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ABSTRACT
Introduction: In this study, ZnS nanoparticles were decorated on SiO2 nanospheres via coprecipi-
tation and the Stöber method. Methods: The materials were studied by X-ray diffraction (XRD),
nano scanning electron microscopy (SEM), and photoluminescence spectra (PL). Results: ZnS
nanoparticles exhibit a sphalerite structure with an average particle size of 2.8 nm and SiO2 in the
form of 115 nm nanospheres. The absorption spectrum of these nanoparticles displays a promi-
nent band peaking at 320 nm. Additionally, at 300 K, the PL spectrum of ZnS reveals a broad band,
comprising two component bands with peaks at 470 nm and 491 nm, attributed to lattice defects
such as zinc and sulfur vacancies, interstitials, and surface states. Upon decorating ZnS nanoparti-
cles on the surface of SiO2 nanospheres, the UV−Vis absorption and PL spectra of ZnS shift toward
longer wavelengths. The maximum peak of the UV−vis spectrum shifted from 322 to 328 nm, and
two bands in the PL spectrum slightly changed to 472 and 494 nm. Conclusion: The shifts in the
UV−vis and PL spectra are due to alterations in the surface states of the ZnS nanoparticles induced
by the presence of SiO2 . From the dependence of the PL spectra of ZnS nanopartcles and SiO2-
decorated ZnS on the measured temperature from 10 to 300 K, the activation energies of ZnS and
SiO2-decorated SiO2 were estimated to be 38 and 40 meV, respectively.
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INTRODUCTION1

Semiconductor nanomaterials have garnered exten-2

sive attention due to their vast potential applications,3

including catalysis, photonics, nonlinear optical de-4

vices, light-emitting diodes, flat displays, and infrared5

windows1–6. Nanostructured materials exhibit novel6

optical properties owing to the quantum size effect,7

making the precise control of their size a significant8

challenge in research and manufacturing. ZnS is one9

of the most critical and representative semiconduc-10

tors, prompting various efforts to manipulate its op-11

tical properties. Techniques such as doping with ele-12

ments such as Mn and Cu, employing polymer cap-13

ping, and fabricating core/shell structures with mate-14

rials such as ZnO and SiO2 have been explored 7–13.15

Silicon dioxide (SiO2)-based core shell particles have16

been widely studied because of their chemical inert-17

ness, ability to act as stabilizers, and ability to pre-18

vent particle coalescence. Their nanostructures can be19

homogeneously prepared and uniformly dispersed in20

different solutions. Due to its high biocompatibility21

and functionalized surface, SiO2 readily binds to pig-22

ments, metal ions, and biomolecules 14. Combining23

ZnS with SiO2 holds tremendous potential for appli-24

cations in photocatalysis, environmental treatment,25

and enhancing PL15.26

SiO2@ZnS core-shell nanoparticles have been syn- 27

thesized by various reported methods. For example, 28

SiO2@ZnS core-shell nanoparticles were synthesized 29

by a thermal decomposition approach by Jatin Ma- 30

hajan et al.15. Ethiraj et al. synthesized SiO2@ZnS 31

with thioglycerol molecules attached to function- 32

alised silica particles16. Dhas et al. synthesized 33

SiO2@ZnS core-shell nanoparticles using ultrasonic 34

irradiation17, and Velikov et al. synthesized fluo- 35

rescein isothiocyanate-incorporated SiO2@ZnS core- 36

shell nanoparticles by combining homogeneous pre- 37

cipitation and thermal decomposition methods18. 38

These reports analyzed the microstructure, morphol- 39

ogy and UV−Vis absorption spectra of SiO2@ZnS 40

core-shell nanoparticles, but studies on the lumines- 41

cence spectra have not been discussed in detail. 42

With the process of ZnS decoration on SiO2, defects 43

and surface states in ZnS will be generated; there- 44

fore, the crystal structure and optical properties of 45

ZnS will be affected. In this paper, we present the 46

facile synthesis of ZnS nanoparticles decorated on 47

SiO2 nanospheres and demonstrate the influence of 48

SiO2 on the crystal structure, UV−Vis spectrum and 49

PL spectra of ZnS nanoparticles from 10 to 300 K. 50

Cite this article : Van B H, Yen N T B, Dung D T K, Hieu H C. Synthesis and optical properties of ZnS
nanoparticles decorated on SiO2 nanospheres. Sci. Tech. Dev. J. 2024; ():1-6.
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MATERIALS ANDMETHODS51

