Open Access Full Text Article

Solid dispersion system – An effective solution to enhance solubility of mangiferin

Thi My Duyen Huynh¹ , Ai Nhi Dang¹ , Hoang Quyen Do¹ , Vinh Phuoc Nguyen2,*

Use your smartphone to scan this QR code and download this article

ABSTRACT

Mangiferin - a xanthonoid abundantly present in Mango leaves has been widely recognized a potent hypoglycemic, antioxidant, and anti-inflammatory agent. Nevertheless, due to its poor solubility and poor permeability, its bioavailability and application in large scale remain limited. Amongst different methods for enhancement of such poor-soluble drugs, solide dispersion (SD) appears as a potent strategy, which is widely applied in pharmaceutical industry to enhance firstly dissolution rate and subsequently bioavalability of BCSII and BCSIV drugs. In this study, different solid dispersion (SD) systems of mangiferin with beta-cyclodextrin (β-CD), polyethylene glycol 6000 (PEG 6000), polyvinylpyrrolidone K30 (PVP K30), and hydroxypropyl methylcellulose (HPMC) 6M were prepared, using wet grinding and solvent evaporation methods, and compared in terms of mangiferin's solubility. The results showed that the optimized SD of mangiferin and HPMC 6M (at 1:5 ratio), prepared by solvent evaporation method, achieved the highest dissolution rate of 81.96% after 30 minutes and 91.89% after 60 minutes at pH 1.2. Furthermore, differences in the material structure as well as the chemical composition between the optimized SD formula and raw Mangiferin were investigated and compared using the electronic microscopy (SEM), differential scanning calorimetry (DSC) and infra-red spectroscopy (IR). Overall, the findings within this study highlighted the potential of SD method in an attempt to enhance the solubility of active compounds in the class BCS II or BCS IV.

Key words: Mangiferin, solid dispersion, solubility enhancemen

¹ **BACKGROUND**

¹Can Tho University of Medicine and Pharmacy

2 School of Medicine, Vietnam National University Ho Chi Minh City

Correspondence

Vinh Phuoc Nguyen, School of Medicine, Vietnam National University Ho Chi Minh City

Email: npvinh@medvnu.edu.vn

History

- *•* Received:
- *•* Accepted:
- *•* Published Online:

DOI :

Check for updates

Copyright

© VNUHCM Press. This is an openaccess article distributed under the terms of the Creative Commons Attribution 4.0 International license.

 Mangiferin is a C-glucosyl xanthone, which has been shown to have many pharmacological effects, such as antidiabetic, antitumor, lipometabolism regulating, antioxidant, analgesic, antibacterial, antiviral, and immunomodulatory ones^{[1](#page-6-0)}. Therefore, Mangiferin is considered as a potential candidate for the treat- ment of several type of diseases, for instance, diabetes, cardiovascular diseases, etc. Nevertheless, due to its poor solubility and poor permeability, the bioavail- abitity via oral administration of mangiferin is ex- tremely low and this potential drug candidate belongs to group IV in the Biopharmaceutics Classification 14 System $(BCS)^2$ $(BCS)^2$. Therefore, there is a high demand to find out an effective solution to improve the sol- ubility of mangiferin, which may faciliate the clini- cal application of this active compound. Amongst different available strategies to improve the solu-19 bility of a drug, including nanoformulation^{[3](#page-6-2)}, soya $_{\rm 20}\,$ phospholipid-mangiferin complex 4 4 , and solid disper- $_{21}\,$ sion 5 5 5 , the Solid dispersion (SD) method appear as the most promising and applicable solution. Compared

²³ to other strategies, the SD technique presents several

advantages, such as higher drug-carrying rate, sim- ²⁴ plicity, ease of implementation, and simple required ²⁵ equipment^{[6](#page-7-1)}. In this study, Mangiferin was firstly ex- 26 tracted from local mango leaves. Afterwards, differ- 27 ent SD formula of obtained Mangiferin with different 28 type of carrier and at different ratios were prepared ²⁹ and compared in terms of its solubility. Eventually, 30 the optimal SD formulation of mangiferin was com- ³¹ pared to the raw material in terms of material struc- 32 ture and chemical composition 33

