Design of a Multigate Field Effect Transistor-Based Adder for an Adaptive Filter in an Electroencephalogram Signal Analysis System

P. Suresh Venugopal¹, M. Anantha Guptha², Ravikumar GuruSamy³, U Yedukondalu⁴, S Ravindrakumar^{5,*}

Use your smartphone to scan this OR code and download this article

ABSTRACT

Various noises and artifacts affect EEG (electroencephalogram) signals and should be removed for effective diagnosis and treatment. The adaptive filter is designed using adders, multipliers and delay elements. In this paper, the design of the adder is presented. The adders form the foundational block of all arithmetic and computational processes of biomedical systems. They form the parts of filters, multipliers and transform units. The Fourier transform used in biomedical analysis uses adders as their basic elements. This work proposes a gate diffusion input (GDI) logic-based design using multigate FET transistors, namely, FinFET. The problem of a dedicated power supply and leakage current during static operation is eliminated in this work by proposing FinFET-based GDI logic. The proposed implementation was compared with existing methods on the basis of energy, power and delay. Implementation was carried out using 32 nm CMOS and FinFET technology. Predictive technology models were applied for the implementation.

Key words: Multigate field effect transistors, Adder, Adaptive filter, Electroencephalogram, CMOS, Low power

¹Professor, Department of ECE, T. John Institute of Technology, Bangalore, Karnataka.

Gates Institute of Technology, Gooty.

³Professor, ECE, M.P. Nachimuthu M. Iaganathan Engineering College, Chennimalai, Erode.

⁴Professor of ECE, MVR College of Engineering & Technology (A), Paritala 521180, Andhra Pradesh,

⁵Professor-BME, KIT, Coimbatore, India

Correspondence

S Ravindrakumar, Professor-BME, KIT, Coimbatore, India

Email: gsravindrakumar7@gmail.com

History

- Received: 2024-03-21
- Accepted: 2024-05-31
- Published Online: 2024-6-xx

DOI:

Copyright

© VNUHCM Press. This is an openaccess article distributed under the terms of the Creative Commons Attribution 4.0 International license.

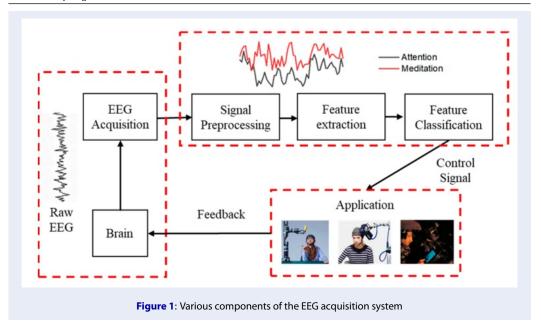
INTRODUCTION

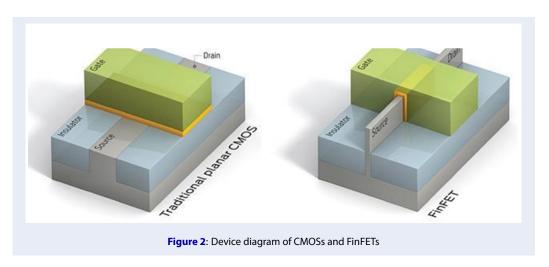
²Associate Professor, Department of ECE, 2 In biomedical systems, for the diagnosis of brain-3 related problems, electroencephalogram (EEG) signal 4 analysis is used. The EEG signals acquired from scalp 5 electrodes are affected by various noises. The acqui-6 sition unit should be designed to provide high ampli-7 fication, accuracy and low noise. Electrodes made of 8 Ag/AgCl were used for the acquisition process. The 9 frequency range is from 1 Hz to 30 Hz. The cost 10 should also be less. The preprocessing unit plays a vi-11 tal role in amplification and filtering. Electrode us-12 age is a complex process and time-consuming process 13 that is highly prone to noise, such as baseline wander-14 ing and other noise. Figure 1 shows the EEG system 15 with all the components. It includes acquisition, pre-16 processing and decision-making blocks. The analog-17 to-digital converter blocks are sensitive, and they de-18 termine the diagnostic performance accuracy. 19 The adaptive filters were part of the signal pre-20 processing and feature extraction blocks (Figure 1). Adders and multipliers were used as circuit elements 22 in biomedical system integration using digital signal processing (DSP). Various DSP processors have been used for EEG signal processing. However, a dedicated

25 circuit or integrated chip will be efficient. One such

26 approach is designed in this work, where the adders for the adaptive filter are designed. Since multipliers

28 contribute to the critical delay of the system, adders,


which are the building blocks of multipliers, need attention. In addition, due to the slow development of 30 battery technology, new circuit methods are needed. 31 Several adaptive filters have been designed in the literature, such as LMS and RLS. The advantages of adaptive filters are that they are suitable for use in real-time 34 settings and can process biomedical signals even in nonstationary environments. Compared with other types of filters, adaptive filters are easy to implement in hardware.


