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ABSTRACT
This paper proposes a convolutional neural network (CNN) method for human motion detection
and tracking on a quadcopter. To address the challengesmentioned above, the proposedmethod-
ology is designed on computer vision techniques with an object tracking algorithm and a CNN
model. The object tracking algorithm is implemented using a proportional integral differential (PID)
controller to calculate the control parameters, including the pitch and yaw angles, in real time.
These parameters are determined by calculating the offset between the position of the human
and the camera coordinate frame. To achieve accurate object detection, a CNNmodel is designed
based on the single shot multibox detector (SSD) architecture, which is crucial for object detection.
The model above is integrated with the MobileNet base network, which is responsible for feature
extraction of the object. The use of self-collected person data in model training ensures good per-
formance for this specific application. The object detection results demonstrate that the model
achieves a high level of accuracy (98%). The proposedmethodology is applied to an NVIDIA Jetson
NANO computer. To rigorously assess the control system, the proposed methodology was used
to conduct outdoor flight tests on a campus. These tests prioritized minimal pedestrian traffic and
stable weather conditions, ensuring a controlled environment for evaluation. Analysis of the flight
data and signal graphs provided valuable insights into the effectiveness of the system.
Key words: Human detection, SSD-MobileNet, CNN, Quadcopter, PID, Real-time processing,
Embedded systems

INTRODUCTION1

Recently, quadcopters have garnered significant at-2

tention in various applications due to their verti-3

cal take-off and landing capabilities, as well as their4

hovering functionalities1. Additionally, quadcopters5

can handle intricate tasks within crowded environ-6

ments and have a simpler control system than other7

types of UAVs2. Common applications are focused8

on surveillance3, search and rescue4, mapping5, au-9

tonomous navigation6, obstacle avoidance7 and tar-10

get tracking8. However, among the spectrum of11

vision-based applications, object detection and track-12

ing on quadcopters present significant challenges,13

particularly in achieving real-time performance. Bal-14

ancing computational efficiency with detection accu-15

racy is crucial. Real-time operation demands fast pro-16

cessing, while high accuracy ensures reliable object17

identification. The integration of robust vision-based18

estimation and control algorithms is essential for ad-19

dressing these challenges and unlocking the full po-20

tential of quadcopters in vision-based applications.21

In practical applications, object detection relies22

on various deep learning-based algorithms, such23

as the Faster Region-based Convolutional Neural24

Network9, Region-based Fully Convolutional Net- 25

works10, You Only Look Once11 and Single Shot De- 26

tector12. These algorithms have demonstrated re- 27

markable capabilities in object detection tasks. How- 28

ever, a common challenge associated with these 29

detectors is their high computational complexity, 30

which can hinder their implementation on resource- 31

constrained embedded platforms such as quad- 32

copters. This limitation is particularly relevant for 33

real-time applications that demand fast processing 34

times. To address this challenge, single-shot detectors 35

have emerged as a promising approach for object de- 36

tection. These detectors, such as YOLO and SSD, pro- 37

cess images in a single pass, significantly reducing the 38

computational overhead compared to two-stage de- 39

tectors such as Faster R-CNN and R-FCN13. YOLO, 40

for instance, is renowned for its real-time processing 41

capabilities, making it suitable for applications that 42

require an immediate response11. In contrast, SSD 43

strikes a balance between speed and accuracy by pre- 44

dicting multiple bounding boxes for each object, of- 45

fering a more robust solution for tasks that demand 46

high detection accuracy 12,14,15. 47

Moreover, numerous control algorithms have been 48

created to address the challenges associated with 49
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tracking humans. In particular, the article presents50

