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ABSTRACT
Glass fiber reinforced polyester (GFRP) composites are widely used in applications that require high
durability and excellent corrosion resistance. In Vietnam, lightweight GFRP materials are primarily
used in the production of boat hulls and bows, automobile and motorcycle chassis, as well as vari-
ous industrial and household devices due to their high corrosion resistance. Accurately predicting
the wear rate of GFRP composites is of significant practical importance as it provides important
guidance for the experimental design and production of these materials. In this study, artificial in-
telligence (AI) techniques, specifically artificial neural networks (ANN) and fuzzy inference systems
(FIS), were used to predict the wear rate of GFRP composites. Both methods are well-suited to
modeling nonlinear systems. Experimental results from trained ANN and adaptive neuro-fuzzy in-
ference system (ANFIS)models were used to determine themanufacturing parameters that yielded
the lowest wear rate for GFRP composites. Specifically, a wear rate of 18.241× 10−6 mm3/Nmwas
obtained using a composition of 30 wt.% CaCO3 , 8 wt.% P, 11 wt.% GF, 5 wt.% GB, and 1 wt.% Al,
with a compressive load of 10 N and a rotation speed of 200 rpm.
Key words: ANN network, ANFIS network, GFRP, material wear rate

INTRODUCTION
Glass fiber reinforced polyester (GFRP) composites
are hybrid materials composed of polyester polymers
reinforced with glass fibers1,2. This combination pro-
duces a lightweight material with excellent mechan-
ical properties. The demand for materials with im-
proved wear resistance has grown rapidly due to ro-
bust industrialization, modernization, and interna-
tional integration. Improving the durability and wear
resistance of materials not only boosts their opera-
tional efficiency and reduces maintenance costs but
also supports environmental protection and work-
place safety3. In ad dition, materials with high wear
resistance can help optimize production performance
and lower operational costs; this is crucial for busi-
nesses competing in international markets, where
product quality and efficiency are critical factors.
GFRP composites are highly valued for their wear re-
sistance across several applications; however, the spe-
cific rate of wear often depends on several factors, in-
cluding the type and proportion of glass fibers, the
quality of the polyester matrix, and the ambient en-
vironmental and operating conditions1. Due to the
wide range of input conditions that can affect the per-
formance of the final product, optimizing these in-
put conditions to achieve the lowest wear rate is a
key focus of current research. This study proposes a

machine learning approach involving artificial neural
networks (ANNs) and adaptive neuro-fuzzy inference
systems (ANFIS) to optimize input parameters for the
experimental production of GFRP materials with re-
duced wear rate. The experimental data used to con-
struct the model were obtained from previous work4.

MATERIALS ANDMETHODS
Materials and Experimental Parameters
The components used to produce the GFRP compos-
ites investigated in this study are presented in Ta-
ble 14.
In this study, orthophthalic polyester resin was used
as the matrix for the GFRP samples. Additives used
in theGFRP composites include glass beads (GB), cal-
cium carbonate (CaCO3), and aluminumoxide, while
glass fibers (GF)were used as the reinforcementmate-
rial. Additional input conditions considered for wear
rate testing included load (L) and rotational speed (S).
The output variable of interest was the wear rate (WR)
of the resultant material.
The initial experimental parameters for model con-
struction were obtained from previous work4 and
are presented in Table 2. Seven input parameters—
CaCO3, P, GF, GB, Al, L, and S—were assigned the
variables X1, X2, X3, X4, X5, X6, and X7, respectively,
while the WR was used as the output parameter (Y).
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Table 1: 4 Material components of individual GFRP samples