FINFET BASICS

Three-dimensional structures using fins between the 40 source and drain provide better performance through their advanced structures. The design structure provides more space for the current to flow. (see Figure 1). Leakage is eliminated by the control of the 44 channel through gate covering. A lower threshold 45 voltage is used in FinFET. It works in 3 modes: low power, shorted gate and independent gate.

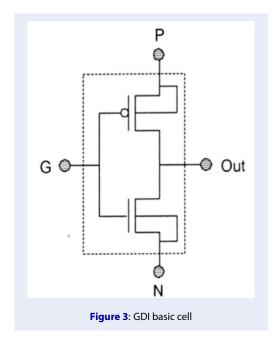
FinFET in SPICE BSIM-CMG models and PTM models were used in this work since there are 3D transistors, and capacitance values are more important. Microprocessors for EEG systems designed using multigate or tri-gate architectures consume less power. In 52 memory cells, improved speed and battery usage are required for EEG systems. FinFETs are fabricated using front-end-of-line (FEOL) fabrication technology.

Cite this article: Venugopal P S, Guptha M A, GuruSamy R, Yedukondalu U, Ravindrakumar S. Design of a Multigate Field Effect Transistor-Based Adder for an Adaptive Filter in an Electroencephalogram Signal Analysis System. Sci. Tech. Dev. J. 2024; 27():1-12.

The other technologies used were assembly and BEOL (back-end-of-line). In section 2, a literature survey is presented, followed by the background methodology in section 3, the proposed method in section 4, and the results and discussion in section 5. Finally, concluding remarks and references are presented.

62 LITERATURE REVIEW

63 Adaptive filters play an important role in the removal 64 of noise from signals. The development of the adap-65 tive filter requires several techniques, such as bit re-66 duction methods and multipliers, as discussed by Vo-67 jin G. Oklobdzija and David Villeger ¹. The structure 68 reduces the irregular bit arrival. Developing mod-69 ules from the 1-bit adder cell optimizes the design, 70 but complex work cannot be done, as addressed by Ahmed M. Shams et al.². In certain designs, XOR 71 gates are avoided, such as in the work by Mehrdad Maeen et al.³. The 1-bit full adder cell designed 73 in a 180 nm CMOS is better in that technology but suffers from leakage at lower technologies. A 90 nm adder was designed by Sohan Purohit and Martin Margala⁴. They presented the design in splitpath data-driven dynamic logic. The leakage current affects the power consumption of CMOS devices and their circuits, especially when stacked, as described by Raghvendra Singh and Shyam Akashe⁵. The power can be further reduced in these circuits 82 using power gating techniques. These techniques, when incorporated in larger computational blocks such as ALUs, have advantages, and adders were reported by Rachit Patel et al⁶. The ALUs in CMOSs