the identification and tracking of humans employ-51

ing techniques for visual data manipulation with52

OpenCV 16. In17, a fuzzy logic controller (FLC)53

was employed as part of a target tracking algorithm.54

In18, they proposed a tracking algorithm grounded55

in Euclidean space equations and image processing56

through cameras. While prior studies have demon-57

strated commendable performances, their primary58

focus lies within the realm of computer vision, ne-59

glecting external disturbances such as environmental60

factors. To achieve high precision in drone control,61

several controllers have been applied. In19, a target-62

tracking control algorithm based on fuzzy PI was de-63

vised. This algorithm incorporates a Fuzzy-PI con-64

troller to dynamically adjust the parameters of the PI65

controller, utilizing positional data and changes in po-66

sition as inputs. In20, a gain-scheduled PID controller67

was developed to guide a UAV by continuously ad-68

justing the actuators based on real-time data from the69

tracking unit andUAVdynamics. In21, a comprehen-70

sive double closed-loop proportion integral differen-71

tial (PID) controller was meticulously designed, em-72

ploying estimated states to accurately track and pur-73

sue the target. Among them, PID is a promising can-74

didate for drone control because it not only achieves75

high accuracy but also remains robust to uncertain-76

ties from external influences22. The strengths of PID77

include being model-free, requiring no information78

about themathematical model of the system, easy im-79

plementation on embedded boards, and high preci-80

sion23.81

This paper presents an approach for detecting and82

tracking target objects using an SSD object detec-83

tor on a UAV. To manage the above challenges, the84

system is separated into two primary components:85

(1) object motion estimation and (2) object recog-86

nition. The object motion estimation algorithm uti-87

lizes a proportional integral differential (PID) con-88

troller to compute control parameters, which include89

pitch and yaw angles in real time. These parameters90

are determined based on the position of the object91

and are calculated by measuring the offset between92

the position of the human and the camera coordi-93

nate frame. This module achieves robust object track-94

ing across varying relative distances. Object recog-95

nition focuses on accurately detecting “person” ob-96

jects using the SSD architecture. A custom-trained97

model differentiates between two classes: images con-98

taining objects and images without a person present.99

Self-collected person data training enhances detec-100

tion performance. Finally, the proposed control is ap-101

plied to an NVIDIA Jetson NANO embedded com-102

puter. A comprehensive outdoor flight experiment is103

conducted within a campus environment character- 104

ized by minimal pedestrian traffic. Additionally, pri- 105

ority is given to selecting days with favorable weather 106

conditions and stable illumination. The analysis in- 107

cludes assessing experimental flight data and signal 108

graphs to evaluate the proposed control system. 109

The remainder of this paper is structured as follows: 110

The problem statement, the object recognition algo- 111

rithm and the object motion estimation algorithm are 112

described in Section II. Section III describes the ex- 113

perimental analysis. Finally, Section IV offers conclu- 114

sions and outlines avenues for future work. 115

MATERIALS ANDMETHODS 116

Preliminary 117

In Figure 1, the coordinate frames employed for hu- 118

man tracking via a quadcopter are illustrated. The sys- 119

tem includes three coordinate frames: OE − xE yE zE 120

represents the world, OB − xByBzB denotes the quad- 121

copter and OC − xCyCzC signifies the camera coor- 122

dinates. For computational convenience, we assume 123

that the quadcopter and camera share the same co- 124

ordinate frame. To address the challenge of the hu- 125

man motion estimation problem, the key challenge is 126

keeping the transformationmatrix between the quad- 127

copter and the human being tracked unchanged. To 128

achieve this transformation matrix, which involves 129

both orientation and position, a proposed camera sys- 130

tem aims to determine both the orientation and posi- 131

tion through the entirety of the captured image. The 132

relative location of the human concerning the quad- 133

copter is calculated using the camera model, which 134

is expressed as (PB) in the camera coordinates. The 135

target coordinates (P0) are then determined in quad- 136

copter coordinates. The relationship between these 137

two coordinates is mathematically expressed as fol- 138

lows: 139[
PB

1

]
= TB0P0 =

[
RB0 tB0

0 1

][
P0

1

]
(1)

where RB0 and TB0 represent the matrix for rotation 140

and the matrix for transformation between the cam- 141

era framework and quadcopter framework, respec- 142

tively. tB0 denotes the position of camera24. 143

Additionally, to identify human subjects from the 144

camera output, a CNN (convolutional neural net- 145

work) system is utilized for object detection. 146

Hardware Specifications 147

To address the challengesmentioned above, the quad- 148

copter system comprises an executive structure and 149

ground station control, as illustrated in Figure 2. The 150
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Figure 1: Coordinate frame used for human tracking