MATERIALS AND METHODS 34

Materials 35

Mangiferin was extracted from Cat-Chu Mango ³⁶ leaves (Mangifera indica L., Anacardiaceae) in Cao ³⁷ Lanh City, Dong Thap province, Vietnam. Thick ³⁸ mango leaves with dark green color,without pests, ³⁹ damage, termites were harvested in November 2022, ⁴⁰ washed with distilled water, and dried at 50-60 *◦*C ⁴¹ until unchanged weight, grinded and sieved to ob- ⁴² tain coarse powder (According to Vietnam Pharmacopoeia V). Mangiferin was then extracted using 70% ⁴⁴ ethanol solution as solvent at a ratio of 1:15 (w/w), under sonication during 20 minutes. The extract was 46

Cite this article : Huynh T M D, Dang A N, Do H Q, Nguyen V P. **Solid dispersion system – An effective solution to enhance solubility of mangiferin** . *Sci. Tech. Dev. J.* 2024; ():1-8.

⁴⁷ then evaporated at 60-70 ^oC approximately 12 hours

⁴⁸ to obtain dry powder. The dry extract was dissolved ⁴⁹ in distilled water at the ratio of 1:2, extracted by ethyl

⁵⁰ acetate at the ratio of 1:1 (v/v), and the lower layer was

⁵¹ taken and left for crystallization of mangiferin during

⁵² 24 hours. The obtained suspension was filtered and

53 dried at 50 °C until obtaining a moisture content in-

⁵⁴ ferior to 5%. The purified mangiferin obtained was

⁵⁵ light yellow and odorless with a mangiferin content ⁵⁶ of 91.11%.

57 PEG 6000, $β$ -CD, PVP K30, HPMC 6M, potassium

⁵⁸ chloride, distilled water, 96% ethanol and concen-

⁵⁹ trated hydrochloric acid met pharmaceutical grade.

⁶⁰ Other chemicals and solvents were HPLC grade.

61 Mangiferin reference had a $C_{19}H_{18}O_{11}$ purity of 97%

⁶² calculated on an anhydrous basis was provided by the

- ⁶³ Institute of Drug Quality Control Ho Chi Minh City
- ⁶⁴ with the batch number of QT339 011020 and expiry
- ⁶⁵ date of 10/2023.
- ⁶⁶ /-heart

⁶⁷ **Methods**

⁶⁸ *Preparation of solid dispersion system to im-*⁶⁹ *prove mangiferin solubility*

⁷⁰ Wet grinding (abbreviated as N) or solvent evapora-

⁷¹ tion (abbreviated as DM) methods were used to pre-⁷² pare different solid dispersion of mangiferin and are ⁷³ detailed in Table [1](#page-2-0).

 Wet grinding method: (1) Weighting of Mangiferin and carriers. (2) Mixture of Mangiferin and carriers. (3) Addition of sufficient amount of absolute ethanol to moisten the mixture powder, and then the mixture was ground for 30 minutes with a mortar and pestle to obtain a paste-like mixture. (4) Drying of the mix- ture at 50-60 ºC and stabilization in a desiccator for 81 24 hours. (5) Crushing and sieving through a 0.5 mm sieve. (6) Storage of the SD in an enclosed bottle in

83 desiccator.

 Solvent evaporation method: the steps (1), (4), (5), and (6) were similar to that of Wet grinding metho. (2) Mangiferin was dissolved in about 2/3 of ethanol:water (at the ratio of 2.5:1, v/v), then the mixture was stirred on a magnetic stirrer for about 30 minutes. Then, the carriers were dissolved into the above solvent mixture (3) The carriers were mixed with mangiferin, and then the mixture was stirred on a magnetic stirrer at 60ºC until the solvent was com- pletely evaporated. **Dissolution test:** Approximately 80 mg of solid dis-

 persion containing mangiferin was taken into 500 mL of pH 1.2 medium. The solution was tested on a paddle-type dissolution tester with a rotation speed 98 of 100 rpm and a temperature of 37 ± 0.5 °C.