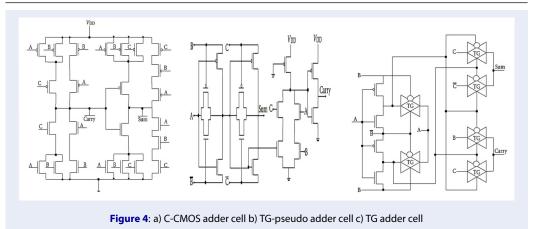

87 are faster, but they suffer from lower power consumption due to leakage current. However, replacing adders will reduce the delay due to RC components. Mirror adders, low-area adders, branchbased logic and pass transor logics have been designed ^{7,8}. At 180 nm, Mariano Aguirre-Hernandez and Monico Linares-Aranda 9 developed adders in CMOS technology. Other adders have also been developed using hybrid circuits and gate diffusion input (GDI), a new technique for low-power digital combinatorial circuit design 10,11. Gate diffusion logics have been used in the design of adders and other combination circuits 12,13. The full swing gate diffusion input (FS-GDI) methodology was found to be effective when low-power circuits are required 14,15. Senthil Kumar et al. (2019) used FinFET with a selfcontrollable-voltage-level (SVL) circuit for opamp design. CNTFET- and FinFET-based DWTs were also designed for the DWT architecture. Ravindrakumar et al. (2017) used adaptive filters for fetal ECG extraction. In that work, several adaptive filters were designed. Gupta et al. (2020, 2021) designed FinFETbased architectures for DWT architectures. A similar type of FinFET-based design was developed by Senthilkumar et al. (2019). Ravindrakumar and Nithya (2012) designed a system for ECG signal processing. Leakage is eliminated by several means using FinFET logic circuits 16-18.

Research Gaps Identified: The main problem in the existing CMOS technology is the power consumption due to leakage current, slow computation and low accuracy. These problems can be addressed using new technology that can reduce power consumption. The speed of operation is improved, and more computations are performed. When EEG signal analysis concerns, the design should involve filtering block optimization. The filters are computing blocks that use time, frequency or time-scale methods. In this work, adaptive filters, which have a very high rejection ratio and good extraction of information, were chosen. PTL design methods face problems due to the low swing of outputs. The pass transistors provide less of a voltage drop. When the device works in the subthreshold region, swing decreases, and the delay increases. Additional buffers increase the area of the system. The skew and jitter, on the other hand, in-133 crease due to buffers.

134 BACKGROUND METHODOLOGY

Figure 3 shows the GDI method and its various nodes of 'N', 'P' and Gate. Arbitrary biasing is possible at the connection between the N and P connected with

the bulks of nMOS and pMOS, respectively. There are few relationships between N and P, N input-VDD and P input=0. Direct polarization occurs between the diodes, static power dissipation occurs, and V_{out} 141 $\sim 0.5 V_{DD}$.



PTL design methods face problems due to the low swing of outputs. The pass transistors provide less of a voltage drop. The F1 function choice in GDI eliminates this problem, and the voltage level is V_{tp} . The GDI has a transient analysis similar to that of CMOS. Here, the nMOS diffusion is given with a step signal. 148

FULL ADDER TOPOLOGIES

The various full adder circuit types are shown in Figure 4. The types are C-CMOS adder cells, b) TG-151 pseudo adder cells and c) TG adder cells. The first circuit provides full swing lmost to the $\rm V_{DD}$ and $\rm ^{2}V_{DD}$. 153 The high-speed PseudonMOS full adder cell with 14 transistors, as shown in Figure 4b, has more static power consumption. The circuit avoids a zero voltage drop at the output node. The circuit increases the area of the circuits. However, it has low power consumption.

These designs work on EEG multiinputs, which are complex signals. Since EEGs have more harmonics and event potentials, it is very challenging to reduce the error signal and improve the convergence behavior. Power spectral analysis provides a clear picture of the frequencies in the signal and its amplitude. The amplitude will be in microvolts. The characteristics are rhythmic with constant frequency, arrhythmic without a stable frequency and dysrhythmic. 168

PROPOSED SYSTEM

170 In this work, we developed and implemented a GDI171 based design using multigate technology. The prob172 lems in CMOS and other filters are addressed, and
173 we arrive at an effective circuit. The proposed de174 sign eliminates threshold voltage loss, is less complex
175 and can achieve high speed even in cascade opera176 tion. In this work, FinFET-based adders were de177 signed and implemented for the RLS DCD architec178 ture. For EEGs, the signal power is low, and a con179 ventional adaptive filter will find it difficult to adapt
180 to varying multimodal error surfaces.