Figure 2: Quadcopter hardware specifications

ground station control is responsible for gathering151

data from the quadcopter, while the executive struc-152

ture runs the tracking and detection algorithms.153

Control SystemOverview154

The proposed control aims to maintain the trans-155

formation matrix between the quadcopter and the156

tracked human by ensuring consistent output re-157

sponses. As analyzed in Section II, this transforma-158

tion matrix involves both the orientation and posi-159

tion of the transformation matrix TB0. This control 160

consists of two main components: vision-based esti- 161

mation and object tracking control. These parts han- 162

dle the detection of the targeted human and subse- 163

quent human tracking, respectively. The design of this 164

suggested control system overview is outlined in Fig- 165

ure 3. 166
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Figure 3: Organization of the Control System

Vision-Based Estimation167

As illustrated in Figure 4, once an image of an object168

is received, a CNN algorithm is implemented.169

In this study, the SSDmethod relies on a feed forward170

convolutional network that generates a bounding box.171

A subsequent nonmaximum suppression step is ap-172

plied to produce the final detection results 12. Fig-173

ure 4 illustrates the MobileNetSSD system, which is174

an extension of MobileNet25. However, it eliminates175

the fully connected layers and softmax components.176

MobileNet employs depthwise separable convolution177

for constructing streamlined deep neural networks,178

leading to enhancements in computational speed and179

model size 26,27. Additionally, MobileNet exhibits180

strong performance in high-quality image classifica-181

tion tasks, contributing to its popularity in scenarios182

where transfer learning aids in performance improve-183

ment.184

The aim of the project is to scale the image to a size185

of 300x300x3 and feed it into the model through 13186

depthwise-separable convolution layers to extract the187

feature maps, as shown in Figure 5 25. A feature layer188

with dimensions of 10x10x1024 is selected to detect189

objects of various sizes. The initial layers (1-5) in this190

project are utilized for identifying typical character-191

istics present in the object image. The following lay-192

ers (from 6 onward) contain more specific informa-193

tion about the object. Next, the output of Conv_13194

in the MobileNet base network is sequentially con-195

volved with a 3x3 kernel, Stride = 2, and a 1x1 kernel,196

Stride = 1, to generate subsequent downsized feature197

maps. The project requires a total of 6 feature maps198

to serve as object detection layers. For every cell in199

the detection feature map, 4 default boxes are set up,200

each having 5 distinct aspect ratios to encompass size201

variations. To obtain a single bounding box for a rec- 202

ognized object (person), the prediction box with the 203

greatest level of confidence is selected. Any bounding 204

boxes with an intersection over union (IoU) threshold 205

greater than the set threshold are removed. This pro- 206

cess is repeated until only one bounding box remains 207

to be output. 208

Following the application of SSD-MobileNet, Figure 6 209

depicts the presentation of a bounding box around the 210

identified person. The positional data of the detected 211

target are then extracted and employed as an input for 212

initiating the object motion estimation algorithm to 213

commence the estimation process. 214

Control of Object Motion Estimation 215

Figure 7 indicates the human’s position in the camera 216

coordinate system. To track a human using the entire 217

captured image, it is essential to determine the hu- 218

man’s position in the coordinate framework fixed to 219

the camera. The OC − xCyCzC coordinate framework 220

represents the camera coordinates. P0 (x0,y0,z0) rep- 221

resents the human’s position at the center of the cam- 222

era coordinates, where signifies the width [in pixels] 223

and represents the height [in pixels] of the entire im- 224

age. Figure 8 illustrates the connection between the 225

camera coordinates and the global coordinates. Cal- 226

culating the coordinates (yC,zC) is feasible because 227

the whole image is two-dimensional. However, it is 228

difficult to calculate the distance in xC . Consequently, 229

xC is computed as follows: 230

θ1 = θ0
2|yc|+bw

2W
(2)

xC =
2|yC|+bw

2tan(θ1)
(3)

where θ0 is the angle of view of the camera and θ1 is 231

the angle between the straight line and the zC-axis. 232
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Figure 4: Structure of SSD-MobileNet

Figure 5: Depthwise-separable convolution layers

Figure 6: The bounding box after applying SSD-MobileNet
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Figure 7: Humans in the camera coordinate system