Tetraethoxysilane (TEOS), Si(OC2H5)4 (99,98%), (3-52

aminopropyl) trimethoxysilane (APTMS) (99,00%),53

zinc acetate Zn(CH3COO)2,2 H2O (99,99%), thioac-54

etamide (TAA), CH3CSNH2 (99%), ammonium55

NH3 (25%), and absolute ethanol were purchased56

from Sigma Aldrich, China. All chemicals used were57

of analytical grade. Deionized (DI) water was used in58

all experiments.59

ZnS nanoparticles were synthesized by a coprecipita-60

tion method from solutions of 0.01 M TAA and 0.0161

M zinc acetate according to the following process: 3062

ml of 0.01 M TAA solution was slowly added to 3063

ml of 0.01 M zinc acetate solution, and the mixture64

was stirred for 2 hours to obtain a white precipitate.65

The white precipitate was centrifuged and filtered 366

times and then dried at 80◦C for 15 hours to obtain67

ZnS powder. SiO2 nanospheres were synthesized by68

the Stöber method from TEOS, NH3 and absolute69

ethanol. ZnS (0.02 g), SiO2 (0.1 g), APTMS (0.270

ml), DI water (40 ml) and absolute ethanol (10 ml)71

were mixed with magnetic stirring for 5 hours. The72

mixture was centrifuged and dried at 80◦C for 1573

hours to obtain ZnS nanoparticles decorated on SiO274

nanospheres (denoted as SiO2@ZnS).75

The microstructure and morphology of ZnS and76

SiO2@ZnS were investigated by a PANalytical77

Empyrean X-ray diffractometer using CuKα radia-78

tion (λ = 1.54056 Å, 2θ =10–70◦) and a scanning79

electron microscope (FEI NOVA NANOSEM 450).80

UV−vis absorption spectra were recorded on a UV-81

2450 spectrometer (Shimadzu). The PL spectra were82

excited by 325 nm radiation from the He-Cd laser83

and recorded on a Spectra Pro2500 spectrometer84

(Priceton Instruments). The sample was cooled by85

an HC-4A air-cooled helium compressor (Sumitomo86

Heavy Industries).87

RESULTS ANDDISCUSSION88

Structure andmorphology of ZnS nanopar-89

ticles and SiO2@ZnS90

Figure 1a shows the XRD pattern of the ZnS nanopar-91

ticles (NPs). The diffraction peaks at 2 23.91, 48.11,92

and 57.11◦ are attributed to the (111), (220), and (311)93

atomic planes of ZnS, respectively (according to PDF94

No. 96-500-0089). The existence of these peaks in-95

dicates that as-ZnS is a single–phase, cubic structure96

belonging to the symmetry group. The XRD pattern97

of SiO2@ZnS also shows peaks at 2 23.91, 48.11, and98

57.11◦, similar to the XRD pattern of ZnS nanopar-99

ticles (Figure 1b). This indicates that as-SiO2 does100

not affect the structure of ZnS when ZnS is decorated101

on SiO2. From the XRD patterns and the Debye– 102

Scherrer formula, D = 0.9λ
β cosθ where D is the crys- 103

talline size, λ is the wavelength of CuKα radiation 104

(1.54056 ´), β is the full width at half maximum and 105

θ is the Bragg diffraction angle, the crystalline size of 106

ZnS was calculated to be approximately 2.8 nm using 107

a highly intense Bragg peak at 2 23.91◦ . 108

Figure 1: XRD pattern of ZnS nanoparticles (a) and
ZnS nanoparticles decorated on SiO2 nanospheres
(b)

Figure 2 displays an SEM image of SiO2. The image 109

reveals that SiO2 exhibits a spherical morphology and 110

uniform distribution with an average particle size of 111

115 nm (as depicted in Figure 3). 112

Figure 2: SEM image of SiO2 nanospheres

SEM images of the ZnS nanoparticles showed that 113

the ZnS nanoparticles aggregated with each other in 114

the clusters (Figure 4). However, in the SEM image 115

of SiO2@ZnS, the ZnS nanoparticles agglomerated 116

on the surface of the SiO2 nanospheres (Figure 5). 117

Hence, SiO2 nanospheres acted as templates for ZnS 118

nanoparticle anchoring. 119
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Figure3: Particle size distribution histogramof SiO2
nanospheres

Figure 4: SEM image of ZnS nanoparticles

Figure 5: SEM image of S ZnS nanoparticles deco-
rated on SiO2 nanospheres

UV−Vis absorption spectra of ZnS nanopar- 120

ticles and SiO2@ZnS 121

Figure 6 shows the UV−Vis absorption spectra of 122

the ZnS nanoparticles (a) and SiO2@ZnS (b). In the 123

UV−Vis absorption spectrum of ZnS (Figure 6a), a 124

prominent band appears with a maximum peak at 125

322 nm (3.85 eV), attributed to the near-band-edge 126

absorption of ZnS19,20. This peak’s maximum value 127

demonstrates a blueshift compared to the 340 nm 128

(3.65 eV) absorption peak of cubic bulk ZnS. Upon 129

the addition of ZnS to the SiO2 nanospheres, the ab- 130

sorption peak shifts to a longer wavelength of 328 nm 131

(Figure 6b).