Dichotomous Coordinate Decent (RDR)Block Algorithm

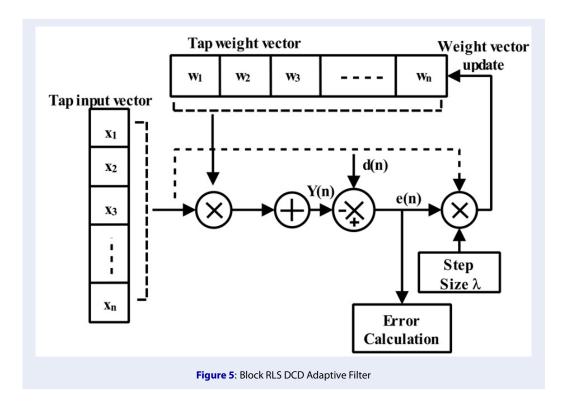
Figure 5 shows the block RLS Dichotomous Coordinate nate Decent (DCD) architecture. This algorithm uses an adaptive filter to update the weights in a blockwise and clockwise manner. The buffers store the intermediate results. In every clock cycle, the updation is performed from the output of the error values. There is less sampling of biomedical signals, so the block of data contains the maximum amount of information. The averaging of the block of data is performed so that the medical data information is not affected. The mathematical form of the block RLS DCD algorithm. Xo, x1, and xn are input samples. W1, w2, and wn are weight values.

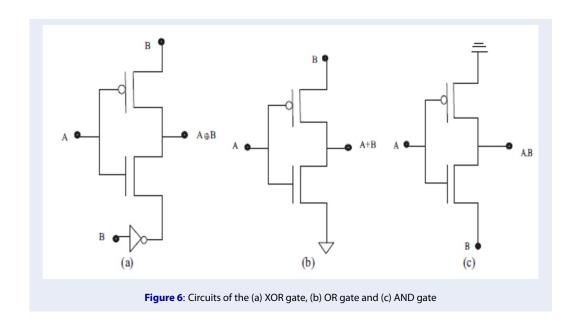
$$X(n) = [x0, x1, x2, \dots xn]$$
 (1)

$$W(n) = [w0, w1, w2, \dots wn]^T$$
 (2)

$$y = w(t) * x(t) \tag{3}$$

$$y(n) = \sum_{t=0}^{N-1} w(t) * x(n-t)$$
 (4)


The block RLS algorithm-based adaptive filter is im- 196 plemented using buffer blocks, as shown in Figure 5. 197 The implementation shown in Figure 5 consists of 198 registers or memory units to store the coefficients, 199 weighted units, adders and multipliers. These units 200 are suitable for real-time implementation. The unit 201 is autonomous, and no manual control is needed. 202 The updation unit calculates the weight values, which 203 are subsequently updated based on the error inputs. 204 Buffers are placed in all units to store the temporary 205 data. The tap count determines the number of mul- 206 tipliers in the system. The step size determines the 207 convergence rate of the adaptive filters. The step size is 208 variable based on the signal. Here, the steady-state er- 209 ror and convergence rate are optimized using the step 210 size variation. y[n] and d[n] are convolved, and errors 211 are produced. Based on the error signal, the weights 212 are updated. The subtractor is also an adder with one 213 of the inputs: the 2's complement data. The imple- 214 mentation of the FIR using multipliers is found to be 215 efficient. The critical paths can be optimized by using 216 pipelining stages.


PROPOSED FULL ADDERS IN GDI FOR THE 218 RLS DCD ALGORITHM 219

Here, the proposed full adder design featuring a GDI 220 cell for an adaptive filter RLS DCD is presented. 221 The proposed design has full swing logic. The sum 222 and carry are presented by the Boolean expression in 223 equations 5 and 6.

Sum= A XOR B XOR Cin (5)

Cout = A **AND** B + B **AND** Cin + A **AND** Cin (6) 226
The GDI cells for AND, OR and XOR are shown in 227
Figure 6. As shown in Table 3.1, GDI logic can work according to different logics. In addition, for input combinations of all '0's, the current is limited. CMOSs 230
already have issues in this regard. FinFET will be the right choice for this application. 232

233 Implementation of the adder circuit

The full swing gates were suitable for the GDI full adder unit for EEG signal processing. The performance was improved by using a FinFET device, where the leakage current was reduced and the full swing was confirmed. A swing restoration block is not needed. In EEG signal processing, the amplitude of the input is less, but it can be rectified by using the amplifier stage in the acquisition unit. The filtering unit removes the noise present in the EEG signal. Normally, an EEG recording of cognitive behavior requires a proper filtering unit for noise removal.

Design 1 using GDI is shown in Figure 7.