Figure 1 illustrates the coordination frames utilized233

for human tracking. OB − xByBzB represents the234

quadcopter coordinate system. Within this system,235

vx [m/s] denotes the translational velocities of the236

quadcopter along the xB-axis in OB − xByBzB. Ad-237

ditionally, ψz [rad/s] signifies the angular velocity of238

the quadcopter around the zB-axis in OB − xByBzB.239

The desired human position is designated
_
P0(

_
x0(=240

const),
_
y0 (= 0) ,

_
z0 (= 0)). In Figure 3, a block di-241

agram of position conversion (PID) concerning the242

quadcopter velocity for human tracking is depicted. It243

is necessary to give velocities such that P0 (x0,y0,z0)244

comes to the center (yC = zC = 0) of images captured245

by the camera of the quadcopter while maintaining246

the distance (xC = const) between the quadcopter and247

the human. Subsequently, the translational velocities248

vx [m/s] and the angular velocity ψz [rad/s], which249

enable the quadcopter to track the human, are deter-250

mined as follows:251

vx = kpxex + kix
∫ t

0 ex (τ)dτ + kdx
dex

dt
(4)

ψz = kpzez + kiz
∫ t

0 ez (τ)dτ + kdz
dez

dt
(5)

where ex =
_
x0 −x0 and ez =

_
y0 −y0 are the errors be-252

tween the position of the human in the center of the253

camera coordinate frame and the desired human po-254

sition. When the human is undetected in the captured255

images, the values of vx [m/s] and ψz [rad/s] are both256

set to zero. The quadcopter continues human track- 257

ing until a terminal command signal is received. The 258

proposed method effectively enables quadcopters to 259

track humans. 260

The object tracking algorithm is shown in Algorithm 261

1. The algorithm takes as input from the image of a 262

person. Following initialization, the quadcopter un- 263

dergoes a series of checks to ensure safe and reliable 264

operation. This initialization phase might involve cal- 265

ibrating sensors, verifying battery levels, and confirm- 266

ing proper motor function. Once it is given the all- 267

clear, the quadcopter autonomously ascends to a pre- 268

determined altitude. This chosen altitude offers a suit- 269

able vantage point for the searchmission, allowing the 270

camera to capture a wider field of view and potentially 271

increasing the chance of human detection. The quad- 272

copter then starts on a 36-second search mission for 273

a human target. It continuously scans the environ- 274

ment using the SSD-MobileNetmodel. Upon success- 275

ful detection, the center offset method is used to track 276

the target by calculating the offset between the person 277

and the center of the image captured by the camera. If 278

the offset exceeds zero and the image center lies out- 279

side the bounding box, the quadcopter rotates accord- 280

ingly; otherwise, it moves forward and backward. In 281

the absence of human detection within a designated 282

timeframe, the system assumes that the target is no 283

longer present. To optimize the search efficiency, the 284

quadcopter performs a preprogrammed 10-degree ro- 285

tation, expanding the search area and increasing the 286

6
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Figure 8: Relationship camera coordinate frame and global coordinate frame

probability of detection. This iterative process of scan-287

ning, tracking (if detected), and rotating continues for288

a total of 36 seconds. If no human is detected through-289

out this period, prioritizing safety, the system auto-290

matically initiates a landing sequence, returning the291

quadcopter to the ground.292

RESULTS ANDDISCUSSION293

To further assess the benefits of the suggested control,294

a series of experiments and evaluations on an actual295

system are carried out.296

Experiment description297

Figure 9 illustrates the basic movements of the quad-298

copter during object detection and tracking. We con-299

ducted a series of experiments to quantitatively evalu-300

ate the algorithm’s performance on real hardware. We301

utilized an NVIDIA Jetson NANO embedded com- 302

puter for this purpose. The algorithm was imple- 303

mented in Python within the Ubuntu Linux environ- 304

ment. The experiments were carried out outdoors on 305

the HCMUTE campus. To minimize the presence of 306

multiple objects in the scene, we chose a location with 307

minimal pedestrian traffic. Additionally, favorable 308

weather conditions were ensured to obtain accurate 309

evaluation results. The experiments and results were 310

divided into three parts. First, we evaluated the post- 311

training data to assess the algorithm’s ability to detect 312

humans accurately usingmetrics such as precision, re- 313

call, and F1-score. Second, the flight data evaluation 314

focused on system stability and tracking performance. 315

This involved assessing the quadcopter’s stability dur- 316

ing takeoff, hovering, landing, and directional move- 317

ments (forward, backward, and rotational). Finally, 318

7
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Table 1: Algorithm 1: Object Tracking Algorithm

