 30

were balanced by a Sartorius balance with respect to
the TE214S code (a readability of 0.0001 g), as de-
picted in Figure 1f. The processing time in equations
(1) and (2) is the duration needed tomutate the height
of the samples from 45 mm down to 44.3 mm.

MRR
( g

min

)
=

W1 −W2

processing time
(1)

TWR
( g

min

)
=

w1 −w2

processing time
(2)

Surface defects: The microdefects on the surfaces ob-
tained by PMEDM and EDM were explored on a HI-
TACHI SU3800 machine by emission scanning elec-
tron microscopy (SEM), as indicated in Figure 1g.
Matrix of empirical variables and achieved ouput at-
tributes: The empirical matrix of the machining vari-
ables and achieved data of attributes are described in
Table 2. The trial matrix with the parametric vari-
ables and response data is described in Table 2 and
was used to establish the regression model for MRR
and TWR. Furthermore, four extra runs (from 16 to
19)were utilized to assess the precision of the develop-
ment models. At each technological regime, the sam-
ple and electrode were measured three times before

and after machining. The average values were taken,
and the results are shown in Table 2.

RESULTS

Establishing the predictionmodels

The prediction models of the output features, includ-
ing the MRR and TWR, were established. A regres-
sionmodel of the quadratic equationwas constructed,
as delineated by Eq. (3):

f (x) = λ0 +∑n
i=1λixi +∑n

i=1λii x2
ii

+∑i< j∑n
j=2λi j xi x j

(3)

where λ 0, λ i, λ ii, and λ i j are the coefficients of the
regression models; xi and x j are process parameters;
the variable number is n, with n = 3; and the output
property is f(x) – i.e., MRR or TWR. In this study, the
coefficients, regression models and analysis of vari-
ance (ANOVA) were computed and established with
Minitab 19 software. The adequacy of the predictive
models forMRR and TWR are delineated in the equa-
tions. (4) and (5), respectively, while the ANOVAs for

3152



Science & Technology Development Journal 2023, 26(4):3150-3160

Table 2: Trial matrix and data of output

Run Process parameters Output variables

Ton−m Ip−A Ap−g/l TWR- g/min MRR- g/min

Empirical data for developing models

1 50 9 15 0.001176108 0.003996503

2 50 5 15 0.000578622 0.001972537

3 100 9 30 0.001093224 0.003972222

4 100 7 15 0.000714120 0.002743987

5 100 7 15 0.000702218 0.002687734

6 150 9 15 0.000999094 0.004013167

7 50 7 30 0.000807356 0.002480000

8 100 5 30 0.000651593 0.002678663

9 50 7 0 0.000534151 0.001986364

10 100 9 0 0.000927740 0.003536138

11 150 7 30 0.000610508 0.003543158

12 100 5 0 0.000410404 0.002340698

13 100 7 15 0.000709320 0.002629356

14 150 7 0 0.000572218 0.002596923

15 150 5 15 0.000481408 0.003397818

Empirical data for testing accuracy of models

16 50 5 30 0.000658931 0.001913934

17 150 7 15 0.000609828 0.003084515

18 100 7 30 0.000775432 0.002704641

19 150 9 30 0.000977515 0.004504535

MRR and TWR are described in the corresponding
Table 3 and Table 4:
MRR=0.004438+ 0.000023Ton - 0.001332Ip

+0.000014Ap – 3.52154x10−6 TonIp +1.50866x10−7

TonCp+8.17656x10−7IpCp+0.000142Ip
2+3.55322x10−8Ton

2-
5.52202x10−7Ap

2 (4)
TWR=0.000829+3.06562x10−6Ton- 0.000261Ip +
0.000026Ap - 1.995x10−7TonIp - 6.30875x10−7

IpAp-7.83051TonAp-7.88531x10−9Ton
2+0.00003Ip

2

– 2.56805x10−7Ap
2 (5)

Influential exploration of the manufactur-
ing process variables on theMRR&TWR
Themain impacts of single processing parameters on
the MRR and TWR are described in the Figure 2a
and Figure 2b, respectively. Moreover, the combined
impacts of the machining variables on the MRR and
TWR are depicted in the Figure 3a–c and Figure 4a–
c, respectively. The pairs of factors considered for the

combined impact onMRR and TWR in this study in-
cluded Ip and Ton, Ip and Ap, and Ton and Ap. The
results (as indicated in Table 3 and Table 4) revealed
that Ip had themost robust influence on theMRR and
TWR. However, the factors influencing TWR are Ap
and Ton, while the reverse is true for MRR.