The full swing configuration expressions are given in Eqs. (7) and (8):

- Sum= Cin (A XOR B) +Cin (A XNOR B) (7)
- Cout = (A XOR B)Cin + (A XOR B)A (8)
- The intermediate result is the XOR unit.
- Design 2 using GDI is shown in Figure 8. This de-
- sign uses multiplexer, XOR, OR and AND gates.
- Sum= A XOR XOR Cin (9)
- Cout = Cin (A AND B) + Cin (A OR B) (10)
- Design 3 using GDI with an intermediate XOR gate
- is shown in Figure 9.
- Sum= A XOR B XOR Cin (4.7)
- Cout = A AND B + (A XOR B)Cin (4.8)

The ASIC-based implementation is advantageous compared to the FPGA. Here, analog units can be developed. The supply voltage can be varied as per the requirements. GDI logic is difficult to implement in FPGAs. The disadvantage of the proposed method is that at high noise levels, the output swing may decrease. In addition, the coefficient update block is updated according to the signal-to-noise ratio. Therefore, at a high noise content, the increase is slower as the convergence rate increases. This can be optimized using techniques that can optimize the coefficient updating unit.

271 RESULTS AND DISCUSSION

The predictive technology model files from TSMC were used. These model files have parameters for 32 nm technology in CMOS and FinFET devices. The model files have physical and electrical device details, which will be fetched by the simulator to make the original device. A schematic diagram of the full adder-based Design1 circuit is shown in Figure 10. The inputs used in design1 are A, B, and C, and the outputs for this circuit are sum and carry. Here, the full adder used is the GDI full adder.

A schematic diagram of the full adder-based Design2 282 circuit is shown in Figure 11. The inputs used in de- 283 sign2 are A, B, and C, and the outputs for this circuit 284 are sum and carry.

A schematic diagram of the CMOS full adder-based 286 Design3 circuit is shown in Figure 12. The inputs used 287 in design3 are A, B, and C, and the outputs for this 288 circuit are sum and carry.

A schematic diagram of the FinFET full adder-based 290 Design1 circuit is shown in Figure 13. The inputs used 291 in design1 are A, B, and C, and the outputs for this 292 circuit are sum and carry. Here, the FinFET full adder 293 used was the 32 nm GDI full adder.

A schematic diagram of the FinFET full adder-based 295 Design2 circuit is shown in Figure 14. The inputs used 296 in design2 are A, B, and C, and the outputs for this 297 circuit are sum and carry.

A schematic diagram of the FinFET full adder-based 299 Design3 circuit is shown in Figure 15. The inputs used 300 in design3 are A, B, and C, and the outputs for this 301 circuit are sum and carry. Here, the FinFET full adder 302 used was the 32 nm GDI full adder.

303

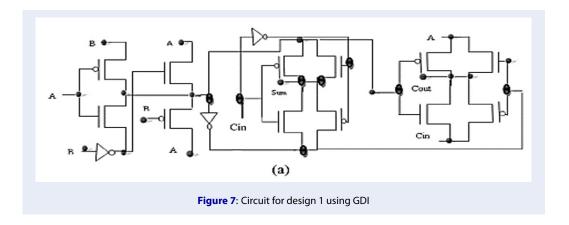
329

Analysis of Swing Restoring as per Figure 11 to Fig- 304

Figure 10-Figure 12 and 13-15 show the different 306 design implementations using CMOSs and FinFETs. 307 The circuit shows buffer units that eliminate swing 308 restoration in GDI circuits. In addition, as shown in 309 Table 2, the power supply used was 1 V. The delay increases if the device works in the subthreshold region. 311 Low-frequency design, V_{DD} reduction and threshold 312 nonscalability determine the buffer stage count. Ad- 313 ditional buffers increase the area of the system. When 314 linked with GDI cells, diffusion inputs require buffer 315 insertion. Buffer insertion can be reduced by avoid- 316 ing the buffer before the gate. The skew and jitter are 317 minimized or eliminated.

Table 1 shows the power analysis of the CMOS and 319 FinFET full adders at 32 nm. The average power, peak 320 power, average current and peak current are calcu- 321

Table 2 shows the power delay analysis of full adders in 323 CMOSs and FinFETs. When lower-level technology is 324 used, the power delay product will decrease. FinFET 325 has fewer power delay products than CMOS technol- 326