Figure 6: UV- Vis absorption spectra of ZnS
nanoparticles (a) and ZnS nanoparticles decorated
on SiO2 nanospheres (b)

132

PL spectra of ZnS nanoparticles and 133

SiO2@ZnS 134

Figure 7 presents the PL spectra of both ZnS nanopar- 135

ticles and SiO2@ZnS when excited by 325 nm radia- 136

tion from a He-Cd laser at room temperature. 137

At 300 K, there appears to be a broad luminescent 138

band including two component bands at 470 and 139

491 nm (Figure 7a). These bands are attributed to 140

defects in the crystal lattice, such as vacancies of 141

zinc, sulfur, interstitial atoms of zinc, sulfur, and sur- 142

face states21,22. When ZnS was decorated on SiO2, 143

the intensity of these bands decreased significantly, 144

while the peak positions of the two component bands 145

shifted toward longer wavelengths at 472 and 494 nm 146

(Figure 7b). 147

From the above results, we suppose that as-SiO2 at- 148

taches to ZnS by the -NH2 amin of APTMS; in ad- 149

dition to ZnS decorating SiO2, ZnS nanoparticles ag- 150

glomerate together. Hence, the particle size of ZnS 151

3



Science & Technology Development Journal 2024, ():1-6

Figure 7: PL spectra of ZnS nanoparticles (a) and
ZnS nanoparticles decorated on SiO2 nanospheres
(b) at 300 K

increases, leading to a shift in the UV−Vis absorp-152

tion andPL spectra of SiO2@ZnS toward longerwave-153

lengths.154

At 10 K, in the PL spectrum of the ZnS nanoparticles,155

there is also a broad band with two component bands156

at 464 and 490 nm assigned to defects in the ZnS crys-157

tal lattice, similar to that at 300K. For SiO2@ZnS, at 10158

K, there are bands at 440 and 482 nm, inwhich the 440159

nm band has a strong intensity and the 482 nm band160

appears weakly on the right side of the 440 nm band.161

When the measurement temperature was increased162

from 10 K to 300 K, the position of the PL bands163

shifted toward longer wavelengths, and their inten-164

sity decreased rapidly (approximately 50 times) with165

temperature (Figures 8 and 9). The redshift of the PL166

spectra due to the energy band gap decreases with in-167

creasing temperature owing to exciton–phonon cou-168

pling and lattice deformation23,24.169

The dependence of the luminescence intensity on170

temperature is as follows:171

I (T ) =
I0

1+Aexp
(
−EA

kT

)
in which Io is the PL intensity at 10 K172

A is a constant173

EA is the activation energy174

k is the Boltzmann constant175

From the dependence of the PL intensity on the mea-176

surement temperature (103/T), the activation ener-177

gies for ZnS (at 464 nm) and SiO2@ZnS (at 440 nm)178

were calculated to be 38 and 40 meV, respectively (re-179

fer to the inset in Figure 8 and Figure 9). These val-180

ues are in agreement with references25,26. From the181

above results, it can be inferred that upon decorating182

Figure 8: Temperature-dependent PL spectra of
ZnS nanoparticles when changing the measurere-
ment temperature from 300 to 10K

Figure 9: Temperature-dependent PL spectra of
ZnS nanoparticles decorated on SiO2 nanospheres
when changing the measurement temperature
from 300 to 10 K

ZnS on SiO2 spheres, the surface states of ZnS un- 183

dergo changes, resulting in subtle variations in both 184

the UV−Vis and PL spectra, as well as the activation 185

energy of ZnS. 186

CONCLUSION 187

ZnS nanoparticles and ZnS nanoparticles decorated 188

on SiO2 nanospheres were successfully fabricated. 189

The cubic-structured ZnS nanoparticles, averaging 190

2.8 nm in crystalline size, were decorated on SiO2 191

nanospheres. Upon attachment of ZnS onto SiO2 192

spheres, both the UV−Vis absorption and lumines- 193

cence spectra exhibited a shift toward longer wave- 194

lengths, attributed to alterations in the surface states 195

of ZnS. Notably, the luminescence spectra of ZnS 196

and SiO2@ZnS increased by 50 times, while the po- 197

sition of the luminescent band shifted slightly when 198

the measurement temperature decreased from 300 199

K to 10 K. The activation energies for ZnS and 200

ZnS nanoparticles decorated on SiO2 nanospheres 201
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were determined to be 38 and 40 meV, respectively.202

These results are the basis for our further research on203

the photocatalysis and luminescence enhancement of204

ZnS nanoparticles decorated on SiO2 templates.205
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