Validation of the computational models

In this investigation, the empirical data from 16 to 19
(as indicated in Table 2) were compared with the pre-
dictive data at the same processing parameters (as de-
picted in Table 5) to evaluate the accuracy of the pro-
posed models. These results indicated that the per-
centage deviations of the TWR and MRR were 3.08%
to 4.97% and 2.55% to 4.75%, respectively.
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Table 3: ANOVA for the predictivemodel of theMRR

Source Sum of
Squares

Mean Square p value F value Remark Contribution

Model 6.976E-06 7.751E-07 0.0002 54.19 significant

Ip 3.287E-06 3.287E-06 < 0.0001 229.81 significant 46.64%

Ton 1.213E-06 1.213E-06 0.0003 84.82 significant 17.22%

Ap 6.127E-07 6.127E-07 0.0012 42.83 significant 8.69%

Ip x Ton 4.961E-07 4.961E-07 0.0020 34.68 significant 7.04%

Ip x Ap 2.407E-09 2.407E-09 0.6987 0.1683 not
significant

0.03%

Ton x Ap 5.121E-08 5.121E-08 0.1170 3.58 not
significant

0.73%

Ip
2 1.196E-06 1.196E-06 0.0003 83.61 significant 17.31%

Ton
2 2.914E-08 2.914E-08 0.2129 2.04 not

significant
0.51%

Ap
2 5.700E-08 5.700E-08 0.1024 3.98 not

significant
0.81%

Lack of Fit 6.495E-08 2.165E-08 0.1346 6.59 not
significant

0.92%

“R2” = 0.9899, “ R2(adj)” = 0.9716, and “R2(pred)” = 0.8504

Table 4: ANOVA for the predictivemodel of the TWR

Source Sum of
Squares

Mean Square p value F value Remark Contribution

Model 7.145E-07 7.939E-08 0.0001 67.05 significant

Ip 5.378E-07 5.378E-07 < 0.0001 454.18 significant 74.65%

Ton 2.344E-08 2.344E-08 0.0067 19.79 significant 3.25%

Ap 6.447E-08 6.447E-08 0.0007 54.45 significant 8.95%

Ip x Ton 1.592E-09 1.592E-09 0.2986 1.34 not
significant

0.22%

Ip x Ap 1.433E-09 1.433E-09 0.3214 1.21 not
significant

0.2%

Ton x Ap 1.380E-08 1.380E-08 0.0190 11.65 significant 1.92%

Ip2 5.314E-08 5.314E-08 0.0011 44.88 significant 8.16%

Ton2 1.435E-09 1.435E-09 0.3211 1.21 not
significant

0.12%

Ap
2 1.233E-08 1.233E-08 0.0233 10.41 significant 1.71%

Lack of Fit 5.848E-09 1.949E-09 0.0181 54.37 significant 0.81%

“R2” = 0.9918, “ R2(adj)” = 0.977, and “R2(pred)” = 0.8699
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Figure 2: Main influence of process parameters onMRR and TWR: (a) MRR; (b) TWR.

Figure 3: The incorporated influences of process parameters onMRR: (a) Ip and Ton, (b) Ip andAp, and (c) Ton

and Ap.

Table 5: Comparing between empirical values (EV) and predictive values (PV)

No. TWR, g/min MRR, g/min

PV EV Error (%) PV EV Error (%)

16 0.0006934 0.000658931 4.97 0.0019772 0.001913934 3.2

17 0.0006347 0.000609828 3.92 0.0031653 0.003084515 2.55

18 0.0007405 0.000775432 4.71 0.0028395 0.002704641 4.75

19 0.0009483 0.000977515 3.08 0.0043135 0.004504535 4.43

Error(%)=Abs (PV-EV)/PV× 100%
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Figure 4: The incorporated influences of process parameters on TWR: (a) Ip and Ton, (b) Ip and Cp, and (c) Cp

and Ton.