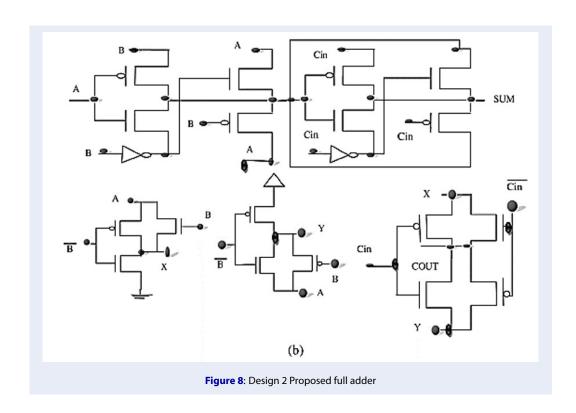
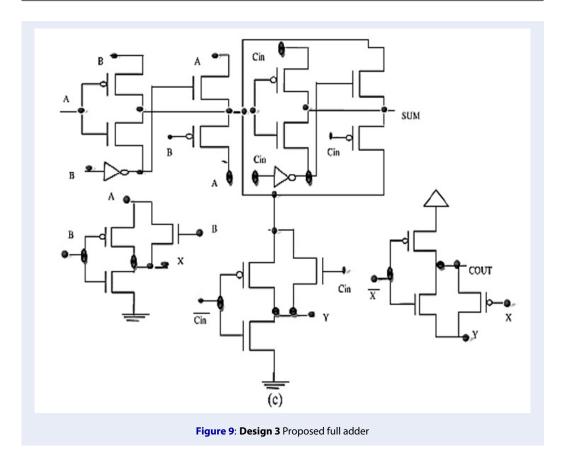
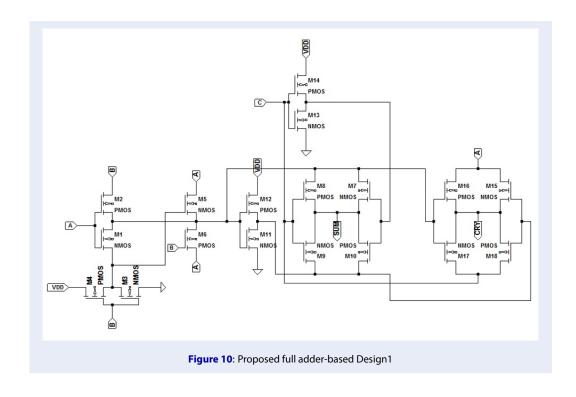
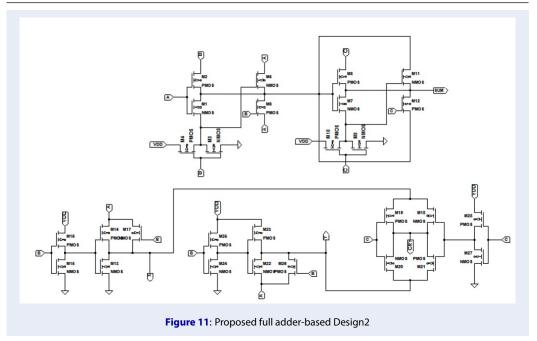

PDP (power delay product) = average power * average delay.

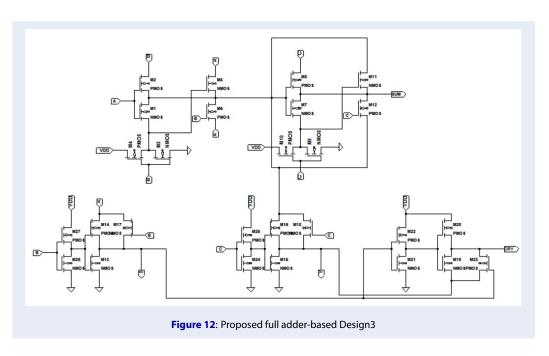
CONCLUSION

In this paper, FinFET-based adder circuits for an RLS 331 DCD adaptive filter are designed and implemented. 332 The design was used in the EEG signal processing 333

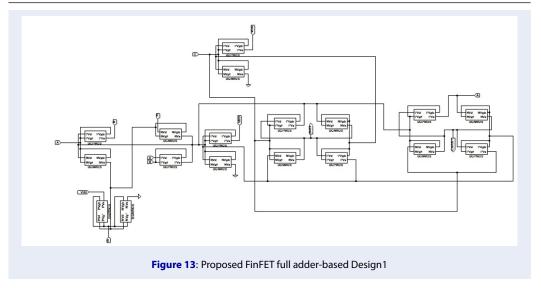
Table 1: Power analysis of the CMOS and FinFET full adder