After 5, 15, 30, 45, and 60 minutes, 10 mL of the dis- ⁹⁹ solved solution was taken and filtered. 1 mL of the 100 filtrate was taken into a 10 mL volumetric flask, then 101 pH 1.2 buffer was added to obtain a final volume of 102 10 mL. UV-VIS spectroscopy at 258 nm was used to ¹⁰³ quantity mangiferin $⁷$ $⁷$ $⁷$.</sup> . ¹⁰⁴

Blank sample: pH buffer 1.2. Each sample was ana- ¹⁰⁵ lyzed in triplicate and the average was determined.

Uncorrected mangiferin concentration at the n*th* ¹⁰⁷ $time:$ 108

$$
C_n = C_{n0} + \frac{v_0}{v} \times C_{n-1}
$$
 (1)

Cn and C_{n0} were the corrected concentration and uncorrected concentration at the n^{th} time (μ g/mL), re- 110 spectively. C_{n−1} was the corrected concentration for 111 the $(n-1)^{th}$ time (μ g/mL). V_o and V were volumes of n_1 dissolved solution and solvent ($V_o = 10$ mL and $V = 113$ 500), respectively.

The percentage of dissolved mangiferin at the time t 115 was calculated according to the formula: 116

$$
\%mangingferin = \frac{c_n \times 500}{m \times 1000} \times 100\tag{2}
$$

n was the corrected concentration for the n*th* time ¹¹⁷ $(\mu g/mL)$. m was the mangiferin content in the sam- 118 $ple (mg).$

Characterization of the solid dispersion sys- ¹²⁰ *tem of mangiferin* 121

Morphology ¹²²

Scanning electron microscopy was used to study the 123 surface of the obtained SD. Indeed, a thin layer of 2- ¹²⁴ 3 mg powder was sprayed onto a metal disc with a ¹²⁵ piece of conductive double-sided tape attached. The ¹²⁶ sample was dried and then sprayed with an extremely 127 thin layer of gold to avoid electrical charge on the sur- ¹²⁸ face. The specimen was put into the vacuum chamber 129 and the surface of the particles was taken pictures by ¹³⁰ a scanning electron microscope (SEM, JSM – IT100 ¹³¹ $JOEL, 20 kV$).

DSC analysis 133

Approximately 0.5 to 100 mg of sample was taken into ¹³⁴ a DSC aluminum dish on an analytical balance (a flat 135 layer of solid with a height of 2 mm was the most ap- ¹³⁶ propriate) of NETZSCH: DSC 204 F1 PHOENIX ap- ¹³⁷ pareil. It was covered by the lid sticking to the dish ¹³⁸ by force. To allow the air inside to expand, a small ¹³⁹ hole was drilled into the lid of the dish. A white alu- 140 minum dish was used as a comparison sample and the 141 lid was punched with two holes to differentiate. The 142

N: wet grinding method, DM: solvent evaporation method

 two aluminum dishes were put into the heating cham- ber with tongs. Temperature was increased from 30- 145 250 ^oC with a heating rate of 5 ^oC per minute. The weight value was put into the computer and the re-sults were processed.

¹⁴⁸ *IR analysis*

 About 1-2 mg of the sample was ground with 300-400 mg of KBr until homogeneous. Tablets with a diam- eter of 13 mm and a pressing force of 800 Mpa was fabricated using the obtained mixture and was IR an- alyzed, using IR Affinity 1S (Shimadzu) with a range of 4000–400 cm*−*1, resolution of 2 cm*−*1, and 128 ¹⁵⁵ scans.