Sample Matrix Reinforcement Filler 1 Filler 2 Filler 3

D1 orthophthalic20 wt.%
polyester

40 wt.% GF 10 wt.% GB 30 wt.% CaCO3 None

T1 orthophthalic20 wt.%
polyester

11 wt.% GF 1wt.%Alumina 68 wt.% CaCO3 None

T2 20 wt.% orthophthalic
polyester, 8 wt.% polystyrene
tensile additive

11 wt.% GF 1wt.%Alumina 60 wt.% CaCO3 None

T3 20 wt.% orthophthalic
polyester, 8 wt.% polystyrene
tensile additive

11 wt.% GF 5 wt.% GB 56 wt.% CaCO3 None

T4 orthophthalic20 wt.%
polyester

11 wt.% GF 1wt.%Alumina 5 wt.% GB 63 wt.%
CaCO3

T5 20 wt.% orthophthalic
polyester, 8 wt.% polystyrene
tensile additive

11 wt.% GF 1wt.%Alumina 5 wt.% GB 55 wt.%
CaCO3

A total of 24 experimental data points were used, of
which 75% were used for training and 25% were used
for validation.

Artificial Neural Network (ANN) Model
ANNs are computational models inspired by the
structure and function of biological brains5–8. The
structure of the ANNused in this study consists of the
following layers9:
Input Layer: Each neuron in the input layer receives
an input value Xi that is passed to the neurons in the
next layer without modification. This input is typi-
cally represented as a vector X = [x1, x2 , ..., xn], where
n is the number of features.
Hidden Layers: In the hidden layers, each neuron j
computes a weighted sum of the inputs (z j) from all
neurons i in the previous layer, in addition to a bias
term (b j). Subsequently, an activation function ϕ is
applied to produce the output h j .
The formula for the weighted sum of inputs and the
bias for a neuron j in the hidden layer is as fol-
lows5,9,10:
z j = ∑i(wi j, xi) + b j

wherewi j is theweight connecting neuron i in the pre-
vious layer with neuron j in the current layer, xi is the
output from neuron i in the previous layer (or the net-
work input if i is in the input layer), and b j is the bias
for neuron j.
The output h_j of neuron j after applying the activa-
tion function ϕ is:
h j = ϕ(z j)

The activation function ϕ can be selected from one
of several types of functions, including the sigmoid,

Tanh, and ReLU functions.
Output Layer: Like the hidden layers, each neuron
in the output layer computes a weighted sum of the
inputs from all neurons in the previous layer and ap-
plies an activation function (which may differ from
the function used in the hidden layer) to produce the
final output of the network. Typically, a linear acti-
vation function (e.g., purelin) is used for the output
layer.
Training Process: The ANN is trained by using a
backpropagation algorithm and an optimization algo-
rithm such as gradient descent5,7,11 to iteratively ad-
just the weights (wi j) and biases (b j) in the layers to
minimize the error between the predicted and actual
values.
Learning Rate: The learning rate is a crucial hyper-
parameter in ANN training that controls the step size
during weight updates, influences the convergence,
and helps minimize the loss function. This parame-
ter is defined by the equation2,4:
wt+1 = wt − η∇L(wt)

where wt and wt+1 are the weight values at time t and
t +1, η is the learning rate, and∇L(∇L(wt)) is the gra-
dient of the loss function with respect to the weights
wt .

The ANFIS Model
ANFISnetworks are hybridmodels that combineneu-
ral networks and fuzzy inference systems, designed to
simulate Takagi-Sugeno fuzzy inference systems12,13.
These models leverage the advantages of both meth-
ods to determine the optimal parameters of the fuzzy
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Table 2: Experimental parameters used in themodel 4

Dataset Input data Output
data

Sample
Name

Sample
Number

CaCO3

(wt%)
(wt.%) GF

(wt.%)
GB
(wt.%)

Al
(wt.%)

L (N) S
(rpm)

WR
(mm3/Nm)