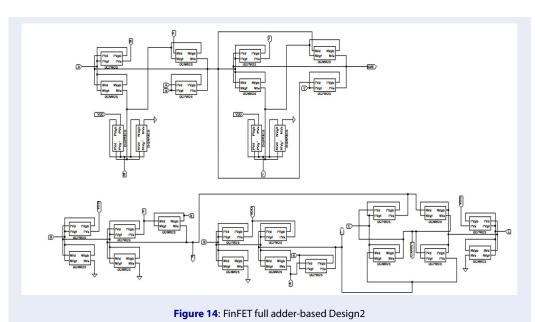
	CMOS 32_nm Design	gn			FinFET 32_nm design	Æ		
	AVERAGE POWER	PEAK POWER	AVERAGE CUR- RENT	PEAK CURRENT	AVERAGE POWER	PEAK POWER	AVERAGE CUR- RENT	PEAK CURRENT
FULL ADDER DESIGN1	7.06E-05	1.74E-02	-3.37E-05	1.04E-01	4.10E-07	3.36E-07	-4.10E-07	-3.73E-07
FULL ADDER DESIGN2	1.05E-03	5.82E-01	-7.85E-05	8.5621	4.48E-07	3.66E-07	-4.48E-07	-4.07E-07
FULL ADDER DESIGN3	8.10E-04	4.76E-01	-4.61E-05	4.0212	4.47E-07	3.65E-07	-4.47E-07	-4.06E-07


Table 2: Power delay analysis of the full adder

		power delay product	
	CMOS(45_nm)	CMOS(32_nm)	finFET(32_nm)
FULL ADDER DESIGN1	6.41E-14	8.17E-14	1.84E-15
FULL ADDER DESIGN2	6.41E-13	5.60E-13	1.98E-15
FULL ADDER DESIGN3	5.71E-13	6.65E-13	2.02E-15





unit. In biomedical signal processing, more adaptive filters are required for noise. Currently, since most devices are battery operated, dedicated circuits that can provide less power are needed. In conventional methods, CMOSs, which suffer from leakage current, are used. In this work, the GDI logic is designed in a finfet, which provides less power and fast operation. The full swing XOR, AND and OR gates for functions F1 and F2 are used. This eliminates the threshold voltage problem. Buffers are introduced to increase the

driving capability. This also provides low power by using FinFET devices. The SPICE simulation tool at 345 nm was used. The performances of various circuits are compared. The implementation was carried out in 347 Synopsis using CMOS and FinFET PTM models.

In the future, the proposed method can be implemented using field programmable gate arrays and signal processors. An embedded system will be implemented for the acquisition units to control and transmit information to remote places. IoT-based design 353

will be a focus of future research.

355 COMPETING INTERESTS

356 AUTHORS' CONTRIBUTIONS

357 ACKNOWLEDGEMENTS

358 REFERENCES

Oklobdzija VG, Villeger D. Improving multiplier design using
 improved column compression tree and optimized final adder
 in CMOS technology. IEEE Trans VLSI Syst. 1995;3(2):292 301;Available from: https://doi.org/10.1109/92.386228.

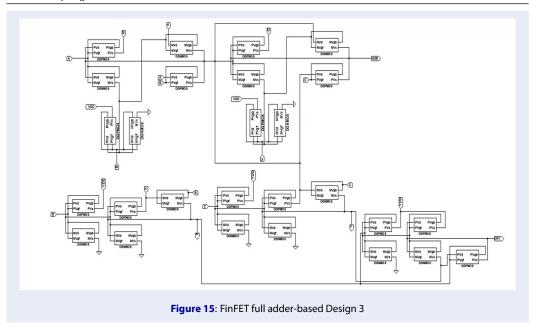
- Shams AM, Darwish AK, Bayoumi MA. Performance analysis of low power 1-bit CMOS full adder cells. IEEE Trans VLSI Syst. 2002;10(1):20-29;PMID: 36311643. Available from: https://doi. 365 org/10.1109/92.988727. 366
- 3. Maeen M, Foroutan V, Navi K. On the design of low power 1-bit full adder cell. IEICE Electron Express. 2009;6(16):1148- 1154;Available from: https://doi.org/10.1587/elex.6.1148v. 369
- 4. Purohit S, Margala M. Investigating the impact of logic and implementation for full adder performance. IEEE Trans VLSI Syst. 2012;20(7):1327-1331;Available from: https://doi.org/10.1109/ 372 TVLSI.2011.2157543. 373
- Singh R, Akashe S. Modeling and analysis of low power 10T full adder with reduced ground noise. J Circuits Syst Comput. 2014;23(14):1-14;Available from: https://doi.org/10.1142/ 376 S0218126614500054.
- Patel R, Parasar H, Wajid M. Faster arithmetic and logical 378 unit CMOS design with reduced number of transistors. In: 379 Proceedings of the International Conference on Advances 380