¹⁵⁶ **RESULTS**

¹⁵⁷ **Preparation of solid dispersion of** ¹⁵⁸ **mangiferin**

159 In total, eleven SD system of mangiferin with $β$ - CD, PEG 6000, and PVP K30 at different ratios of 1:1, 1:2, 1:3, 1:5, and 1:7 (w/w) were prepared using wet grinding or solvent evaporation methods. After- wards, the dissolution profile of pure mangiferin or SD mangiferin was determined and presented in Fig-ure [1](#page-3-0), Table [2.](#page-3-1)

 As showed in Figure [1,](#page-3-0) while the wet grinding tech- nique showed a slight enhancement in dissolution rate of mangiferin (the highest dissolution rate was around 60% compared to 50%, respectively), the solvent evap- oration method improved significantly the solubility of mangiferin (the highest dissolution rate was up to

90% compared to 60%, and 50%, respectively). In par- ¹⁷² ticular, the SD system DM11 made with HPMC 6M ¹⁷³ at a ratio of 1:5 (w/w) showed the highest solubility at 174 approximately 90% with the lowest f₂ of 23.48 \pm 0.97 175 . To further confirm the result, the DM11 formula ¹⁷⁶ tested 6 times and the results were showed in Table [3.](#page-4-0) ¹⁷⁷ Indeed, the results indicated a repeatability and reli- ¹⁷⁸ able data was achieved for the DM11 formula with a ¹⁷⁹ dissolution rate of 91.83 \pm 0.06% (analyzed with one- 180 way ANOVA, $F = 0.0005$).

Evaluation of the properties of the solid dis- ¹⁸² **persion system** 183

To clarify how the solid dispersion could change in ¹⁸⁴ the structure of mangiferin that lead to an increase in 185 its solubility, three analytical techniques were applied, ¹⁸⁶ including IR, DSC, and SEM analysis. Indeed, when 187 the solid dispersion system is formed, mangiferin is 188 covered by hydrophillic careers, that leads to a signif- ¹⁸⁹ icant increase of surface area, and results in a better 190 solubility. Due to the covering of hydrophillic car- ¹⁹¹ rers, characteristic functional groups of mangiferin ¹⁹² were obscured. Therefore, in this study, infrared spec- ¹⁹³ troscopy was used to verify the presence or decrease in ¹⁹⁴ intensity of such functional groups. Due to the same 195 reason, the endothermic peak of mangiferin itself and ¹⁹⁶ mangiferin + carrier was changed and the differential 197 thermal scanning method was deployed to visualize ¹⁹⁸ thes changes. Finally, SEM images of mangiferin and 199 the complexe mangiferin-carriers were recorded and 200 compared in terms of the size and surface shape. 201

Figure 1: In-vitro release profiles of mangiferin solid dispersions prepared with the carrier of (A) pure mangiferin, (B) one carrier prepared by the wet grinding method, (C) one carrier prepared by the solvent evaporation method, and (D) two carriers prepared by the solvent evaporation method.

No.	Formula	Value f ₂	No.	Formula	Value f ₂
$\mathbf{1}$	N1	35.15 ± 0.60	12	DM7	27.61 ± 1.96
$\overline{2}$	N ₂	39.98 ± 1.16	13	DM ₈	38.22 ± 1.83
3	N ₃	30.23 ± 1.16	14	DM9	48.65 ± 0.90
$\overline{4}$	N ₄	32.48 ± 0.91	15	DM10	29.14 ± 0.27
5	N ₅	32.48 ± 0.33	16	DM11	23.48 ± 0.97
6	DM1	54.24 ± 2.30	17	DM ₁₂	43.48 ± 0.79
7	DM ₂	41.37 ± 2.29	18	DM13	42.59 ± 0.61
8	DM3	76.47 ± 2.97	19	DM14	44.15 ± 0.46
9	DM4	41.43 ± 0.27	20	DM ₁₅	39.60 \pm 0.58
10	DM ₅	31.00 ± 1.44	21	DM16	55.39 ± 1.02
11	DM ₆	37.14 ± 1.15	22	DM17	55.41 ± 3.35

Table 2: Value f₂ similarity factor between solid dispersion system formulas

 On the infrared spectrum of the solid dispersion system, a wavelength shift at the characteristic peak of the OH group from 3392 cm*−*¹ to 3444 cm*−*¹ ²⁰⁴ was close to ²⁰⁵ the peak of 3445 cm^{−1} of HPMC. The pointed OH peak of the pure mangiferin was also replaced by a blunt peak, which indicated that the mangiferin was covered by HPMC. In addition, the peaks of 1253 cm- $_{209}$ 1 , 1221 cm- 1 , and 1203 cm- 1 were no longer seen, which were typical peaks for the CO group (Figure [2\)](#page-5-0). In DSC analysis (Figure [3\)](#page-5-1), mangiferin had endother- mic peaks at 106.4ºC, 142.0ºC, and 223.3ºC that was not observed in case of mangiferin SD. Furthermore, in SD system, the endothermic absorption peaks at 67.8 ºC and 211.9 ºC were similar to that of HPMC 6M at 70.1 ºC and 273.0 ºC, suggesting an interaction between mangiferin and HPMC in SD system.