*10−6

DI 1 30 0 40 10 0 10 100 700

DI 2 30 0 40 10 0 10 200 583

DI 3 30 0 40 10 0 20 100 929

T1 5 68 0 11 0 1 10 100 235

T1 6 68 0 11 0 1 10 200 237

T1 7 68 0 11 0 1 20 100 605

T2 9 60 8 11 0 1 10 100 34

T2 10 60 8 11 0 1 10 200 42

T2 11 60 8 11 0 1 20 100 684

T3 13 56 8 11 5 0 10 100 52

T3 14 56 8 11 5 0 10 200 35

T3 15 56 8 11 5 0 20 100 115

T4 17 63 0 11 5 1 10 100 139

T4 18 63 0 11 5 1 10 200 163

T4 19 63 0 11 5 1 20 100 154

T5 21 55 8 11 5 1 10 100 25

T5 22 55 8 11 5 1 10 200 29

T5 23 55 8 11 5 1 20 100 554

M 4 30 0 40 10 0 20 200 777

DI 8 68 0 11 0 1 20 200 446

T1 12 60 8 11 0 1 20 200 83

T2 16 56 8 11 5 0 20 200 41

T3 20 63 0 11 5 1 20 200 261

T4 24 55 8 11 5 1 20 200 490

system, thereby improving its inference and predic-
tion capabilities. A standard ANFIS system consists
of five layers as follows13,14:
Layer 1: Fuzzification Layer
The nodes in this layer transform the input values
into fuzzy values using membership functions, such
as Gaussian, bell-shaped, and triangular functions.
Each node corresponds to a fuzzy rule and produces
outputs defined as follows13,15:

O1,i = µAi(x) f or input x
O1, j = µB j (y) f or input y

where  O1,i  and  O1,  j  are  the  outputs  of  the  i  and  j  nodes
in  Layer  1,  and  µAi(x)  and  µA j  (y)  are  the  correspond-
ing  fuzzy  functions.
Layer  2:  Evaluation  of  Rules  Layer
Each  node  in  this  layer  represents  a  fuzzy  rule.  The
output  of  each  node  is  the  product  of  the  attribute  val-
ues  from  the  previous  layer,  which  define  the  weight  of
the  rule.  The  outputs  of  this  layer  are  normalized  by
dividing  each  output  by  the  total  weight  of  all  rules.
The  formula  for  calculating  the  weight  of  each  rule  is
as  follows:

                 3842
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Figure 1: An ANN architecture with seven inputs,
five hidden neurons, and one output

O2,k = wk = µAk (x) × µBk (y)
where wk is the weight of rule k.
Layer 3: Normalization Layer
The nodes in this layer normalize the rule weights ob-
tained from the previous layer to ensure that the total
weight of all rules is equal to 1. The output of each
node is thus the normalized weight of a specific rule.
The normalization formula is defined as follows:
Q3,k = wk = wk

∑k wk

whereWk is the normalized weight of rule k.
Layer 4: Defuzzification Layer
Each node in this layer generates a fuzzy output based
on the normalized weights from Layer 3. These out-
puts are typically expressed as linear or polynomial
functions of the inputs. The formula determining the
output function of each rule is as follows:
O4,k = Wk × fk = Wk(pkx + qky + rk)

where fk is the output function of rule k, typically rep-
resented as a linear equation of the inputs with coef-
ficients pk , qk , and rk .
Layer 5: Composite Output Layer
The overall output of the ANFIS network is generated
by the final layer, which aggregates all outputs from
Layer 4. This output is obtained by multiplying the
sum of the outputs by their normalized weights and is
defined by the following formula:
O5 = ∑k wk fw
In ANFIS networks, training can be conducted exclu-
sively using backpropagation algorithms or in combi-
nation with optimization algorithms, such as the least
squares estimator (LSE).These algorithms are used to
update the parameters of the membership functions
and the fuzzy inference rules. Through this process,
the ANFIS network optimizes the fuzzy inference sys-
tem to approximate complex functions, thus allowing
the network to model intricate relationships within