385

387

388

389


391

392

393

394

395

- in Communication, Network and Computing. 2011;142:519-381 522; Available from: https://doi.org/10.1007/978-3-642-19542-382 383
- Lee PM, Hsu CH, Hung YH. Novel 10-T full adders realized 384 by GDI structure. In: Proceedings of IEEE International Symposium on Integrated Circuits. 2007;115-118;Available from: 386 https://doi.org/10.1109/ISICIR.2007.4441810.
 - Hassoune I, Flandre D, O'Connor I, Legat J. ULPFA: a new efficient design of a power-aware full adder IEEE Trans Circuits Syst. 2010;57(8):2066-2074; Available from: https://doi.org/10. 1109/TCSI.2008.2001367.
 - 9. Aguirre-Hernandez M, Linares-Aranda M. CMOS full adders for energy efficient arithmetic applications. IEEE Trans VLSI Syst. 2011;19(4):718-721;Available from: https://doi.org/10. 1109/TVLSI.2009.2038166.
- Ramana Murthy G, Senthil Pari C, Velraj Kumar P, Lim TS. A new 396 397 6-T multiplexer based full adder for low power and leakage 398 current optimization. IEICE Electron Express. 2012;9(17):1434-1441;Available from: https://doi.org/10.1587/elex.9.1434. 399
- 400 Morgenshtein A, Fish A, Wagner IA. Gate Diffusion Input (GDI)-A power efficient method for digital combinatorial circuits. 401 402 IEEE Trans VLSI Syst. 2002;10(5):566-581; Available from: https: 403 //doi.org/10.1109/TVLSI.2002.801578.
- 404 12. Uma R, Dhavachelvan P. Modified gate diffusion input technique: a new technique for enhancing performance in full 405 adder circuits. In: Proceedings of ICCCS. 2012;74-81;Available 406 from: https://doi.org/10.1016/j.protcy.2012.10.010. 407
- Guptha MA, Rao SS, Selvaraj R. An efficient discrete wavelet 408 409 transform architecture with low power and multiplier-less structure for pervasive biomedical image processing applica-410 tion. EAI Endorsed Trans Perv Health Tech [Internet]. 2023 Jan 411 10 [cited 2024 Feb 26]; Available from: https://doi.org/10.4108/ 412 eetpht.v9i1.3176. 413
- Foroutan V, Taheri M, Navi K, Mazreah A. Design of two 414 14. 415 low power full adder cells using GDI structure and hybrid CMOS logic style. Integration (Amst). 2014;47(1):48-416 61;Available from: https://doi.org/10.1016/j.vlsi.2013.05.001. 417
- Morgenshtein A, Shwartz I, Fish A. Full swing Gate Diffusion In-418 15. 419 put (GDI) logic case study for low power CLA adder design. Integration (Amst). 2014;47(1):62-70;Available from: https://doi. 420 org/10.1016/j.vlsi.2013.04.002. 421
- 422 16. Arsovski I, Chandler T, Sheikholeslami A. A ternary content-

- addressable memory (TCAM) based on 4T static storage and 423 including a current-race sensing scheme. IEEE J Solid-State 424 Circuits. 2003;38(1):155-158;Available from: https://doi.org/ 425 10.1109/ISSC.2017.2739178.
- Selvaraj R, Bommannaraja. A multi-stage adaptive singular value decomposition approach for fetal ECG signal extraction 428 in multichannel input system for prenatal health monitoring. 429 Asian J Inf Technol. 2016;15(6):1049-1055;.
- Chang MC, He KL, Wang YC. Design of Asymmetric TCAM 431 (Ternary Content-Addressable Memory) Cells Using FinFET. In: 432 Proceedings of 2014 IEEE 3rd Global Conference on Consumer 433 Electronics, 2014:358-359:.