 SEM scanning image of solid dispersion showed that the surface of solid dispersion was similar to that of HPMC 6M, which also reconfirmed the previous find- ings that there existed an interaction between the ac- tive ingredient and the carriers (mangiferin was sur-rounded by HPMC 6M).

²²⁴ **DISCUSSION**

 To improve the solubility of mangiferin using the Solid Dispersion (SD) technique, the first parame- ter to consider is the carrier. The current study investigated second-generation carriers including β - cyclodextrin, PEG 6000, PVP K30, HPMC 6M with a high level of biodegradability and biocompatibil- $_{231}$ ity and suitable for the solid dispersion technique 8 . Among these potential carriers for the solid disper- sion technique, β-cyclodextrin can form a soluble complex with mangiferin particles by providing an effective and hydrophilic shield, which also helps to prevent the recrystallization of the drug and keep the drug in a stable amorphous form. Both wet and sol- vent grinding methods resulted in a good solubility improvement at a mangiferin:β-cyclodextrin ratio of 1:2. With the carrier PEG 6000 and PVP K30, which ²⁴⁰ are polymers with linear chains and soluble in wa- ²⁴¹ ter, PEG 6000 and PVP K30 can create intramolec- ²⁴² ular hydrogen bonds with mangiferin particles, form- ²⁴³ ing a complex that makes mangiferin exist in an amor- ²⁴⁴ phous state. The results show that PVP K30 with a ²⁴⁵ ratio of 1:5 has higher solubility than a ratio of 1:7, ²⁴⁶ while PEG 6000 with a ratio of 1:7 has the highest sol- ²⁴⁷ ubility. This difference may be due to an increase in ²⁴⁸ viscosity of the formed solution. Indeed, in the case ²⁴⁹ of PVP K30, the higher the usage rate is, the higher ²⁵⁰ the viscosity, which can hinder the dissolution pro- ²⁵¹ cess. In contrast, as PEG 6000 has many -OH groups, ²⁵² the effect of increasing solubility is overwhelming its 253 viscosity-inducing effect.

A combination of two carriers within an SD system ²⁵⁵ was proven not to help improve solubility significantly 256 but may be hindered due to occasional interaction be- ²⁵⁷ tween polymers that lead to changes in their prop- ²⁵⁸ erties^{[9](#page-7-4)}. In this study, HPMC was shown to be the 259 most appropriate carrier for the mangiferin SD sys- ²⁶⁰ tem with a dissolution rate of $81.96 \pm 0.05\%$ after 30 $_{261}$ minutes (1.75 times higher than pure mangiferin at 262 the same time) and $91.89 \pm 0.38\%$ after 60 minutes 263 (1.80 times more than pure mangiferin at the same ²⁶⁴ time). This benefit may be explained by the viscos- 265 ity properties of HPMC 6M, which helps in prevent- ²⁶⁶ ing the crystallization of large particles of mangiferin 267 during the formation of the solid dispersion system. 268 In addition to the choice of carrier, the ratio of ac- ²⁶⁹ tive ingredients to carriers is also an important factor 270 that significantly affects drug solubility. In this study, ²⁷¹ a ratio of 1:5 between drug and carrier was found to 272 be optimal, which is also commonly used in the lit- ²⁷³ erature for SD technique^{[5](#page-7-0)}. Moreover, increasing the 274 ratio up to 1:7 was practically impossible due to ele- ²⁷⁵ vated viscosity. Besides, when using a large amount of 276 HPMC, a polymer-rich diffusion layer may be created 277 around the active ingredient, inhibiting the diffusion 278

Figure 2: Infrared (IR) spectra of the pure mangiferin, the polymer HPMC, and the mangiferin solid dispersion with HPMC at a ratio of 1:5 w/w.