the data, thereby enhancing its predictive accuracy
and efficiency.
The sub-clustering method was used to identify fuzzy
rules from input data through Matlab software16,17.
The ANFIS sub-clustering process consists of three
main stages:
• Creation of sub-clusters: This was achieved by em-
ploying clustering techniques such as C-Means clus-
tering or fuzzy C-Means clustering to partition the
input space into clusters that correspond to a fuzzy
rule that is typically characterized by Gaussian, bell-
shaped, or sigmoidal functions.
•Model training: The ANFIS model is trained based
on the fuzzy rules established in the first stage. This
process involves the fine-tuning of parameters, at-
tribute functions, and weights associated with each
fuzzy rule to improve predictive capabilities and opti-
mize model performance.
• Model evaluation: The trained model is validated
using a validation dataset that was set aside prior to
the training process. Evaluation criteria include ac-
curacy, coverage, and other indices such as the co-
efficient of determination (R2), mean squared error
(MSE), and root mean squared error (RMSE).
This structured approach allows the ANFIS network
to effectively learn and model complex relationships
within the data, thus providing a robust framework
for applications that require nuanced data interpreta-
tion and prediction.
Evaluation Methods: Several metrics were used to
evaluate the performance of the ANN and the ANFIS
networks. Several commonly used evaluationmetrics
are presented below18–20:
The MSE21 measures the average squared difference
between actual and predicted values and is defined as:
MSE = 1

n ∑n
i=1(Yi − Ŷi)

2

where n is the number of data samples used in the
evaluation set, Yi is the actual value of sample i, and
Ŷi is value predicted by the model for sample i.
Similarly, the RMSE20–22 measures the deviation be-
tween the predicted values and the actual values. A
smaller RMSE is indicative of a more reliable model.
It is defined as follows:
RMSE =

√
1
n ∑n

i=1(Yi − Ŷi)2

The R2 20,23 value is used to evaluate how well a re-
gression model fits the actual data, with values rang-
ing from 0 to 1. A higher R2 score indicates a better
fit. It is defined as:
R2 = 1 − ∑n

i=1(Yi − Ŷi)
2

∑n
i=1(Yi − Y )2
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RESULTS ANDDISCUSSION
ANNModel
Thenumber of neurons in the hidden layer of anANN
is a critical parameter that influences the structure and
performance of the model. Each hidden neuron re-
ceives inputs from the previous layer, applies an acti-
vation function, and transmits its output to the next
layer.

Figure 2: Identification of the optimal number of
hidden neurons.

A hidden layer with five neurons was selected as it
yielded the lowest RMSE on the test sets (~80), indi-
cating high prediction accuracy (Figure 2). The corre-
sponding R2 values were both high and well-balanced
(~0.92 and ~0.83 for the training and test set, re-
spectively), suggesting that themodel generalizes well
without evidence of overfitting.
Of the activation functions evaluated in this investi-
gation, tansig achieved the best performance on the
test set; specifically, it had the lowest RMSE and the
highest R2 value, indicating that it was more gener-
alizable compared to the logsig, radbas, and purelin
functions. Indeed, the test RMSE of tansig was ap-
proximately 20–40 units lower than that of the other
functions, while its R2 exceeded 0.85. More detailed
results are presented in Figure 3. Based on this analy-
sis, tansig was selected as the optimal activation func-
tion for the proposed model.

Figure 3: Identification of the optimal activation
function

Across the range of evaluated learning rates, a learn-
ing rate of 0.3 yielded the best performance on the

test set. Specifically, it exhibited the lowest RMSE
(~65) and the highest R2 (~0.88), indicative of ef-
ficient learning and strong generalizability. Other
learning rates ranging from 0.01 to 0.5 resulted in less
stable or less accurate results. The detailed results
of this evaluation are illustrated in Figure 4. Conse-
quently, a learning rate of 0.3 was selected for the pro-
posed model.

Figure 4: Identification of the optimal learning rate.

Of the variety of optimization algorithms tested in
this study, trainscg was found to achieve a favorable
balance between accuracy and generalizability. Fig-
ure 5 shows that this algorithm achieved low RMSE
values on both the training and test sets, indicative
of efficient convergence and consistent performance
across both datasets. In addition, the corresponding
R2 values were both high and well-balanced (~0.87
and ~0.86 for the training and test sets, respectively),
suggesting that the model effectively captures the un-
derlying data patterns without overfitting. Compared
to other algorithms such as traingd—which exhib-
ited significantly poorer RMSE and R2 scores—and
trainbr, the trainscg algorithm offered superior stabil-
ity and predictive power, making it the most suitable
optimization algorithm for this regression task.

Figure 5: Identification of the ideal optimization al-
gorithm.