Algorithm 1: Object Tracking Algorithm

input: Image person
outputs: vx and ψz

begin
/* Initialize */
Sensor calibration, battery level verification, motor confirmation
Take off quadcopter
while (within 36 seconds)
Detect human using SSD-MobileNet
if (objects) then
Calculate the center of the frame, the person P0

Calculate the offset between the person and the frame ( ex, ey)
if (offset > 0) & (not centered) then
Calculate PID control for rotation ψz

Send the rotation control command
end
else
Calculate PID control for forward, backward vx

Send the forward, backward control command
end
end
Rotation by an angle of 10 degrees
end while
Landing
end

the data are evaluated when combining object detec-319

tion and object tracking.320

Experimental results321

CNN Training322

Figure 10 illustrates the process of collecting and323

preparing data for model training.324

This study employed a single shot detector (SSD) im-325

plemented on a powerful processing unit for human326

detection on a quadcopter. The SSDmodelwas specif-327

ically trained to recognize a single class: individu-328

als (persons). To train and evaluate this model effec-329

tively, we constructed a comprehensive image dataset330

containing two distinct categories: images with ob-331

jects (primarily featuring individuals) and images de-332

void of objects. The images were carefully curated333

to ensure their suitability for real-world applications334

involving human detection in a quadcopter environ-335

ment. The image acquisition process involved cap-336

turing video footage from the quadcopter’s camera.337

The footpad showcased a diverse range of human sub-338

jects, including groupmembers and other individuals339

within the research laboratory. This footpad was then340

painstakingly segmented into individual frames, re-341

sulting in a raw dataset of approximately 1000 images.342

To augment the dataset and enhance its learning po- 343

tential, we employed data augmentation techniques. 344

Redundant images were removed, and a subset of im- 345

ages was transformed using basic manipulations (ro- 346

tation, scaling, flipping, and brightness) to introduce 347

variations, enrich the dataset and promotemodel gen- 348

eralizability. Figure 11 shows the process of labeling 349

the data from the dataset. 350

The dataset comprised a total of 1000 images, main- 351

taining a 3:1 ratio between images with and without 352

objects. Each image featuring a person was meticu- 353

lously labeled for accurate object identification dur- 354

ing training. Subsequently, these images were di- 355

vided into three distinct sets—training (70%), valida- 356

tion (20%), and testing (10%)—for network training 357

and evaluation. The network configuration included 358

a dropout ratio of 0.7, a kernel size of 3x3, a box code 359

size of 4, and a learning rate of 0.001. The training 360

process was conducted through 200 iterations using 361

Google Colab. Figure 12 illustrates the model’s out- 362

comes after completion of the training process. 363

To assess how well the proposed object detection 364

method performs on an embedded computer, exper- 365

iments were conducted using the confusion matrix 366

method. The experiments were conducted 50 times 367

and included both positive and negative person in- 368

8
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Figure 9: Basic movements of the quadcopter when detecting and tracking objects

Figure 10: The process of collecting and preparing data.

Figure 11: Images from the dataset are labeled.
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Figure 12: Outcomes of the model after training