Figure 3: Differential scanning calorimetry (DSC) graphs of the pure mangiferin (A), the polymer HPMC (B), and the mangiferin solid dispersion with HPMC at a ratio of 1:5 w/w (C).

Figure 4: Scanning electron microscopy (SEM) images of the pure mangiferin (A, scale bar: 2 µm), the polymer HPMC (B, scale bar: 500 μ m), and the mangiferin solid dispersion with HPMC 6M at a ratio of 1:5 w/w (C, scale bar: $2 \mu m$).

²⁷⁹ of the active substance into the environment during 280 dissolution 10 .

 The method used to fabricate the SD system also had an important impact on the obtained solubility. As confirmed in the current study, the solvent evapora- tion method was more appropriate for the mangiferin SD system. At first sight, this method is highly recom- mended as it is simple and easy to scale up. Further- more, many studies in the literature have also demon- strated that the solubility of active substances can be better enhanced using solvent evaporation than by $_{290}$ other methods^{[11](#page-7-6)}. In terms of characterization of the mangiferin SD system, as expected, all IR, DSC, and SEM analyses proved there was an interaction between mangiferin and its carrier. Indeed, the poorly water-soluble mangiferin was covered by a hydrophilic polymeric layer that explains also an important enhancement of its solubility. This interaction, as well as the cover-ing of active ingredient by the polymeric layer in the

²⁹⁹ SD system, was also observed in literature, such as the 300 study by Mai Hoang Anh et al., 12 .

³⁰¹ **CONCLUSION**

 In this study, an optimal solid dispersion system of mangiferin and HPMC 6M at a ratio of 1:5 was suc- cessfully formulated and fabricated using the solvent evaporation method, which was 1.8 times higher than that of pure mangiferin. For all obtained results, the current study highlighted the potential of the SD tech- nique in firstly improving the solubility and subse- quently the bioavailability of drugs in BCS II and BCS IV, as an attempt to make such potent compounds more applicable in drug development.

³¹² **ABBREVIATIONS**

³¹³ xxx

³¹⁴ **ACKNOWLEDGMENTS**

³¹⁵ xxx

AUTHOR'S CONTRIBUTIONS

All authors read and approved the final manuscript. 317 **FUNDING** 318 \textbf{XXX} 319 **AVAILABILITY OF DATA AND MATERIALS** Data and materials used and/or analyzed during the 322 current study are available from the corresponding 323 author on reasonable request. 324 **ETHICS APPROVAL AND CONSENT** ³²⁵ **TO PARTICIPATE** ³²⁶ Not applicable. 327 **CONSENT FOR PUBLICATION** ³²⁸ Not applicable. 329 **COMPETING INTERESTS** ³³⁰ The authors declare that they have no competing in- ³³¹ terests. 332 **REFERENCES** 333 1. Du S, Liu H, Lei T, Xie X, Wang H, He X, et al. Mangiferin: 334 An effective therapeutic agent against several disorders (Re- 335 view). Mol Med Report [Internet]. 2018 Oct 2 [cited 2024 Mar 336 26];Available from: [http://www.spandidos-publications.com/](http://www.spandidos-publications.com/10.3892/mmr.2018.9529) [337](http://www.spandidos-publications.com/10.3892/mmr.2018.9529) [10.3892/mmr.2018.9529](http://www.spandidos-publications.com/10.3892/mmr.2018.9529). ³³⁸ 2. Barakat S, Nasr M, Ahmed RF, Badawy S, Mortada N. Recent 339 Formulation Advances of Mangiferin. Rev Bras Farmacogn. 340 2022 Oct 4:32(6):871–82;
341 3. Razura-Carmona FF, Pérez-Larios A, González-Silva N, 342 Herrera-Martínez M, Medina-Torres L, Sáyago-Ayerdi SG, et 343 al. Mangiferin-Loaded Polymeric Nanoparticles: Optical Char- 344 acterization, Effect of Anti-topoisomerase I, and Cytotoxicity. 345 Cancers. 2019 Dec 6;11(12):1965;. 346 4. Bhattacharyya S, Ahmmed SM, Saha BP, Mukherjee PK. Soya 347 phospholipid complex of mangiferin enhances its hepatopro- 348 tectivity by improving its bioavailability and pharmacokinet- 349

ics. J Sci Food Agric. 2014 May;94(7):1380-8;PMID: [24114670](https://www.ncbi.nlm.nih.gov/pubmed/24114670). 350 Available from: <https://doi.org/10.1002/jsfa.6422>. 351