The evaluation of different epoch settings shows that
the model performed best at 250 epochs. Under these
conditions, the test RMSE reached its lowest value
(~65), while the R2 approached 0.89, reflecting high
prediction accuracy and strong generalizability (Fig-
ure 6). Consequently, a total of 250 epochs was se-
lected as the optimal training setting for this task.
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Figure 6: Identification of the optimal number of
epochs.

Based on systematic hyperparameter tuning, the neu-
ral network was configured with five hidden neu-
rons, a tansig activation function, a learning rate of
0.3, the trainscg training algorithm, and 250 training
epochs. This configuration achieved the best overall
performance, with low RMSE and consistently high,
well-balanced R2 values on both training and testing
datasets, indicative of strong predictive accuracy and
strong generalizability without any evidence of over-
fitting.

Figure 7: a) Training loss (blue line) and valida-
tion loss (red dashed line) curves; b) Regression plot
highlighting the differences between the actual and
predicted WR values.

Figure 7a shows the training process over 250 epochs.
Both the training loss and validation loss decrease
rapidly and then stabilize, indicating that the model
learns effectively, converges quickly, and does not suf-
fer from overfitting. Figure 7b shows that the regres-
sion line closely follows the ideal y = x line, indicat-
ing that the predicted WR values are consistent with
the actual values. The final model achieved a high R2

value of 0.875 and a lowRMSE of approximately 95.64
×10-6 mm3/Nm on the test set, demonstrating accu-
rate predictions and strong generalization capability.
Figure 8 illustrates the relationship between the pre-
dicted and actual values for both the training and test
sets. In the training set, the predicted curve closely
matches the actual data, suggesting that the model
has effectively captured the underlying patterns in the
data. Despite some slight deviations at points with
higher variability, the predictions remain stable and

Figure 8: Predicted vs. actual values on the training
and testing sets.

consistent with actual trends in the test set, suggesting
that themodel generalizes well to unseen data without
overfitting.

ANFIS Model
TheANFIS networkwas optimized by focusing on key
parameters such as the number of sub-clusters, fuzzy
membership functions, and fuzzy rules. Figure 9
presents the overall structure of the ANFIS model
used in this study. The network consists of seven in-
put variables: CaCO3, P, GF, GB, Al, L, and S, all of
which influence the WR.
Each input is connected to a set of fuzzy membership
functions (inputmf), which translate the input values
into linguistic levels (e.g., low, medium, and high).
These membership functions feed into the rule layer,
where fuzzy “if–then” rules are formed by combin-
ing input conditions. The blue nodes represent logical
“AND” operations used to determine rule activation.
The rule outputs are then passed to the output mem-
bership functions (outputmf), which are mapped to
fuzzy output values.
Finally, these outputs are aggregated and defuzzified
to produce a single output value: the predicted WR.
The ANFIS network used in this study consists of
18 sub-clusters, 18 fuzzy rules, and 18 membership
functions for each variable. The “gaussmf” function
was chosen as the membership function for the input
layer, while the “linear” function was applied to the
output layer. Detailed results of this investigation are
presented in Table 3.
Figure 10 shows the fuzzy rule base that was automat-
ically generated through the sub-clustering process.
A total of 18 rules were created, with each rule cor-
responding to a data cluster. Each rule integrates all
seven input variables (in1 to in7), which are mapped
to their respective membership functions and used to
infer a specific output. This well-defined, comprehen-
sive ruleset demonstrates the model’s ability to learn
complex nonlinear relationships between the inputs
and the output, while also ensuring complete cover-
age of the input space.
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Table 3: Results generated from the ANFISmodel.

Variable Name Membership Function of Sub-Number
Clusters

Sub-Cluster Classification

Input CaCO3 gaussmf 6 8, 13, 14, 16, 17, 18

gaussmf 2 17, 18

GF gaussmf 2 8, 18

GB gaussmf 3 8, 17, 18

Al gaussmf 2 13, 18

L gaussmf 2 16, 18

S gaussmf 2 16, 18

Output WR linear 18 1, 2, …17, 18

Figure 9: Structure of the ANFIS Network used to
predict WR.