Optimization of the machining perfor-
mance

In the PMEDM process, the machining performance
is expected to meet the following criterion: the MRR
is obtained at the maximum, while the TWR is ac-
quired at the minimum. Hence, the issue of optimiz-
ing the machining performance is represented as fol-
lows:
When x = [Ton, Ip, Ap] is found, the MRR and TWR
simultaneously reach the minimum and maximum,
respectively.
The process parameters were as follows: 50 ≤ Ton ≤
150 (µs), 5≤ Ip ≤ 9 (A), and 0≤ Ap ≤ 30 (g/l).
This problem was resolved by applying gray relational
analysis (GRA).The steps to perform the GRA are in-
dicated in Figure 5:
All the GRC and GRG values corresponding to ranks
are depicted in Table 6. The process parameters with
the highest GRG (Rank 1) are selected for optimiz-
ing all the responses simultaneously (i.e., maximizing
the MRR and minimizing the TWR). The optimal re-
sults are obtained as follows: MRRmax=0.003397818
(g/min) and TWRmin=0.000481408 (g/min) for the
process parameter sets Ip=5A, Ton=150 µs, and Cp=
15 g/l.

DISCUSSION
The accuracy of the MRR and TWR development
models was considered via analysis of variance
(ANOVA) with 95% confidence and 5% significance.
Table 3 and Table 4 show the ANOVA results for
RMR and TWR, respectively. The p value corre-
sponding to the terms of the model is less than 0.05,
which indicates that these terms of the model are sig-
nificant. These terms are significant for the predic-
tive model of MRR, comprising Ip

2, IpxTon, Ip, Ap,
and Ton, while they are meaningful for the predictive
model of TWR, comprising Ip

2 , and Ap
2, TonxAp,

Ip, Ap, and Ton. The development models were veri-
fied by their adequacy/precision through coefficients,
comprising “R2”, “R2(pred)”, and “R2(adj)”. The R2

values for the MRR and TWR models are 0.9899 and
0.9918, respectively. This finding demonstrates good
agreement between the experiential values and the
predictive values. The “R2(pred)” of these models
(0.8504 for MRR and 0.8699 for TWR) is also a suit-
able compromise with the “R2(adj)” (0.9716 for MRR
and 0.977 for TWR). In addition, comparisons be-
tween the predicted values and experimental results
are shown in Table 5. The small dislocations reveal
that the regressionmodels are suitable and can be em-
ployed for predicting responses with high precision.
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Figure 5: The calculation steps of the GRA algorithm.

Furthermore, these predictive models can be used to
identify the optimum attributes.
Considering the influences of single factors and com-
bined factors, Figure 2a reveals that Ap, Ip, and Ton

have the same impact on theMRR. An increase in the
MRR occurs when Ip, Ton, and Cp in the whole de-
sign space increase. This finding indicates that the
MRR is ameliorated. Indeed, when Ip or Ton in-
crease, thermal energy is generated in the discharge
channel15–17. Furthermore, as the discharge zone ex-
pands, the conductive particles in the discharge chan-
nel are rooted 18. This boosts the MRR. In Figure 2b
shows the crucial impacts of the variables on the
TWR.This indicates that the TWR increases with in-
creasing Ip or Cp in the entire design space. More-
over, the increase in Ton in the entire design space re-
duces the TWR. In regard to the impact of the com-
bined factors, see the Figure 3a–c, the MRR increases
with increasing Ip for all the values of Ton and Ap

(Figure 3b–c). 3a and b), and with a rise in Ton for
all values of Ip and Ap (Figure 3a and c). In addi-
tion, the increase in Ap also causes an increase in the
MRR for all values of Ip (Figure 3b) and for all val-

ues of Ton (Figure 3c). The MRR obtained the great-
est value when Ap, Ton, and Ip achieved the highest
values. The results for the combined impacts of the
process variables on the TWR reveal that the TWR
increases with increasing Ip for all values of Ton and
Ap (Figure 1). 4a and b), and with an increase in Ap

for all the values of Ip and Ton (Figure 4b). 4b and c).
At the smallest values of Ton, Ip, andAp, the TWRob-
tains the minimum value. From the abovementioned
evaluation, it is clear that both Ip and/or Ton increase,
causing the discharge energy to increase and leading
to increases in the MRR and TWR19,20. In addition,
adding powder particles to the working liquid pro-
duces stratified discharge, which increases the MRR
and decreases the TWR 21. A combination of Ip and
Ton leads to a low/high density of powder particles in
the next discharge. This has a positive/negative influ-
ence on the improvement in MRR and TWR.
The optimization results are obtained via the GRA
algorithm. To confirm the correctness of the algo-
rithm for predicting optimal results. The values of
MRR and TWR obtained by experiment at the op-
timum process parameters are presented in Table 7
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Table 6: GRA for MRR and TWR