7

- 5. Singh G, Kaur L, Gupta GD, Sharma S. Enhancement of the
- Solubility of Poorly Water Soluble Drugs through Solid Dis-
- persion: A Comprehensive Review. pharmaceutical-sciences [Internet]. 2017 [cited 2024 Mar 26];79(5);Available from:
- [htmlhttps://doi.org/10.4172/pharmaceutical-sciences.1000279](html https://doi.org/10.4172/pharmaceutical-sciences.1000279).
- 6. Sareen S, Mathew G, Joseph L. Improvement in solubility of
- poor water-soluble drugs by solid dispersion. Int J Pharm In-vestig. 2012 Jan;2(1):12-7;PMID: [23071955.](https://www.ncbi.nlm.nih.gov/pubmed/23071955) Available from:
- <https://doi.org/10.4103/2230-973X.96921>.
- 7. Zou TB, Xia EQ, He TP, Huang MY, Jia Q, Li HW. Ultrasound-Assisted Extraction of Mangiferin from Mango (Mangifera
- indica L.) Leaves Using Response Surface Methodology.
- Molecules. 2014 Jan 27;19(2):1411-21;PMID: [24473205.](https://www.ncbi.nlm.nih.gov/pubmed/24473205) Avail-
- able from: <https://doi.org/10.3390/molecules19021411>.
- 8. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as
- strategy to improve oral bioavailability of poor water solu- ble drugs. Drug Discovery Today. 2007 Dec;12(23-24):1068- 75;PMID: [18061887.](https://www.ncbi.nlm.nih.gov/pubmed/18061887) Available from: [https://doi.org/10.1016/](https://doi.org/10.1016/j.drudis.2007.09.005) [j.drudis.2007.09.005](https://doi.org/10.1016/j.drudis.2007.09.005).
- 9. Kim HJ, Lee SH, Lim EA, Kim JS. Formulation optimization of solid dispersion of mosapride hydrochloride. Arch Pharm
- Res. 2011 Sep;34(9):1467-75;PMID: [21975808.](https://www.ncbi.nlm.nih.gov/pubmed/21975808) Available from:
- <https://doi.org/10.1007/s12272-011-0908-3>.
- 375 10. Craig DQM. The mechanisms of drug release from solid disper-
- sions in water-soluble polymers. International Journal of Phar-maceutics. 2002 Jan;231(2):131-44;PMID: [11755266](https://www.ncbi.nlm.nih.gov/pubmed/11755266). Available
- from: [https://doi.org/10.1016/S0378-5173\(01\)00891-2](https://doi.org/10.1016/S0378-5173(01)00891-2).
- 11. Malkawi R, Malkawi WI, Al-Mahmoud Y, Tawalbeh J. Cur-
- rent trends on solid dispersions: past, present, and future.
- Advances in Pharmacological and Pharmaceutical Sciences. 2022 October 22;(1):5916013;PMID: [36317015.](https://www.ncbi.nlm.nih.gov/pubmed/36317015) Available
- from: <https://doi.org/10.1155/2022/5916013>.
- 12. Van Khanh N, Thi Thu T, Anh Tuan H. Preparation of solid dis-
- persion of rutin by spay drying. MPS [Internet]. 2019 Dec 16 [cited 2024 Mar 26];35(2);Available from: [https://doi.org/10.](https://doi.org/10.25073/2588-1132/vnumps.4191)
- [25073/2588-1132/vnumps.4191](https://doi.org/10.25073/2588-1132/vnumps.4191).