Figure 10: The fuzzy rule base of the ANFIS model
generated using sub-clustering.

Figure 11: Comparison between the actual values
and the values predicted by the ANFIS model.

Figure 11 shows that the predictions generated by the
ANFIS model applied to the training samples were
consistent with the actual values. In addition, the
ANFIS model yielded more accurate WR predictions
compared to the ANNmodel when applied to the test
set. Specifically, the R2 value of the ANFIS model was
0.9778, which is higher than the R2 value of 0.875 ob-
tained by the ANNmodel.

Figure 12: Regression plot of predicted vs. actual
WR with ANFIS model applied to the test set.

Table  4  shows  that  the  ANFIS  model  outperformed
the  ANN  model  in  both  accuracy  and  generalizability.
Specifically,  the  ANFIS  model  achieved  a  higher  R2

value  of  0.9778  (compared  to  0.875  for  the  ANN)  and
a  significantly  lower  RMSE  of  31.8563  (compared  to
95.643  for  the  ANN).  These  results  indicate  that  the
ANFIS  model  provides  a  more  suitable  and  effective
approach  for  predicting  WR.

Prediction  of  WR  using  the  ANFIS  model

The  superior  ANFIS  model  was  used  to  optimize  the
input  parameters  to  obtain  the  lowest  possible  WR.
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Table 4: Comparison of the predictive performance of the ANN and ANFISmodels.

Model R2 RMSE (x10−6mm3/Nm)

ANN 0.875 95.643

ANFIS 0.9778 31.8563

Table 5: Predictions of the ANFISmodel.

Input_pred Output_pred

CaCO3 GF GB Al L S WR

(wt%) (wt.%) (wt.%) (wt.%) (wt.%) (N) (rpm) (mm3/Nm)*10−6

Random in-
put samples

30 5 20 3 1 10 150 18.138

GA 30 8 11 5 1 10 200 18.241

Two approaches were employed: 1) generating ran-
dom input samples and evaluating their correspond-
ing outputs using the optimized ANFIS model, and
2) applying a genetic algorithm (GA) to search for the
optimal input conditions that minimize the WR. De-
tailed results of both approaches are presented in Ta-
ble 5.
Table 5 presents the predicted minimum WR ob-
tained using the random input sampling and GA-
based optimization approaches. The trained ANFIS
model was used to determine the predicted WR cor-
responding to each input configuration. The pre-
dicted WR values from both approaches were very
close, with a difference of only ~1.0× 10-7 mm3/Nm,
highlighting the stability and reliability of the ANFIS
model for predicting wear behavior. Although ran-
dom sampling yielded a slightly lowerWR (18.138 vs.
18.241), the GA approach offers a more systematic
and targeted optimization process, making it partic-
ularly valuable in practical applications.

CONCLUSIONS
This study investigated theWR of GFRPmaterials us-
ing the ANFIS model. An evaluation of the ANFIS
model demonstrates that it can be used to optimize
input parameters even with a limited dataset. The re-
sults indicated that the lowest WR (18.241 × 10−6

mm3/Nm) obtained corresponds to the following in-
put conditions: 30% CaCO3, 8% P, 11% GF, 5% GB,
1% Al, a compressive load of 10 N, and a rotational
speed of 200 rpm.
This study also conducted a comparative analysis of
the ANN and ANFIS models, revealing that the AN-
FIS model is a promising tool for optimizing produc-
tion processes andmaterial synthesis compared to the

ANNmodel due to its higher R2 value of 0.9778, com-
pared to the R2 value of 0.875 obtained by the ANN
model.
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Artificial Neural Network (ANN)
Fuzzy Inference System (FIS)
Adaptive Neuro-Fuzzy Inference System (ANFIS)
Glass beads (GB), calcium carbonate (CaCO3), Glass
fibers (GF)
Load (L), rotational speed (S), wear rate (WR)
Coefficient of determination (R2), mean squared er-
ror (MSE), and root mean squared error (RMSE)
Genetic Algorithm (GA)
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