stances. These experiments yielded the followingmet-369

rics: precision = 0.96078, recall = 0.98, and F1 =370

0.9703. Figure 13 illustrates the results of the train-371

ing model.372

Additionally, the object detection process analyzed a373

frame and generated an output for the detected object374

within a time span of 5 ms. During this 5 ms interval,375

frames captured by the quadcopter’s camera under-376

went processing, and the CNN provided the output377

in the form of an image featuring the bounding box378

around the identified object, achieving a frame rate of379

27 frames per second (FPS), as shown in Figure 14.380

Altitude Control381

To test the performance of the proposed controller, an382

altitude experiment is first carried out. The objective383

of this altitude test is to control the quadcopter to take384

off vertically to a desired altitude of approximately 2.5385

meters and maintain that altitude for approximately386

100 seconds before landing. In Figure 15, the initial387

altitude (Z) is set to zero because the altitude of the388

quadcopter remains fixed at 2.5 meters upon takeoff.389

After removal, the quadcopter hovers at this fixed al-390

titude (Z).391

Forward, reversemotion control392

Following the altitude experiment, rotation and393

forward-backward experiments are conducted. The394

aim of this experiment is to control the aircraft to395

move at predetermined speeds and angles. The pre-396

set speed is 1 m/s, and the rotation angle is set to 90397

degrees; this process is repeated three times within a 398

60-second flight time. The resulting data are repre- 399

sented as squares in Figure 16. 400

Combined Control 401

After conducting two flight experiments involving 402

tracking in the forward, backward, and object rota- 403

tion directions, the goal is for the quadcopter to de- 404

tect objects within the frame and simultaneously per- 405

form forward-backward movement and object track- 406

ing. Figure 17 shows the real-world object tracking 407

experiment. The detected object will move freely to 408

verify the accuracy of the system. The validation flight 409

process took place over approximately 300 seconds. 410

Based on the signals from the graphs, we can observe 411

the aircraft’s status during the tracking process in the 412

forward, backward, and rotation directions. The roll 413

angle is approximately equal to 0. In the yaw angle re- 414

sponse graph, the aircraft rotates from approximately 415

180 degrees to 0 degrees within 80 seconds, from the 416

50th to the 130th second, after which it moves north- 417

ward. During this time, the yaw angle experiences 418

only slight rotation in the north direction. This in- 419

dicates that the quadcopter tracks the detected object 420

relatively well. From the velocity response graph in 421

the x-direction, it is evident that the aircraft’s velocity 422

in the x-direction is very low, indicating slow forward 423

movement. However, it still responds effectively to 424

track the object. Furthermore, the engine pulse out- 425

put graph shows that the engines pulse continuously 426

when the aircraft is in a combined state. Pulse gener- 427

10
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Figure 13: Output of the CNNmodel

Figure 14: Evaluate the processing speed of the model

ation during takeoff and landing is very fast, demon-428

strating stable takeoff and landing. The resulting data429

are represented as squares in Figure 18.430

While our object detection and tracking algorithm431

demonstrated promising results, its real-world im-432

plementation presented unforeseen hurdles. A sig-433

nificant challenge arose from the delayed response434

data received from the quadcopter. This latency, at-435

tributed to the limitations of Bluetooth data transmis-436

sion, created a disadvantage in the real-time process-437

ing pipeline. Furthermore, the hardware of onboard 438

cameras occasionally hinders the ability of SSD ob- 439

ject detectors to consistently identify target objects. 440

This limitationwas particularly evident under varying 441

lighting conditions, where real-time object detection 442

proved challenging. 443

CONCLUSION 444

This study presents a novel approach for human mo- 445

tion detection and tracking on a quadcopter, lever- 446

11
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Figure 15: Output responses of the altitude control experiment

aging the power of convolutional neural networks447

(CNNs). The proposed system, implemented on448

an embedded computer, comprises two key compo-449

nents: object recognition and object motion estima-450

tion. The object recognitionmodule employs a CNN-451

based SSD model to identify moving objects within452

the camera’s field of view. This model effectively gen-453

erates bounding boxes around detected objects, ex-454

tracting their center positions for precise tracking.455

Simultaneously, the object motion estimation mod-456

ule, powered by a PID controller, dynamically ad-457

justs the quadcopter’s flight path to pursue the tar-458

get object even under varying speeds. The experi-459

mental results demonstrate the impressive capabili-460

ties of the system. The object recognition algorithm461

boasts high accuracy in object detection and catego-462

rization while maintaining low power consumption463

and achieving a high frame rate (fps). However, real-464

time implementation has revealed limitations asso-465

ciated with communication latency due to Bluetooth466

data transmission and onboard camera hardware con-467

straints. These limitations manifested as occasional468

delays in receiving data and hindered object detection469

accuracy under varying lighting conditions.470

In the future, this work paves the way for further 471

advancements. Integrating vision-based techniques 472

with a stereo camera to estimate the distance between 473

the quadcopter and the target object has emerged as 474

a crucial area for future research and development. 475

This advancement would enable more precise object 476

tracking and navigation, particularly in complex en- 477

vironments. Additionally, the focus will shift toward 478

developing more sophisticated algorithms for han- 479

dling multiple objects. By incorporating techniques 480

for multiobject tracking, the system could effectively 481

track and differentiate between multiple people in 482

high-density environments. This advancement would 483

be invaluable for applications such as search and 484

rescue operations in crowded areas or autonomous 485

surveillance tasks involving multiple targets. 486
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Figure 16: Output responses of the forward and reverse motion control experiments

Figure 17: Object tracking experiment in the real world
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Figure 18: Output responses of the combined experiment
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