Run GRCs GRG

MRR TWR Value Rank

1 0.9839306 0.3333333 0.6586320 6

2 0.3333333 0.6947430 0.5140381 11

3 0.9614190 0.3592588 0.6603389 5

4 0.4456508 0.5576316 0.5016412 12

5 0.4349637 0.5674689 0.5012163 13

6 1.0000000 0.3940663 0.6970332 2

7 0.3995779 0.4909593 0.4452686 15

8 0.4332881 0.6135046 0.5233963 10

9 0.3348458 0.7557299 0.5452879 9

10 0.6814166 0.4253023 0.5533594 8

11 0.6846263 0.6567425 0.6706844 4

12 0.3789070 1.0000000 0.6894535 3

13 0.4244016 0.5615576 0.4929796 14

14 0.4187524 0.7029110 0.5608317 7

15 0.6237927 0.8435539 0.7336733 1

and are compared with the values of the output at-
tributes according to the predictive models that are
within the tolerable assortment. The maximum and
minimum errors are 4.15% for the TWR and 1.5% for
the MRR, respectively. This confirms that the opti-
mal results are consistent. In addition, to gain fur-
ther insight into the optimal results, several surface
attributes were explored and compared. Microcracks,
droplets, voids, and globules of debris are called mi-
crodefects on surfaces. In Figure 6, A comparison of
the microdefects in the optimum electrical mode was
conducted between powder mode (Figure 6a) and in
the no-powder mode (Figure 6b). It is clear that the
surface obtained with the powdermode has fewermi-
crocracks, voids, and droplets and smaller globules of
debris than the surface obtained with the powderless
mode.
In this study, the machining performance of heat-
treated SKD61 steel by an EDM process with a tung-
sten powder alloy was investigated. Evaluation of the
influence of process parameters onmachining perfor-
mance, establishment of a prediction model for ma-
chining performance, and optimization of process pa-
rameters were carried out. The following principal
conclusions have been drawn:

• Regression models were established, and
ANOVA was performed to evaluate the pre-

cision of these development models (MRR
and TWR). The outcomes indicated that the
regression models have high precision and
can be utilized to investigate the influences of
process variables on machining performance
and to predict the desired MRR and TWR in
the entire design space.

• The optimal responses and process variables, in-
cluding an MRRmax of 0.003397818 (g/min), a
TWRmin of 0.000481408 (g/min), a peak cur-
rent of 5 (A), a pulse-on time of 150 (µs), and
a powder concentration of 15 (g/l), were found
through the RSM-GRA methodology.

• In addition, the number of microdefects on ma-
chined surfaces determined by PMEDM is bet-
ter than that on machined surfaces determined
by EDM at the optimum electrical parameters.

• Moreover, the prediction method of this study
could be utilized for machining performance
prediction for other steel alloys.

• In future works, surface features such as the
thickness of the recast layer, percentage of mi-
crocracks on surfaces, and surface topography
of heat-treated SKD61 steel will be investigated
for the applicable manufacturing industry.

3158



Science & Technology Development Journal 2023, 26(4):3150-3160

Table 7: Verification experiments of the results at the optimal process parameters

Machining attributes Optimum process
parameters

EV PV Error (%)

TWR(g/min) Ip = 5A, Ton =
150µs, Cp = 15 g/l

0.000501408 0.000481408 4.15

MRR(g/min) 0.00334667 0.003397818 1.5

Error (%) = Abs (PV− EV)/PV× 100%

Figure 6: Microdefects on surfaces: (a) at optimal process parameterswithout powders; (b) at optimal elec-
trical parameters with powders.
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